Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(16): e2317783121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38588430

RESUMEN

GABAergic inhibitory interneurons, originating from the embryonic ventral forebrain territories, traverse a convoluted migratory path to reach the neocortex. These interneuron precursors undergo sequential phases of tangential and radial migration before settling into specific laminae during differentiation. Here, we show that the developmental trajectory of FoxG1 expression is dynamically controlled in these interneuron precursors at critical junctures of migration. By utilizing mouse genetic strategies, we elucidate the pivotal role of precise changes in FoxG1 expression levels during interneuron specification and migration. Our findings underscore the gene dosage-dependent function of FoxG1, aligning with clinical observations of FOXG1 haploinsufficiency and duplication in syndromic forms of autism spectrum disorders. In conclusion, our results reveal the finely tuned developmental clock governing cortical interneuron development, driven by temporal dynamics and the dose-dependent actions of FoxG1.


Asunto(s)
Corteza Cerebral , Neocórtex , Ratones , Animales , Corteza Cerebral/metabolismo , Movimiento Celular/fisiología , Neurogénesis/fisiología , Interneuronas/fisiología , Biomarcadores/metabolismo , Neuronas GABAérgicas/fisiología
2.
Exp Brain Res ; 242(6): 1421-1428, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38647701

RESUMEN

Unilateral spatial neglect (USN) results from impaired attentional networks and can affect various sensory modalities, such as visual and somatosensory. The rodent medial agranular cortex (AGm), located in the medial part of the forebrain from rostral to caudal direction, is considered a region associated with spatial attention. The AGm selectively receives multisensory input with the rostral AGm receiving somatosensory input and caudal part receiving visual input. Our previous study showed slower recovery from neglect with anterior AGm lesion using the somatosensory neglect assessment. Conversely, the functional differences in spatial attention across the entire AGm locations (anterior, intermediate, and posterior parts) are unknown. Here, we investigated the relationship between the severity of neglect and various locations across the entire AGm in a mouse stroke model using a newly developed program-based analysis method that does not require human intervention. Among various positions of the lesions, the recovery from USN during recovery periods (postoperative day; POD 10-18) tended to be slower in cases with more rostral lesions in the AGm (r = - 0.302; p = 0.028). Moreover, the total number of arm entries and maximum moving speed did not significantly differ between before and after AGm infarction. According to these results, the anterior lesions may slowly recover from USN-like behavior, and there may be a weak association between the AGm infarct site and recovery rate. In addition, all unilateral focal infarctions in the AGm induced USN-like behavior without motor deficits.


Asunto(s)
Modelos Animales de Enfermedad , Trastornos de la Percepción , Animales , Trastornos de la Percepción/fisiopatología , Trastornos de la Percepción/etiología , Masculino , Ratones , Ratones Endogámicos C57BL , Lateralidad Funcional/fisiología , Percepción Espacial/fisiología , Accidente Cerebrovascular/fisiopatología , Accidente Cerebrovascular/complicaciones , Corteza Cerebral/fisiopatología
3.
Pol J Radiol ; 89: e358-e367, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39139258

RESUMEN

Purpose: To compare the diagnostic performance of virtual monoenergetic imaging (VMI), computed tomography (CT), and magnetic resonance imaging (MRI) in patients with endometrial cancer (EC). Material and methods: This retrospective study analysed 45 EC patients (mean age: 62 years, range: 44-84 years) undergoing contrast-enhanced CT with dual-energy CT (DECT) and MRI between September 2021 and October 2022. Dual-energy CT generated conventional CT (C-CT) and 40 keV VMI. Quantitative analysis compared contrast-to-noise ratio (CNR) of tumour to myometrium between C-CT and VMI. Qualitative assessment by 5 radiologists compared C-CT, VMI, and MRI for myometrial invasion (MI), cervical invasion, and lymph node metastasis. Sensitivity, specificity, accuracy, and area under the receiver operating characteristic curve (AUC) were calculated and compared for each diagnostic parameter. Results: Virtual monoenergetic imaging showed significantly higher CNR than C-CT (p < 0.001) and a higher sensitivity for MI than C-CT (p = 0.027) and MRI (p = 0.011) but lower specificity than MRI (p = 0.018). C-CT had a higher sensitivity and AUC for cervical invasion than MRI (p = 0.018 and 0.004, respectively). Conclusions: The study found no significant superiority of MRI over CT across all diagnostic parameters. VMI demonstrated heightened sensitivity for MI, and C-CT showed greater sensitivity and AUC for cervical invasion than MRI. This suggests that combining VMI with C-CT holds promise as a comprehensive preoperative staging tool for EC when MRI cannot be performed.

4.
Acta Neuropathol Commun ; 12(1): 40, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38481314

RESUMEN

DNA methylation is crucial for chromatin structure and gene expression and its aberrancies, including the global "hypomethylator phenotype", are associated with cancer. Here we show that an underlying mechanism for this phenotype in the large proportion of the highly lethal brain tumor glioblastoma (GBM) carrying receptor tyrosine kinase gene mutations, involves the mechanistic target of rapamycin complex 2 (mTORC2), that is critical for growth factor signaling. In this scenario, mTORC2 suppresses the expression of the de novo DNA methyltransferase (DNMT3A) thereby inducing genome-wide DNA hypomethylation. Mechanistically, mTORC2 facilitates a redistribution of EZH2 histone methyltransferase into the promoter region of DNMT3A, and epigenetically represses the expression of DNA methyltransferase. Integrated analyses in both orthotopic mouse models and clinical GBM samples indicate that the DNA hypomethylator phenotype consistently reprograms a glutamate metabolism network, eventually driving GBM cell invasion and survival. These results nominate mTORC2 as a novel regulator of DNA hypomethylation in cancer and an exploitable target against cancer-promoting epigenetics.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Ratones , Animales , Glioblastoma/patología , Línea Celular Tumoral , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Metilación de ADN , Fenotipo , Neoplasias Encefálicas/patología , ADN/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Proteínas Tirosina Quinasas/genética
5.
Commun Biol ; 7(1): 806, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961250

RESUMEN

Developmental synapse elimination is crucial for shaping mature neural circuits. In the neonatal mouse cerebellum, Purkinje cells (PCs) receive excitatory synaptic inputs from multiple climbing fibers (CFs) and synapses from all but one CF are eliminated by around postnatal day 20. Heterosynaptic interaction between CFs and parallel fibers (PFs), the axons of cerebellar granule cells (GCs) forming excitatory synapses onto PCs and molecular layer interneurons (MLIs), is crucial for CF synapse elimination. However, mechanisms for this heterosynaptic interaction are largely unknown. Here we show that deletion of AMPA-type glutamate receptor functions in GCs impairs CF synapse elimination mediated by metabotropic glutamate receptor 1 (mGlu1) signaling in PCs. Furthermore, CF synapse elimination is impaired by deleting NMDA-type glutamate receptors from MLIs. We propose that PF activity is crucial for CF synapse elimination by directly activating mGlu1 in PCs and indirectly enhancing the inhibition of PCs through activating NMDA receptors in MLIs.


Asunto(s)
Cerebelo , Receptores de Glutamato Metabotrópico , Sinapsis , Animales , Cerebelo/metabolismo , Cerebelo/fisiología , Cerebelo/citología , Sinapsis/fisiología , Sinapsis/metabolismo , Ratones , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de Glutamato Metabotrópico/genética , Células de Purkinje/metabolismo , Células de Purkinje/fisiología , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Interneuronas/metabolismo , Interneuronas/fisiología , Ratones Noqueados , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA