Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Psychophysiology ; 61(5): e14494, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38041416

RESUMEN

When simultaneously confronted with multiple attentional targets, visual system employs a time-multiplexing approach in which each target alternates for prioritized access, a mechanism broadly known as rhythmic attentional sampling. For the past decade, rhythmic attentional sampling has received mounting support from converging behavioral and neural findings. However, so compelling are these findings that a critical test ground has been long overshadowed, namely the 3-D visual space where attention is complicated by extraction of the spatial layout of surfaces extending beyond 2-D planes. It remains unknown how attentional deployment to multiple targets is accomplished in the 3-D space. Here, we provided a time-resolved portrait of the behavioral and neural dynamics when participants concurrently attended to two surfaces defined by motion-depth conjunctions. To characterize the moment-to-moment attentional modulation effects, we measured perceptual sensitivity to the hetero-depth surface motions on a fine temporal scale and reconstructed their neural representations using a time-resolved multivariate inverted encoding model. We found that the perceptual sensitivity to the two surface motions rhythmically fluctuated over time at ~4 Hz, with one's enhancement closely tracked by the other's diminishment. Moreover, the behavioral pattern was coupled with an ongoing periodic alternation in strength between the two surface motion representations in the same frequency. Together, our findings provide the first converging evidence of an attentional "pendulum" that rhythmically traverses different stereoscopic depth planes and are indicative of a ubiquitous attentional time multiplexor based on theta rhythm in the 3-D visual space.


Asunto(s)
Ritmo Teta , Percepción Visual , Humanos , Estimulación Luminosa
2.
Environ Sci Technol ; 58(14): 6258-6273, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38450439

RESUMEN

Contamination of small-sized plastics is recognized as a factor of global change. Nanoplastics (NPs) can readily enter organisms and pose significant ecological risks. Arbuscular mycorrhizal (AM) fungi are the most ubiquitous and impactful plant symbiotic fungi, regulating essential ecological functions. Here, we first found that an AM fungus, Rhizophagus irregularis, increased lettuce shoot biomass by 25-100% when exposed to positively and negatively charged NPs vs control, although it did not increase that grown without NPs. The stress alleviation was attributed to the upregulation of gene expressions involving phytohormone signaling, cell wall metabolism, and oxidant scavenging. Using a root organ-fungus axenic growth system treated with fluorescence-labeled NPs, we subsequently revealed that the hyphae captured NPs and further delivered them to roots. NPs were observed at the hyphal cell walls, membranes, and spore walls. NPs mediated by the hyphae were localized at the root epidermis, cortex, and stele. Hyphal exudates aggregated positively charged NPs, thereby reducing their uptake due to NP aggregate formation (up to 5000 nm). This work demonstrates the critical roles of AM fungus in regulating NP behaviors and provides a potential strategy for NP risk mitigation in terrestrial ecosystems. Consequent NP-induced ecological impacts due to the affected AM fungi require further attention.


Asunto(s)
Micorrizas , Micorrizas/metabolismo , Microplásticos , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Hifa , Ecosistema , Expresión Génica
3.
Environ Sci Technol ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39137267

RESUMEN

Acute oral toxicity is currently not available for most polycyclic aromatic hydrocarbons (PAHs), especially their derivatives, because it is cost-prohibitive to experimentally determine all of them. Here, quantitative structure-activity relationship (QSAR) models using machine learning (ML) for predicting the toxicity of PAH derivatives were developed, based on oral toxicity data points of 788 individual substances of rats. Both the individual ML algorithm gradient boosting regression trees (GBRT) and the stacking ML algorithm (extreme gradient boosting + GBRT + random forest regression) provided the best prediction results with satisfactory determination coefficients for both cross-validation and the test set. It was found that those PAH derivatives with fewer polar hydrogens, more large-sized atoms, more branches, and lower polarizability have higher toxicity. Software based on the optimal ML-QSAR model was successfully developed to expand the application potential of the developed model, obtaining reliable prediction of pLD50 values and reference doses for 6893 external PAH derivatives. Among these chemicals, 472 were identified as moderately or highly toxic; 10 out of them had clear environment detection or use records. The findings provide valuable insights into the toxicity of PAHs and their derivatives, offering a standard platform for effectively evaluating chemical toxicity using ML-QSAR models.

4.
Cereb Cortex ; 33(6): 2734-2747, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35689650

RESUMEN

Binocular rivalry arises when two discrepant stimuli are simultaneously presented to different eyes, during which observers consciously experience vivid perceptual alternations without physical changes in visual inputs. Neural dynamics tracking such perceptual alternations have been identified at both early and late visual areas, leading to the fundamental debate concerning the primary neural substrate underlying binocular rivalry. One promising hypothesis that might reconcile these seemingly paradoxical findings is a gradual shift from interocular competition between monocular neurons to pattern competition among binocular neurons. Here, we examined this hypothesis by investigating how neural representations of rivalrous stimuli evolved along the visual pathway. We found that representations of the dominant and the suppressed stimuli initially co-existed in V1, which were enhanced and attenuated respectively in extrastriate visual areas. Notably, neural activity in V4 was dictated by the representation of the dominant stimulus, while the representation of the suppressed stimulus was only partially inhibited in dorsal areas V3A and MT+. Our findings revealed a progressive transition from the co-existing representations of the rivalrous inputs to the dictatorial representation of the dominant stimulus in the ventral pathway, and advocated different cortical evolutionary patterns of visual representations between the dorsal and the ventral pathways.


Asunto(s)
Visión Binocular , Vías Visuales , Visión Binocular/fisiología , Neuronas/fisiología , Estimulación Luminosa , Percepción Visual/fisiología , Disparidad Visual
5.
Environ Sci Technol ; 57(46): 18317-18328, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37186812

RESUMEN

Machine learning (ML) models were developed for understanding the root uptake of per- and polyfluoroalkyl substances (PFASs) under complex PFAS-crop-soil interactions. Three hundred root concentration factor (RCF) data points and 26 features associated with PFAS structures, crop properties, soil properties, and cultivation conditions were used for the model development. The optimal ML model, obtained by stratified sampling, Bayesian optimization, and 5-fold cross-validation, was explained by permutation feature importance, individual conditional expectation plot, and 3D interaction plot. The results showed that soil organic carbon contents, pH, chemical logP, soil PFAS concentration, root protein contents, and exposure time greatly affected the root uptake of PFASs with 0.43, 0.25, 0.10, 0.05, 0.05, and 0.05 of relative importance, respectively. Furthermore, these factors presented the key threshold ranges in favor of the PFAS uptake. Carbon-chain length was identified as the critical molecular structure affecting root uptake of PFASs with 0.12 of relative importance, based on the extended connectivity fingerprints. A user-friendly model was established with symbolic regression for accurately predicting RCF values of the PFASs (including branched PFAS isomerides). The present study provides a novel approach for profound insight into the uptake of PFASs by crops under complex PFAS-crop-soil interactions, aiming to ensure food safety and human health.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Humanos , Suelo/química , Carbono , Teorema de Bayes , Fluorocarburos/análisis , Aprendizaje Automático , Contaminantes Químicos del Agua/análisis
6.
Environ Sci Technol ; 57(42): 16053-16064, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37824517

RESUMEN

Rhizosphere microbiota are an important factor impacting plant uptake of pollutants. However, little is known about how microbial nitrogen (N) transformation in the rhizosphere affects the uptake and accumulation of antibiotics in plants. Here, we determined recruitment of N transformation functional bacteria upon ciprofloxacin (CIP) exposure, by comparing differences in assembly processes of both rhizospheric bacterial communities and N transformation between two choysum (Brassica parachinensis) varieties differing in CIP accumulation. The low accumulation variety (LAV) of CIP recruited more host bacteria (e.g., Nitrospiria and Nitrolancea) carrying nitrification genes (mainly nxrA) but fewer host bacteria carrying denitrification genes, especially narG, relative to the high accumulation variety (HAV) of CIP. The nxrA and narG abundance in the LAV rhizosphere were, respectively, 1.6-7.8 fold higher and 1.4-3.4 fold lower than those in the HAV rhizosphere. Considering that nitrate can decrease CIP uptake into choysum through competing for the proton motive force and energy, such specific bacteria recruitment in LAV favored the production and utilization of nitrate in its rhizosphere, thus limiting its CIP accumulation with 1.6-2.4 fold lower than the HAV. The findings give insight into the mechanism underlying low pollutant accumulation, filling the knowledge gap regarding the profound effects of rhizosphere microflora and N transformation processes on antibiotic accumulation in crops.


Asunto(s)
Brassica , Ciprofloxacina , Rizosfera , Nitratos , Nitrógeno/análisis , Antibacterianos , Bacterias/genética , Plantas , Suelo , Microbiología del Suelo
7.
J Exp Bot ; 73(1): 50-67, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34610119

RESUMEN

Rice polluted by metal(loid)s, especially arsenic (As) and cadmium (Cd), imposes serious health risks. Numerous studies have demonstrated that the obligate plant symbionts arbuscular mycorrhizal fungi (AMF) can reduce As and Cd concentrations in rice. The behaviours of metal(loid)s in the soil-rice-AMF system are of significant interest for scientists in the fields of plant biology, microbiology, agriculture, and environmental science. We review the mechanisms of As and Cd accumulation in rice with and without the involvement of AMF. In the context of the soil-rice-AMF system, we assess and discuss the role of AMF in affecting soil ion mobility, chemical forms, transport pathways (including the symplast and apoplast), and genotype variation. A potential strategy for AMF application in rice fields is considered, followed by future research directions to improve theoretical understanding and encourage field application.


Asunto(s)
Arsénico , Micorrizas , Oryza , Contaminantes del Suelo , Cadmio/análisis , Hongos , Raíces de Plantas/química , Suelo , Microbiología del Suelo
8.
Environ Sci Technol ; 55(13): 8730-8741, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34169723

RESUMEN

Perfluorooctanesulfonate (PFOS) as an accumulative emerging persistent organic pollutant in crops poses severe threats to human health. Lettuce varieties that accumulate a lower amount of PFOS (low-accumulating crop variety, LACV) have been identified, but the regarding mechanisms remain unsolved. Here, rhizospheric activation, uptake, translocation, and compartmentalization of PFOS in LACV were investigated in comparison with those of high-accumulating crop variety (HACV) in terms of rhizospheric forms, transporters, and subcellular distributions of PFOS. The enhanced PFOS desorption from the rhizosphere soils by dissolved organic matter from root exudates was observed with weaker effect in LACV than in HACV. PFOS root uptake was controlled by a transporter-mediated passive process in which low activities of aquaporins and rapid-type anion channels were corrected with low expression levels of PIPs (PIP1-1 and PIP2-2) and ALMTs (ALMT10 and ALMT13) genes in LACV roots. Higher PFOS proportions in root cell walls and trophoplasts caused lower root-to-shoot transport in LACV. The ability to cope with PFOS toxicity to shoot cells was poorer in LACV relative to HACV since PFOS proportions were higher in chloroplasts but lower in vacuoles. Our findings provide novel insights into PFOS accumulation in lettuce and further understanding of multiprocess mechanisms of LACV.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Contaminantes del Suelo , Fluorocarburos/análisis , Humanos , Lactuca , Suelo , Contaminantes del Suelo/análisis
9.
Molecules ; 26(2)2021 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-33435286

RESUMEN

The synergistic potential of plant essential oils (EOs) with other conventional and non-conventional antimicrobial agents is a promising strategy for increasing antimicrobial efficacy and controlling foodborne pathogens. Spoilage microorganisms are one of main concerns of seafood products, while the prevention of seafood spoilage principally requires exclusion or inactivation of microbial activity. This review provides a comprehensive overview of recent studies on the synergistic antimicrobial effect of EOs combined with other available chemicals (such as antibiotics, organic acids, and plant extracts) or physical methods (such as high hydrostatic pressure, irradiation, and vacuum-packaging) utilized to reduce the growth of foodborne pathogens and/or to extend the shelf-life of seafood products. This review highlights the synergistic ability of EOs when used as a seafood preservative, discovering the possible routes of the combined techniques for the development of a novel seafood preservation strategy.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Conservación de Alimentos , Aceites Volátiles/farmacología , Extractos Vegetales/farmacología , Plantas/química , Antibacterianos/química , Microbiología de Alimentos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Aceites Volátiles/química , Extractos Vegetales/química
10.
Environ Sci Technol ; 54(20): 13046-13055, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33030897

RESUMEN

Perfluorooctanoic acid (PFOA) is bioaccumulative in crops. PFOA bioaccumulation potential varies largely among crop varieties. Root exudates are found to be associated with such variations. Concentrations of low-molecular-weight organic acids (LMWOAs) in root exudates from a PFOA-high-accumulation lettuce variety are observed significantly higher than those from PFOA-low-accumulation lettuce variety (p < 0.05). Root exudates and their LMWOAs components exert great influences on the linear sorption-desorption isotherms of PFOA in soils, thus activating PFOA and enhancing its bioavailability. Among root exudate components, oxalic acid is identified to play a key role in activating PFOA uptake, with >80% attribution. Oxalic acid at rhizospheric concentrations (0.02-0.5 mM) can effectively inhibit PFOA sorption to soils by decreasing hydrophobic force, electrostatic attraction, ligand exchange, and cation-bridge effect. Oxalic acid enhances dissolution of metallic ions, iron/aluminum oxides, and organic matters from soils and forms oxalate-metal complexes, based on nuclear magnetic resonance spectra, ultraviolet spectra, and analyses of metal ions, iron/aluminum organometallic complexes, and dissolved organic carbon. The findings not only reveal the activation process of PFOA in soils by root exudates, particularly oxalic acid at rhizospheric concentrations, but also give an insight into the mechanism of enhancing PFOA accumulation in lettuce varieties.


Asunto(s)
Fluorocarburos , Lactuca , Caprilatos , Exudados y Transudados , Ácido Oxálico
11.
Environ Res ; 186: 109611, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32668551

RESUMEN

Phthalic acid esters (PAEs) is a class of prevalent pollutants in agricultural soil, threating food safety through crop uptake and accumulation of PAEs. Accumulation of PAEs varies largely among crop species and cultivars. Nevertheless, how root exudates affect PAE bioavailability, dissipation, uptake and accumulation is still not well understood. In the present study, desorption and pot experiments were designed to investigate how root exudates from high-(Peizataifeng) and low-(Fengyousimiao) PAE accumulating rice cultivars affect soil PAE bioavailability, dissipation, and accumulation variation. Rice root exudates including low molecular weight organic acids (LMWOAs) of Peizataifeng and Fengyousimiao could enhance desorption of two typical PAE compounds, di-n-butyl phthalate (DBP) and di-(2-ethylhexyl) phthalate (DEHP), from aged soil to their available fractions by increasing soil dissolved organic carbon (DOC), thus improving their bioavailability in soil. Peizataifeng produced twice higher amounts of oxalic acid, critic acid and malonic acid in root exudates, and exhibited stronger effects on enhancing desorption and bioavailability of DBP and DEHP than Fengyousimiao. Higher (by about 50%) total organic carbon contents of root exudates from Peizataifeng led to higher (by 10-30%) soil microbial biomass carbon and nitrogen than Fengyousimiao, and thus promoted more PAE dissipation from soil than Fengyousimiao. Nevertheless, higher (by 20-50%) soil DOC and significantly higher PAE bioavailability in the soils planted Peizataifeng resulted in greater (by 53-93%) PAE accumulation in roots and shoots of Peizataifeng than Fengyousimiao, confirming by higher (by 1.82-3.48 folds) shoot and root bioconcentration factors of Peizataifeng than Fengyousimiao. This study reveals that the difference in root exudate extent and LMWOAs between Peizataifeng and Fengyousimiao differentiates PAE accumulation.


Asunto(s)
Oryza , Ácidos Ftálicos , Contaminantes del Suelo , Disponibilidad Biológica , Ésteres , Suelo , Contaminantes del Suelo/análisis
12.
Ecotoxicol Environ Saf ; 195: 110485, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32203776

RESUMEN

Soil co-contaminated with cadmium (Cd) and decabromodiphenyl ether (BDE-209) is a widespread environmental problem, especially in electronic waste contaminated surroundings. Accumulation of Cd and BDE-209 in crops has possibly harmful effects on local human health. In order to assess the potential of arbuscular mycorrhizal (AM) fungi and amaranth (Amaranthus hypochondriacus L.) in remediation of soil co-contaminated with Cd and BDE-209, pot trials were performed to investigate interactive effects of AM fungi, Cd and BDE-209 on growth of amaranth, uptake of Cd and BDE-209, distribution of chemical forms of Cd and activities of antioxidant enzymes in shoots and dissipation of BDE-209 in soil. The present results showed that shoot biomass of non-mycorrhizal plants was significantly inhibited by increasing of Cd addition (5-15 mg kg-1), but were only slightly declined with BDE-209 addition (5 mg kg-1). The interaction of Cd and BDE-209 reduced the proportions of ethanol- and d-H2O-extractable Cd in shoots, consequently alleviated Cd toxicity to plants and enhanced root uptake of Cd and BDE-209. Inoculation of AM fungi resulted in significantly greater shoot biomass as well as higher concentrations of Cd and BDE-209 compared with non-mycorrhizal treatment. Moreover, AM fungi played a beneficial role in relieving oxidative stress on amaranth by increasing the activities of dismutase (SOD) and catalase (CAT) in shoots and significantly improved the dissipation of BDE-209 in soil. The present study suggested that combination of AM fungi and amaranth may be a potential option for remediation of Cd and BDE-209 co-contaminated soils.


Asunto(s)
Amaranthus/metabolismo , Cadmio/farmacocinética , Éteres Difenilos Halogenados/farmacocinética , Micorrizas , Contaminantes del Suelo/farmacocinética , Amaranthus/efectos de los fármacos , Amaranthus/enzimología , Biodegradación Ambiental , Biomasa , Cadmio/toxicidad , Catalasa/metabolismo , Éteres Difenilos Halogenados/toxicidad , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/enzimología , Brotes de la Planta/metabolismo , Suelo , Contaminantes del Suelo/toxicidad , Superóxido Dismutasa/metabolismo
13.
Ecotoxicol Environ Saf ; 206: 111105, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-32866887

RESUMEN

Soil is an important sink for perfluorooctane sulfonate (PFOS) that is a typical persistent organic pollutant with high toxicity. Understanding of PFOS sorption to various particle-size fractions of soil provides an insight into the mobility and bioavailability of PFOS in soil. This study evaluated kinetics, isotherms, and mechanisms of PFOS sorption to six soil particle-size fractions of paddy soil at environmentally relevant concentrations (0.01-1 µg/mL). The used soil particle-size fractions included coarse sand (120.4-724.4 mm), fine sand (45.7-316.2 mm), coarse silt (17.3-79.4 mm), fine silt (1.9-39.8 mm), clay (0.5-4.4 mm), and humic acid fractions (8.2-83.7 mm) labeled as F1~F6, respectively. PFOS sorption followed pseudo-second-order kinetics related to film diffusion and intraparticle diffusion, with speed-limiting phase acted by the latter. PFOS sorption isotherm data followed Freundlich model, with generally convex isotherms in larger size fractions (F1~F3) but concave isotherms in smaller size fractions (F4 and F5) and humic acid fraction (F6). Increasing organic matter content, Brunner-Emmet-Teller surface area, and smaller size fractions were conducive to PFOS sorption. Hydrophobic force, divalent metal ion-bridging effect, ligand exchange, hydrogen bonding, and protein-like interaction played roles in PFOS sorption. But hydrophobic force controlled the PFOS sorption, because its relevant organic matter governed the contribution of the soil fractions to the overall PFOS sorption. The larger size fractions dominated the PFOS sorption to the original soil because of their high mass percentages (~80%). This likely caused greater potential risks of PFOS migration into groundwater and bioaccumulation in crops at higher temperatures and ce values, based on their convex isotherms with an exothermic physical process.


Asunto(s)
Ácidos Alcanesulfónicos/química , Fluorocarburos/química , Contaminantes del Suelo/química , Suelo/química , Adsorción , Ácidos Alcanesulfónicos/análisis , Arcilla/química , Fluorocarburos/análisis , Sustancias Húmicas/análisis , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Tamaño de la Partícula , Contaminantes del Suelo/análisis , Termodinámica
14.
J Neurosci ; 38(1): 149-157, 2018 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-29133433

RESUMEN

Attention priority maps are topographic representations that are used for attention selection and guidance of task-related behavior during visual processing. Previous studies have identified attention priority maps of simple artificial stimuli in multiple cortical and subcortical areas, but investigating neural correlates of priority maps of natural stimuli is complicated by the complexity of their spatial structure and the difficulty of behaviorally characterizing their priority map. To overcome these challenges, we reconstructed the topographic representations of upright/inverted face images from fMRI BOLD signals in human early visual areas primary visual cortex (V1) and the extrastriate cortex (V2 and V3) based on a voxelwise population receptive field model. We characterized the priority map behaviorally as the first saccadic eye movement pattern when subjects performed a face-matching task relative to the condition in which subjects performed a phase-scrambled face-matching task. We found that the differential first saccadic eye movement pattern between upright/inverted and scrambled faces could be predicted from the reconstructed topographic representations in V1-V3 in humans of either sex. The coupling between the reconstructed representation and the eye movement pattern increased from V1 to V2/3 for the upright faces, whereas no such effect was found for the inverted faces. Moreover, face inversion modulated the coupling in V2/3, but not in V1. Our findings provide new evidence for priority maps of natural stimuli in early visual areas and extend traditional attention priority map theories by revealing another critical factor that affects priority maps in extrastriate cortex in addition to physical salience and task goal relevance: image configuration.SIGNIFICANCE STATEMENT Prominent theories of attention posit that attention sampling of visual information is mediated by a series of interacting topographic representations of visual space known as attention priority maps. Until now, neural evidence of attention priority maps has been limited to studies involving simple artificial stimuli and much remains unknown about the neural correlates of priority maps of natural stimuli. Here, we show that attention priority maps of face stimuli could be found in primary visual cortex (V1) and the extrastriate cortex (V2 and V3). Moreover, representations in extrastriate visual areas are strongly modulated by image configuration. These findings extend our understanding of attention priority maps significantly by showing that they are modulated, not only by physical salience and task-goal relevance, but also by the configuration of stimuli images.


Asunto(s)
Atención/fisiología , Mapeo Encefálico/métodos , Cara , Corteza Visual/crecimiento & desarrollo , Corteza Visual/fisiología , Adolescente , Adulto , Algoritmos , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Recuerdo Mental/fisiología , Desempeño Psicomotor/fisiología , Movimientos Sacádicos , Vías Visuales , Adulto Joven
15.
Eur J Neurosci ; 50(2): 1920-1931, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30706976

RESUMEN

Inhibition and shifting are two key components of domain-general cognitive control. Numerous studies have investigated the neural substrates of both components, but it is still unclear whether the relevant brain regions are specifically involved in one specific component or commonly engaged in both components. Here, we addressed this question by using functional magnetic resonance imaging and a modified saccade paradigm that was effective to disentangle inhibition and shifting in one experiment. The results showed that both the middle frontal gyrus and left parietal lobe were involved in both components but the middle frontal gyrus was more active for the inhibition while the inferior parietal lobe was more active for the shifting processing. The outcome suggests that, although both regions are engaged in inhibition and shifting, each plays a dominant role in one component. These findings provide a further insight into the neural dissociation in inhibition and shifting, as well as a better explanation on the framework of unity and diversity from a neuropsychological viewpoint.


Asunto(s)
Mapeo Encefálico , Función Ejecutiva/fisiología , Lóbulo Frontal/fisiología , Inhibición Psicológica , Lóbulo Parietal/fisiología , Desempeño Psicomotor/fisiología , Adolescente , Adulto , Femenino , Lóbulo Frontal/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Masculino , Lóbulo Parietal/diagnóstico por imagen , Adulto Joven
16.
J Environ Manage ; 248: 109321, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31394478

RESUMEN

The distribution and diastereomeric profiles of hexabromocyclododecanes (HBCDs, identified as persistent organic pollutants) in soil-vegetable system of open fields remain unknown. In this study, three main HBCD diastereoisomers (α-, ß-, and γ-HBCDs) were analyzed in paired soil and vegetable samples from vegetable farms in four cities (Guangzhou, Jiangmen, Huizhou, Foshan) of the Pearl River Delta region, Southern China. The sum concentrations of the three diastereoisomers (∑HBCDs) in soils varied from 0.99 to 18.4 ng/g (dry weight) with a mean of 5.77 ng/g, decreasing in the order of Jiangmen > Guangzhou > Huizhou > Foshan. The distributions of HBCDs in both soil and vegetable were diastereomer-specific, with γ-HBCD being predominant. The ∑HBCDs in vegetables ranged from 0.87 to 32.7 ng/g (dry weight) with a mean of 16.6 ng/g, generally higher than those of the corresponding soils. Thus bioconcentration factors (BCFs, the ratio of contaminant concentration in vegetable to that in soil) of HBCDs were generally greater than 1.0, implying higher accumulation in vegetable. The estimated daily intake (EDI) of ΣHBCDs via consumption of vegetables varied from 0.26 to 9.35 ng/kg bw/day with a mean of 3.60 ng/kg bw/day for adults and from 0.32 to 11.5 ng/kg bw/day with a mean of 4.41 ng/kg bw/day for Children, far lower than the oral reference dose (RfD, 2 × 105 ng/kg bw/day) proposed by US National Research Council. These results suggest that HBCD in the vegetables posed low health risk for the local population. These data are the first report on HBCD occurrence and health risk in soil-vegetable system of open fields.


Asunto(s)
Retardadores de Llama , Hidrocarburos Bromados , Niño , China , Ciudades , Monitoreo del Ambiente , Humanos , Suelo , Verduras
17.
Sheng Li Xue Bao ; 71(1): 53-61, 2019 Feb 25.
Artículo en Zh | MEDLINE | ID: mdl-30778504

RESUMEN

The core of visual processing is the identification and recognition of the objects relevant to cognitive behaviors. In natural environment, visual input is often comprised of highly complex 3-dimensional signals involving multiple visual objects. One critical determinant of object recognition is visual contour. Despite substantial insights on visual contour processing gained from previous findings, these studies have focused on limited aspects or particular stages of contour processing. So far, a systematic perspective of contour processing that comprehensively incorporates previous evidence is still missing. We therefore propose an integrated framework of the cognitive and neural mechanisms of contour processing, which involves three mutually interacting cognitive stages: contour detection, border ownership assignment and contour integration. For each stage, we provide an elaborated discussion of the neural properties, processing mechanism, and its functional interaction with the other stages by summarizing the relevant electrophysiological and human cognitive neuroscience evidence. Finally, we present the major challenges for further unraveling the mechanisms of visual contour processing.


Asunto(s)
Cognición , Percepción de Forma , Corteza Visual/fisiología , Percepción Visual , Humanos
18.
Bull Environ Contam Toxicol ; 102(4): 589-594, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30788561

RESUMEN

Cadmium (Cd) is one of the hazardous environmental pollutants, and it can be harmful to human health through consumption of food-plants capable of bioaccumulating Cd. Therefore, lowering cadmium accumulation in plants is highly desirable. Here, a rice cultivar 'Qisanzhan' was studied using differential display reverse transcription-polymerase chain reaction (DDRT-PCR). Fifty-six differentially expressed genes were found in the root tips of 4-leaf stage rice seedlings exposed to 4 and 12 h of 50 µmol/L Cd(NO3)2 in a nutrient solution using DDRT-PCR. Further validation using semi-quantitative RT-PCR showed that the expression patterns of 16 genes were consistent with those found in DDRT-PCR. These genes encode receptor-like protein kinase, pleiotropic drug resistance protein, aquaporin protein, plasma membrane ATPase, etc. The differentially genes identified here can be used to obtain a better understanding of the molecular mechanisms of Cd absorption and accumulation in plants.


Asunto(s)
Cadmio/toxicidad , Regulación de la Expresión Génica/efectos de los fármacos , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Estrés Fisiológico/efectos de los fármacos , Perfilación de la Expresión Génica , Humanos , Oryza/genética , Proteínas de Plantas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Plantones/efectos de los fármacos , Plantones/metabolismo , Estrés Fisiológico/genética
19.
Environ Res ; 164: 417-429, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29573717

RESUMEN

Phthalates (PAEs) are extensively used as plasticizers and constitute one of the most frequently detected organic contaminants in the environment. With the deterioration of eco-environment in China during the past three decades, many studies on PAE occurrence in soils and their risk assessments have been conducted which allow us to carry out a fairly comprehensive assessment of soil PAE contamination on a nation-wide scale. This review combines the updated information available associated with PAE current levels, distribution patterns (including urban soil, rural or agricultural soil, seasonal and vertical variations), potential sources, and human health exposure. The levels of PAEs in soils of China are generally at the high end of the global range, and higher than the grade II limits of the Environmental Quality Standard for soil in China. The most abundant compounds, di-n-butyl phthalate (DBP) and di-(2-ethylhexyl) phthalate (DEHP), display obvious spatial distribution in different provinces. It is noted that urbanization and industrialization, application of plastic film (especially plastic film mulching in agricultural soil) and fertilizer are the major sources of PAEs in soil. Uptake of PAEs by crops, and human exposure to PAEs via ingestion of soil and vegetables are reviewed, with scientific gaps highlighted.


Asunto(s)
Ácidos Ftálicos , Contaminantes del Suelo , China , Humanos , Ácidos Ftálicos/análisis
20.
Ecotoxicol Environ Saf ; 154: 84-91, 2018 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-29454990

RESUMEN

Aniline aerofloat (AAF), a high-toxic organic flotation reagent, is widely used in mineral processing industry. However, little information on its environmental fate is available. AAF sorption to four types of agricultural soils at low concentrations (1-10 mg/L) was investigated using batch experiments. AAF sorption kinetics involved both boundary layer diffusion and intraparticle diffusion, following pseudo-second-order kinetics with equilibrium time within 120 min. Both Langmuir and Freundlich models fitted well the AAF sorption with the former better. Sorption of AAF to soils was a spontaneous and favorable physical sorption that was controlled by ion bridge effect and hydrophobic interaction that was related to van der Waals force and π-π coordination based on FTIR analyses. AAF sorption was remarkably affected by soil constituents, positively correlating with the contents of organic matter and clay. The relatively higher logKoc values (3.53-4.66) of AAF at environmental concentrations (1-5 mg/L) imply that soils are serving as a sink of AAF from beneficiation wastewater, posing great potential risks to environment and human health.


Asunto(s)
Compuestos de Anilina/análisis , Modelos Teóricos , Contaminantes del Suelo/análisis , Suelo/química , Adsorción , Agricultura , Silicatos de Aluminio/análisis , Arcilla , Difusión , Humanos , Sustancias Húmicas/análisis , Cinética , Aguas Residuales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA