RESUMEN
BACKGROUND & AIMS: Ductular reaction expansion is associated with poor prognosis in patients with advanced liver disease. However, the mechanisms promoting biliary cell proliferation are largely unknown. Here, we identify neutrophils as drivers of biliary cell proliferation and the defective wound-healing response. METHODS: The intrahepatic localization of neutrophils was evaluated in patients with chronic liver disease. Neutrophil dynamics were analyzed by intravital microscopy and neutrophil-labeling assays in DDC-treated mice. Neutrophil depletion or inhibition of recruitment was achieved using a Ly6g antibody or a CXCR1/2 inhibitor, respectively. Mice deficient in PAD4 (peptidyl arginine deiminase 4) and ELANE/NE (neutrophil elastase) were used to investigate the mechanisms underlying ductular reaction expansion. RESULTS: In this study we describe a population of ductular reaction-associated neutrophils (DRANs), which are in direct contact with biliary epithelial cells in chronic liver diseases and whose numbers increased in parallel with disease progression. We show that DRANs are immobilized at the site of ductular reaction for a prolonged period of time. In addition, liver neutrophils display a unique phenotypic and transcriptomic profile, showing a decreased phagocytic capacity and increased oxidative burst. Depletion of neutrophils or inhibition of their recruitment reduces DRANs and the expansion of ductular reaction, while mitigating liver fibrosis and angiogenesis. Mechanistically, neutrophils deficient in PAD4 and ELANE abrogate neutrophil-induced biliary cell proliferation, thus indicating the role of neutrophil extracellular traps and elastase release in ductular reaction expansion. CONCLUSIONS: Overall, our study reveals the accumulation of DRANs as a hallmark of advanced liver disease and a potential therapeutic target to mitigate ductular reaction and the maladaptive wound-healing response. IMPACT AND IMPLICATIONS: Our results indicate that neutrophils are highly plastic and can have an extended lifespan. Moreover, we identify a new role of neutrophils as triggers of expansion of the biliary epithelium. Overall, the results of this study indicate that ductular reaction-associated neutrophils (or DRANs) are new players in the maladaptive tissue-healing response in chronic liver injury and may be a potential target for therapeutic interventions to reduce ductular reaction expansion and promote tissue repair in advanced liver disease.
Asunto(s)
Hepatopatías , Neutrófilos , Animales , Ratones , Hígado , Proliferación Celular , EpitelioRESUMEN
Epstein Barr virus (EBV) causes a highly prevalent and lifelong infection contributing to the development of some malignancies. In addition to the key role played by T cells in controlling this pathogen, NK cells mediate cytotoxicity and IFNγ production in response to EBV-infected B cells in lytic cycle, both directly and through antibody (Ab)-dependent activation. We recently described that EBV-specific Ab-dependent NK cell interaction with viral particles (VP) bound to B cells triggered degranulation and TNFα secretion but not B cell lysis nor IFNγ production. In this report we show that NK cell activation under these conditions reduced B cell transformation by EBV. NK cells eliminated VP from the surface of B cells through a specific and active process which required tyrosine kinase activation, actin polymerization and Ca2+, being independent of proteolysis and perforin. VP were displayed at the NK cell surface before being internalized and partially shuttled to early endosomes and lysosomes. VP transfer was encompassed by a trogocytosis process including the EBV receptor CD21, together with CD19 and CD20. Our study reveals a novel facet of the antibody-dependent NK cell mediated response to this viral infection.
Asunto(s)
Anticuerpos Antivirales/inmunología , Linfocitos B/inmunología , Infecciones por Virus de Epstein-Barr/inmunología , Herpesvirus Humano 4/inmunología , Células Asesinas Naturales/inmunología , Activación de Linfocitos/inmunología , Linfocitos B/virología , Infecciones por Virus de Epstein-Barr/patología , Infecciones por Virus de Epstein-Barr/virología , Humanos , Células Asesinas Naturales/virologíaRESUMEN
BACKGROUND AND AIMS: Ductular reaction (DR) expands in chronic liver diseases and correlates with disease severity. Besides its potential role in liver regeneration, DR plays a role in the wound-healing response of the liver, promoting periductular fibrosis and inflammatory cell recruitment. However, there is no information regarding its role in intrahepatic angiogenesis. In the current study we investigated the potential contribution of DR cells to hepatic vascular remodeling during chronic liver disease. APPROACH AND RESULTS: In mouse models of liver injury, DR cells express genes involved in angiogenesis. Among angiogenesis-related genes, the expression of Slit2 and its receptor Roundabout 1 (Robo1) was localized in DR cells and neoangiogenic vessels, respectively. The angiogenic role of the Slit2-Robo1 pathway in chronic liver disease was confirmed in ROBO1/2-/+ mice treated with 3,5-diethoxycarbonyl-1,4-dihydrocollidine, which displayed reduced intrahepatic neovascular density compared to wild-type mice. However, ROBO1/2 deficiency did not affect angiogenesis in partial hepatectomy. In patients with advanced alcohol-associated disease, angiogenesis was associated with DR, and up-regulation of SLIT2-ROBO1 correlated with DR and disease severity. In vitro, human liver-derived organoids produced SLIT2 and induced tube formation of endothelial cells. CONCLUSIONS: Overall, our data indicate that DR expansion promotes angiogenesis through the Slit2-Robo1 pathway and recognize DR cells as key players in the liver wound-healing response.
Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/genética , Hepatopatías Alcohólicas/fisiopatología , Hígado/fisiopatología , Neovascularización Patológica/genética , Proteínas del Tejido Nervioso/genética , Receptores Inmunológicos/genética , Animales , Vasos Sanguíneos/metabolismo , Enfermedad Crónica , Progresión de la Enfermedad , Expresión Génica , Ontología de Genes , Hepatitis Alcohólica/patología , Hepatitis Alcohólica/fisiopatología , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Hígado/metabolismo , Hepatopatías Alcohólicas/genética , Hepatopatías Alcohólicas/metabolismo , Hepatopatías Alcohólicas/patología , Ratones , Neovascularización Patológica/patología , Neovascularización Fisiológica/genética , Proteínas del Tejido Nervioso/metabolismo , Organoides , Gravedad del Paciente , Receptores Inmunológicos/metabolismo , Transducción de Señal/genética , Células Madre , Regulación hacia Arriba , Remodelación Vascular , Cicatrización de Heridas , Proteínas RoundaboutRESUMEN
Proteases are the most abundant enzyme gene family in vertebrates and they execute essential functions in all living organisms. Their main role is to hydrolase the peptide bond within proteins, a process also called proteolysis. Contrary to the conventional paradigm, proteases are not only random catalytic devices, but can perform highly selective and targeted cleavage of specific substrates, finely modulating multiple essential cellular processes. Lysosomal protease cathepsins comprise 3 families of proteases that preferentially act within acidic cellular compartments, but they can also be found in other cellular locations. They can operate alone or as part of signalling cascades and regulatory circuits, playing important roles in apoptosis, extracellular matrix remodelling, hepatic stellate cell activation, autophagy and metastasis, contributing to the initiation, development and progression of liver disease. In this review, we comprehensively summarise current knowledge on the role of lysosomal cathepsins in liver disease, with a particular emphasis on liver fibrosis, non-alcoholic fatty liver disease and hepatocellular carcinoma.
Asunto(s)
Catepsinas/farmacología , Hepatopatías/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Catepsinas/metabolismo , Humanos , Hepatopatías/fisiopatología , Neoplasias Hepáticas/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/fisiopatología , Transducción de Señal/efectos de los fármacosRESUMEN
It is widely accepted that chronic stress may alter the homeostatic mechanisms of body weight control. In this study, we followed the metabolic changes occurring in mice when chronic stress caused by psychosocial defeat (CPD) is associated with ad libitum exposure to a palatable high-fat diet (HFD). In this model, CPD mice consumed more HFD than unstressed (Un) mice without gaining body weight. We focused on metabolic processes involved in weight control, such as de novo lipogenesis (DNL), fatty acid ß-oxidation (FAO), and thermogenesis. The activity and expression of DNL enzymes were reduced in the liver and white adipose tissue of mice consuming the HFD. Such effects were particularly evident in stressed mice. In both CPD and Un mice, HFD consumption increased the hepatic expression of the mitochondrial FAO enzyme carnitine palmitoyltransferase-1. In the liver of mice consuming the HFD, stress exposure prevented accumulation of triacylglycerols; however, accumulation of triacylglycerols was observed in Un mice under the same dietary regimen. In brown adipose tissue, stress increased the expression of uncoupling protein-1, which is involved in energy dissipation, both in HFD and control diet-fed mice. We consider increased FAO and energy dissipation responsible for the antiobesity effect seen in CPD/HFD mice. However, CPD associated with HFD induced hepatic oxidative stress.-Giudetti, A. M., Testini, M., Vergara, D., Priore, P., Damiano, F., Gallelli, C. A., Romano, A., Villani, R., Cassano, T., Siculella, L., Gnoni, G. V., Moles, A., Coccurello, R., Gaetani, S. Chronic psychosocial defeat differently affects lipid metabolism in liver and white adipose tissue and induces hepatic oxidative stress in mice fed a high-fat diet.
Asunto(s)
Tejido Adiposo Blanco/metabolismo , Dieta Alta en Grasa , Metabolismo de los Lípidos , Hígado/metabolismo , Estrés Oxidativo , Estrés Psicológico , Acetil-CoA Carboxilasa/metabolismo , Tejido Adiposo Pardo/enzimología , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/enzimología , Animales , Peso Corporal , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Modelos Animales de Enfermedad , Ingestión de Energía , Ácido Graso Sintasas/metabolismo , Ácidos Grasos/metabolismo , Glutatión/metabolismo , Hígado/enzimología , Masculino , Ratones , Ratones Endogámicos BALB C , ARN Mensajero/genética , Proteína Desacopladora 1/metabolismoRESUMEN
PURPOSE: Chronic exposure to stress may represent a risk factor for developing metabolic and eating disorders, mostly driven by the overconsumption of easily accessible energy-dense palatable food, although the mechanisms involved remain still unclear. In this study, we used an ethologically oriented murine model of chronic stress caused by chronic psychosocial defeat (CPD) to investigate the effects of unrestricted access to a palatable high fat diet (HFD) on food intake, body weight, energy homeostasis, and expression of different brain neuropeptides. Our aim was to shed light on the mechanisms responsible for body weight and body composition changes due to chronic social stress. METHODS: In our model of subordinate (defeated), mice (CPD) cohabitated in constant sensory contact with dominants, being forced to interact on daily basis, and were offered ad libitum access either to an HFD or to a control diet (CD). Control mice (of the same strain as CPD mice) were housed in pairs and left unstressed in their home cage (UN). In all these mice, we evaluated body weight, different adipose depots, energy metabolism, caloric intake, and neuropeptide expression. RESULTS: CPD mice increased the intake of HFD and reduced body weight in the presence of enhanced lipid oxidation. Resting energy expenditure and interscapular brown adipose tissue (iBAT) were increased in CPD mice, whereas epididymal adipose tissue increased only in HFD-fed unstressed mice. Propiomelanocortin mRNA levels in hypothalamic arcuate nucleus increased only in HFD-fed unstressed mice. Oxytocin mRNA levels in the paraventricular nucleus and neuropeptide Y mRNA levels within the arcuate were increased only in CD-fed CPD mice. In the arcuate, CART was increased in HFD-fed UN mice and in CD-fed CPD mice, while HFD intake suppressed CART increase in defeated animals. In the basolateral amygdala, CART expression was increased only in CPD animals on HFD. CONCLUSIONS: CPD appears to uncouple the intake of HFD from energy homeostasis causing higher HFD intake, larger iBAT accumulation, increased energy expenditure and lipid oxidation, and lower body weight. Overall, the present study confirms the notion that the chronic activation of the stress response can be associated with metabolic disorders, altered energy homeostasis, and changes of orexigenic and anorexigenic signaling. These changes might be relevant to better understand the etiology of stress-induced obesity and eating disorders and might represent a valid therapeutic approach for the development of new therapies in this field.
Asunto(s)
Dieta Alta en Grasa , Ingestión de Energía/fisiología , Metabolismo Energético/fisiología , Animales , Peso Corporal , Italia , Leptina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , ObesidadRESUMEN
Key factors driving eating behavior are hunger and satiety, which are controlled by a complex interplay of central neurotransmitter systems and peripheral stimuli. The lipid-derived messenger oleoylethanolamide (OEA) is released by enterocytes in response to fat intake and indirectly signals satiety to hypothalamic nuclei. Brain histamine is released during the appetitive phase to provide a high level of arousal in anticipation of feeding, and mediates satiety. However, despite the possible functional overlap of satiety signals, it is not known whether histamine participates in OEA-induced hypophagia. Using different experimental settings and diets, we report that the anorexiant effect of OEA is significantly attenuated in mice deficient in the histamine-synthesizing enzyme histidine decarboxylase (HDC-KO) or acutely depleted of histamine via interocerebroventricular infusion of the HDC blocker α-fluoromethylhistidine (α-FMH). α-FMH abolished OEA-induced early occurrence of satiety onset while increasing histamine release in the CNS with an H3 receptor antagonist-increased hypophagia. OEA augmented histamine release in the cortex of fasted mice within a time window compatible to its anorexic effects. OEA also increased c-Fos expression in the oxytocin neurons of the paraventricular nuclei of WT but not HDC-KO mice. The density of c-Fos immunoreactive neurons in other brain regions that receive histaminergic innervation and participate in the expression of feeding behavior was comparable in OEA-treated WT and HDC-KO mice. Our results demonstrate that OEA requires the integrity of the brain histamine system to fully exert its hypophagic effect and that the oxytocin neuron-rich nuclei are the likely hypothalamic area where brain histamine influences the central effects of OEA.
Asunto(s)
Encéfalo/metabolismo , Ingestión de Alimentos/efectos de los fármacos , Histamina/metabolismo , Ácidos Oléicos/farmacología , Respuesta de Saciedad/efectos de los fármacos , Animales , Conducta Animal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Endocannabinoides , Conducta Alimentaria/efectos de los fármacos , Histidina Descarboxilasa/metabolismo , Masculino , Ratones , Ratones Noqueados , Modelos Biológicos , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Núcleo Hipotalámico Paraventricular/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Factores de TiempoRESUMEN
Palatable food is a strong activator of the reward circuitry and may cause addictive behavior leading to eating disorders. How early life events and sex interact in shaping hedonic sensitivity to palatable food is largely unknown. We used prenatally restraint stressed (PRS) rats, which show abnormalities in the reward system and anxious/depressive-like behavior. Some of the hallmarks of PRS rats are known to be sex-dependent. We report that PRS enhanced and reduced milk chocolate-induced conditioned place preference in males and females, respectively. Male PRS rats also show increases in plasma dihydrotestosterone (DHT) levels and dopamine (DA) levels in the nucleus accumbens (NAc), and reductions in 5-hydroxytryptamine (5-HT) levels in the NAc and prefrontal cortex (PFC). In male rats, systemic treatment with the DHT-lowering drug finasteride reduced both milk chocolate preference and NAc DA levels. Female PRS rats showed lower plasma estradiol (E2 ) levels and lower DA levels in the NAc, and 5-HT levels in the NAc and PFC. E2 supplementation reversed the reduction in milk chocolate preference and PFC 5-HT levels. In the hypothalamus, PRS increased ERα and ERß estrogen receptor and CARTP (cocaine-and-amphetamine receptor transcript peptide) mRNA levels in males, and 5-HT2C receptor mRNA levels in females. Changes were corrected by treatments with finasteride and E2 , respectively. These new findings show that early life stress has a profound impact on hedonic sensitivity to high-palatable food via long-lasting changes in gonadal hormones. This paves the way to the development of hormonal strategies aimed at correcting abnormalities in the response to natural rewards.
Asunto(s)
Preferencias Alimentarias/fisiología , Recompensa , Estrés Psicológico/psicología , Análisis de Varianza , Animales , Monoaminas Biogénicas/metabolismo , Encéfalo/metabolismo , Dihidrotestosterona/metabolismo , Dopamina/metabolismo , Femenino , Finasterida/farmacología , Hipotálamo/metabolismo , Masculino , Corteza Prefrontal/metabolismo , Embarazo , Efectos Tardíos de la Exposición Prenatal/psicología , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , Restricción Física/psicología , Serotonina/metabolismo , Factores SexualesRESUMEN
BACKGROUND & AIMS: Neutrophils are important immune effectors required for sterile and non-sterile inflammatory responses. However, neutrophils are associated with pathology in drug-induced liver injury, acute alcoholic liver disease, and ischemia-reperfusion injury. An understanding of the complex mechanisms that control neutrophil recruitment to the injured liver is desirable for developing strategies aimed at limiting neutrophil-mediated cellular damage. METHODS: Wt, tlr2(-/-), tlr4(-/-), and s100a9(-/-) mice were administered CCl4 either acutely (8, 24, 48, or 72 h) or chronically (8 weeks) and livers investigated by histological (IHC for neutrophils, fibrogenesis, proliferation, and chemotactic proteins) or molecular approaches (qRT-PCR for neutrophil chemoattractant chemokines and cytokines as well as pro-fibrogenic genes). RESULTS: Mice lacking TLR2 or S100A9 failed to recruit neutrophils to the injured liver and had a defective hepatic induction of the neutrophil chemokine CXCL-2. Hierarchy between TLR2 and S100A9 proved to be complex. While induction of S100A9 was dependent on TLR2 in isolated neutrophils, there was a more complicated two-way signalling cross-talk between TLR2 and S100A9 in whole liver. However, wound-healing and regenerative responses of the liver were unaffected in these genetic backgrounds as well as in wild type mice, in which neutrophils were depleted by infusion of Ly-6G antibody. CONCLUSIONS: We have identified TLR2 and S100A8/S100A9 as key regulators of hepatic CXCL-2 expression and neutrophil recruitment. This novel TLR2-S100A9-CXCL-2 pathway may be of use in development of new strategies for selectively manipulating neutrophils in liver disease without impairing normal wound healing and regenerative responses.
Asunto(s)
Calgranulina B/inmunología , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/inmunología , Enfermedad Hepática Inducida por Sustancias y Drogas/inmunología , Quimiocina CXCL2/inmunología , Infiltración Neutrófila/inmunología , Receptor Toll-Like 2/inmunología , Animales , Calgranulina A/inmunología , Calgranulina B/genética , Tetracloruro de Carbono/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/patología , Quimiocina CXCL2/biosíntesis , Modelos Animales de Enfermedad , Humanos , Complejo de Antígeno L1 de Leucocito/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal/inmunología , Receptor Toll-Like 2/deficiencia , Receptor Toll-Like 2/genética , Receptor Toll-Like 4/deficiencia , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/inmunología , Cicatrización de Heridas/inmunologíaRESUMEN
In order to understand the role of microRNAs (miRNAs) in vascular physiopathology, we took advantage of deep-sequencing techniques to accurately and comprehensively profile the entire miRNA population expressed by endothelial cells exposed to hypoxia. SOLiD sequencing of small RNAs derived from human umbilical vein endothelial cells (HUVECs) exposed to 1% O2 or normoxia for 24 h yielded more than 22 million reads per library. A customized bioinformatic pipeline identified more than 400 annotated microRNA/microRNA* species with a broad abundance range: miR-21 and miR-126 totaled almost 40% of all miRNAs. A complex repertoire of isomiRs was found, displaying also 5' variations, potentially affecting target recognition. High-stringency bioinformatic analysis identified microRNA candidates, whose predicted pre-miRNAs folded into a stable hairpin. Validation of a subset by qPCR identified 18 high-confidence novel miRNAs as detectable in independent HUVEC cultures and associated to the RISC complex. The expression of two novel miRNAs was significantly down-modulated by hypoxia, while miR-210 was significantly induced. Gene ontology analysis of their predicted targets revealed a significant association to hypoxia-inducible factor signaling, cardiovascular diseases, and cancer. Overexpression of the novel miRNAs in hypoxic endothelial cells affected cell growth and confirmed the biological relevance of their down-modulation. In conclusion, deep-sequencing accurately profiled known, variant, and novel microRNAs expressed by endothelial cells in normoxia and hypoxia.
Asunto(s)
Células Endoteliales/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , MicroARNs/análisis , MicroARNs/química , Carboxipeptidasas/metabolismo , Hipoxia de la Célula , Proliferación Celular , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Biblioteca de Genes , Células HEK293 , Humanos , MicroARNs/metabolismo , Anotación de Secuencia Molecular , Conformación de Ácido Nucleico , ARN Bicatenario , Análisis de Secuencia de ARN , Transducción de SeñalRESUMEN
The five subunits of transcription factor NF-κB have distinct biological functions. NF-κB signaling is important for skin homeostasis and aging, but the contribution of individual subunits to normal skin biology and disease is unclear. Immunohistochemical analysis of the p50 and c-Rel subunits within lesional psoriatic and systemic sclerosis skin revealed abnormal epidermal expression patterns, compared with healthy skin, but RelA distribution was unaltered. The skin of Nfkb1(-/-) and c-Rel(-/-) mice is structurally normal, but epidermal thickness and proliferation are significantly reduced, compared with wild-type mice. We show that the primary defect in both Nfkb1(-/-) and c-Rel(-/-) mice is within keratinocytes that display reduced proliferation both in vitro and in vivo. However, both genotypes can respond to proliferative stress, with 12-O-tetradecanoylphorbol-13-acetate-induced epidermal hyperproliferation and closure rates of full-thickness skin wounds being equivalent to those of wild-type controls. In a model of bleomycin-induced skin fibrosis, Nfkb1(-/-) and c-Rel(-/-) mice displayed opposite phenotypes, with c-Rel(-/-) mice being protected and Nfkb1(-/-) developing more fibrosis than wild-type mice. Taken together, our data reveal a role for p50 and c-Rel in regulating epidermal proliferation and homeostasis and a profibrogenic role for c-Rel in the skin, and identify a link between epidermal c-Rel expression and systemic sclerosis. Modulating the actions of these subunits could be beneficial for treating hyperproliferative or fibrogenic diseases of the skin.
Asunto(s)
Epidermis/metabolismo , Homeostasis/fisiología , Proteínas Proto-Oncogénicas c-rel/fisiología , Animales , Bleomicina , Diferenciación Celular/fisiología , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Epidermis/patología , Fibrosis , Humanos , Queratinocitos/citología , Queratinocitos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Subunidad p50 de NF-kappa B/deficiencia , Subunidad p50 de NF-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-rel/deficiencia , Proteínas Proto-Oncogénicas c-rel/metabolismo , Psoriasis/metabolismo , Esclerodermia Sistémica/metabolismo , Piel/lesiones , Piel/metabolismo , Piel/patología , Acetato de Tetradecanoilforbol/farmacología , Factor de Transcripción ReIA/metabolismo , Cicatrización de Heridas/fisiologíaRESUMEN
UNLABELLED: Phosphorylation of the RelA subunit at serine 536 (RelA-P-Ser536) is important for hepatic myofibroblast survival and is mechanistically implicated in liver fibrosis. Here, we show that a cell-permeable competing peptide (P6) functions as a specific targeted inhibitor of RelA-P-Ser536 in vivo and exerts an antifibrogenic effect in two progressive liver disease models, but does not impair hepatic inflammation or innate immune responses after lipopolysaccharide challenge. Using kinase assays and western blotting, we confirm that P6 is a substrate for the inhibitory kappa B kinases (IKKs), IKKα and IKKß, and, in human hepatic myofibroblasts, P6 prevents RelA-P-Ser536, but does not affect IKK activation of IκBα. We demonstrate that RelA-P-Ser536 is a feature of human lung and skin fibroblasts, but not lung epithelial cells, in vitro and is present in sclerotic skin and diseased lungs of patients suffering from idiopathic pulmonary fibrosis. CONCLUSION: RelA-P-Ser536 may be a core fibrogenic regulator of fibroblast phenotype.
Asunto(s)
Inmunidad Innata/efectos de los fármacos , Cirrosis Hepática/prevención & control , Fragmentos de Péptidos/farmacología , Factor de Transcripción ReIA/antagonistas & inhibidores , Adulto , Animales , Intoxicación por Tetracloruro de Carbono/tratamiento farmacológico , Fibroblastos/metabolismo , Humanos , Quinasa I-kappa B/fisiología , Lipopolisacáridos/farmacología , Masculino , Ratones , Fragmentos de Péptidos/metabolismo , Fosforilación , Serina , Factor de Transcripción ReIA/metabolismo , Factor de Transcripción ReIA/farmacologíaRESUMEN
BACKGROUND: Rhabdomyosarcoma (RMS) is a highly malignant tumour accounting for nearly half of soft tissue sarcomas in children. MicroRNAs (miRNAs) represent a class of short, non-coding, regulatory RNAs which play a critical role in different cellular processes. Altered miRNA levels have been reported in human cancers, including RMS. METHODS: Using deep sequencing technology, a total of 685 miRNAs were investigated in a group of alveolar RMSs (ARMSs), embryonal RMSs (ERMSs) as well as in normal skeletal muscle (NSM). Q-PCR, MTT, cytofluorimetry, migration assay, western blot and immunofluorescence experiments were carried out to determine the role of miR-378a-3p in cancer cell growth, apoptosis, migration and differentiation. Bioinformatics pipelines were used for miRNA target prediction and clustering analysis. RESULTS: Ninety-seven miRNAs were significantly deregulated in ARMS and ERMS when compared to NSM. MiR-378 family members were dramatically decreased in RMS tumour tissue and cell lines. Interestingly, members of the miR-378 family presented as a possible target the insulin-like growth factor receptor 1 (IGF1R), a key signalling molecule in RMS. MiR-378a-3p over-expression in an RMS-derived cell line suppressed IGF1R expression and affected phosphorylated-Akt protein levels. Ectopic expression of miR-378a-3p caused significant changes in apoptosis, cell migration, cytoskeleton organization as well as a modulation of the muscular markers MyoD1, MyoR, desmin and MyHC. In addition, DNA demethylation by 5-aza-2'-deoxycytidine (5-aza-dC) was able to up-regulate miR-378a-3p levels with a concomitant induction of apoptosis, decrease in cell viability and cell cycle arrest in G2-phase. Cells treated with 5-aza-dC clearly changed their morphology and expressed moderate levels of MyHC. CONCLUSIONS: MiR-378a-3p may function as a tumour suppressor in RMS and the restoration of its expression would be of therapeutic benefit in RMS. Furthermore, the role of epigenetic modifications in RMS deserves further investigations.
Asunto(s)
MicroARNs/análisis , MicroARNs/genética , Rabdomiosarcoma/genética , Rabdomiosarcoma/metabolismo , Apoptosis , Secuencia de Bases , Línea Celular Tumoral , Metilación de ADN , Regulación hacia Abajo , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , MicroARNs/metabolismo , Datos de Secuencia Molecular , Desarrollo de Músculos , Receptor IGF Tipo 1 , Receptores de Somatomedina/metabolismo , Alineación de Secuencia , Análisis de Secuencia de ARNRESUMEN
Evidence shows that maternal care and postnatal traumatic events can exert powerful effects on brain circuitry development but little is known about the impact of early postnatal experiences on processing of rewarding and aversive stimuli related to the medial prefrontal cortex (mpFC) function in adult life. In this study, the unstable maternal environment induced by repeated cross-fostering (RCF) impaired palatable food conditioned place preference and disrupted the natural preference for sweetened fluids in the saccharin preference test. By contrast, RCF increased sensitivity to conditioned place aversion (CPA) and enhanced immobility in the forced swimming test. Intracerebral microdialysis data showed that the RCF prevents mpFC dopamine (DA) outflow regardless of exposure to rewarding or aversive stimuli, whereas it induces a strong and sustained prefrontal norepinephrine (NE) release in response to different aversive experiences. Moreover, the selective mpFC NE depletion abolished CPA, thus indicating that prefrontal NE is required for motivational salience attribution to aversion-related stimuli. These findings demonstrate that an unstable maternal environment impairs the natural propensity to seek pleasurable sources of reward, enhances sensitivity to negative events in adult life, blunts prefrontal DA outflow, and modulates NE release in the reverse manner depending on the exposure to rewarding or aversive stimuli.
Asunto(s)
Conducta Animal/fisiología , Privación Materna , Corteza Prefrontal/fisiopatología , Recompensa , Estrés Psicológico/complicaciones , Envejecimiento , Animales , Animales Recién Nacidos , Dopamina/metabolismo , Femenino , Ratones , Microdiálisis , Norepinefrina/metabolismo , Corteza Prefrontal/metabolismoRESUMEN
In 2019, the novel SARS-CoV-2 coronavirus emerged in China, causing the pneumonia named COVID-19. At the beginning, all research efforts were focused on the spike (S) glycoprotein. However, it became evident that the nucleocapsid (N) protein is pivotal in viral replication, genome packaging and evasion of the immune system, is highly immunogenic, which makes it another compelling target for antibody development alongside the spike protein. This study focused on the construction of single chain fragments variable (scFvs) libraries from SARS-CoV-2-infected patients to establish a valuable, immortalized and extensive antibodies source. We used the Intracellular Antibody Capture Technology to select a panel of scFvs against the SARS-CoV-2 N protein. The whole panel of scFv was expressed and characterized both as intrabodies and recombinant proteins. ScFvs were then divided into 2 subgroups: those that exhibited high binding activity to N protein when expressed in yeast or in mammalian cells as intrabodies, and those purified as recombinant proteins, displaying affinity for recombinant N protein in the nanomolar range. This panel of scFvs against the N protein represents a novel platform for research and potential diagnostic applications.
Asunto(s)
Anticuerpos Antivirales , COVID-19 , Proteínas de la Nucleocápside de Coronavirus , SARS-CoV-2 , Anticuerpos de Cadena Única , Humanos , SARS-CoV-2/inmunología , Anticuerpos de Cadena Única/inmunología , Anticuerpos de Cadena Única/genética , COVID-19/inmunología , COVID-19/virología , Anticuerpos Antivirales/inmunología , Proteínas de la Nucleocápside de Coronavirus/inmunología , Fosfoproteínas/inmunología , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/genética , Biblioteca de PéptidosRESUMEN
BACKGROUND AND OBJECTIVES: Fibrosis contributes to 45% of deaths in industrialized nations and is characterized by an abnormal accumulation of extracellular matrix (ECM). There are no specific anti-fibrotic treatments for liver fibrosis, and previous unsuccessful attempts at drug development have focused on preventing ECM deposition. Because liver fibrosis is largely acknowledged to be reversible, regulating fibrosis resolution could offer novel therapeutical options. However, little is known about the mechanisms controlling ECM remodeling during resolution. Changes in proteolytic activity are essential for ECM homeostasis and macrophages are an important source of proteases. Herein, in this study we evaluate the role of macrophage-derived cathepsin D (CtsD) during liver fibrosis. METHODS: CtsD expression and associated pathways were characterized in single-cell RNA sequencing and transcriptomic datasets in human cirrhosis. Liver fibrosis progression, reversion and functional characterization were assessed in novel myeloid-CtsD and hepatocyte-CtsD knock-out mice. RESULTS: Analysis of single-cell RNA sequencing datasets demonstrated CtsD was expressed in macrophages and hepatocytes in human cirrhosis. Liver fibrosis progression, reversion and functional characterization were assessed in novel myeloid-CtsD (CtsDΔMyel) and hepatocyte-CtsD knock-out mice. CtsD deletion in macrophages, but not in hepatocytes, resulted in enhanced liver fibrosis. Both inflammatory and matrisome proteomic signatures were enriched in fibrotic CtsDΔMyel livers. Besides, CtsDΔMyel liver macrophages displayed functional, phenotypical and secretomic changes, which resulted in a degradomic phenotypical shift, responsible for the defective proteolytic processing of collagen I in vitro and impaired collagen remodeling during fibrosis resolution in vivo. Finally, CtsD-expressing mononuclear phagocytes of cirrhotic human livers were enriched in lysosomal and ECM degradative signaling pathways. CONCLUSIONS: Our work describes for the first-time CtsD-driven lysosomal activity as a central hub for restorative macrophage function during fibrosis resolution and opens new avenues to explore their degradome landscape to inform drug development.
Asunto(s)
Catepsina D , Cirrosis Hepática , Macrófagos , Ratones Noqueados , Animales , Humanos , Masculino , Ratones , Catepsina D/metabolismo , Catepsina D/genética , Matriz Extracelular/metabolismo , Hepatocitos/metabolismo , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Cirrosis Hepática/genética , Macrófagos/metabolismo , Ratones Endogámicos C57BLRESUMEN
Niemann-Pick disease (NPD) is a lysosomal storage disease caused by the loss of acid sphingomyelinase (ASMase) that features neurodegeneration and liver disease. Because ASMase-knock-out mice models NPD and our previous findings revealed that ASMase activates cathepsins B/D (CtsB/D), our aim was to investigate the expression and processing of CtsB/D in hepatic stellate cells (HSCs) from ASMase-null mice and their role in liver fibrosis. Surprisingly, HSCs from ASMase-knock-out mice exhibit increased basal level and activity of CtsB as well as its in vitro processing in culture, paralleling the enhanced expression of fibrogenic markers α-smooth muscle actin (α-SMA), TGF-ß, and pro-collagen-α1(I) (Col1A1). Moreover, pharmacological inhibition of CtsB blunted the expression of α-SMA and Col1A1 and proliferation of HSCs from ASMase-knock-out mice. Consistent with the enhanced activation of CtsB in HSCs from ASMase-null mice, the in vivo liver fibrosis induced by chronic treatment with CCl(4) increased in ASMase-null compared with wild-type mice, an effect that was reduced upon CtsB inhibition. In addition to liver, the enhanced proteolytic processing of CtsB was also observed in brain and lung of ASMase-knock-out mice, suggesting that the overexpression of CtsB may underlie the phenotype of NPD. Thus, these findings reveal a functional relationship between ASMase and CtsB and that the ablation of ASMase leads to the enhanced processing and activation of CtsB. Therefore, targeting CtsB may be of relevance in the treatment of liver fibrosis in patients with NPD.
Asunto(s)
Catepsina B/metabolismo , Cirrosis Hepática/enzimología , Enfermedades de Niemann-Pick/enzimología , Esfingomielina Fosfodiesterasa/metabolismo , Animales , Biomarcadores/metabolismo , Tetracloruro de Carbono/toxicidad , Intoxicación por Tetracloruro de Carbono/genética , Intoxicación por Tetracloruro de Carbono/metabolismo , Intoxicación por Tetracloruro de Carbono/patología , Intoxicación por Tetracloruro de Carbono/terapia , Catepsina B/genética , Catepsina D/genética , Catepsina D/metabolismo , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Humanos , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/genética , Cirrosis Hepática/patología , Cirrosis Hepática/terapia , Ratones , Ratones Noqueados , Enfermedades de Niemann-Pick/inducido químicamente , Enfermedades de Niemann-Pick/genética , Enfermedades de Niemann-Pick/patología , Enfermedades de Niemann-Pick/terapia , Esfingomielina Fosfodiesterasa/genéticaRESUMEN
The complete genomic sequence of the dairy Lactobacillus helveticus bacteriophage ΦAQ113 was determined. Phage ΦAQ113 is a Myoviridae bacteriophage with an isometric capsid and a contractile tail. The final assembled consensus sequence revealed a linear, circularly permuted, double-stranded DNA genome with a size of 36,566 bp and a G+C content of 37%. Fifty-six open reading frames (ORFs) were predicted, and a putative function was assigned to approximately 90% of them. The ΦAQ113 genome shows functionally related genes clustered together in a genome structure composed of modules for DNA replication/regulation, DNA packaging, head and tail morphogenesis, cell lysis, and lysogeny. The identification of genes involved in the establishment of lysogeny indicates that it may have originated as a temperate phage, even if it was isolated from natural cheese whey starters as a virulent phage, because it is able to propagate in a sensitive host strain. Additionally, we discovered that the ΦAQ113 phage genome is closely related to Lactobacillus gasseri phage KC5a and Lactobacillus johnsonii phage Lj771 genomes. The phylogenetic similarities between L. helveticus phage ΦAQ113 and two phages that belong to gut species confirm a possible common ancestral origin and support the increasing consideration of L. helveticus as a health-promoting organism.
Asunto(s)
ADN Viral/genética , Genoma Viral , Lactobacillus helveticus/virología , Myoviridae/genética , Composición de Base , ADN Viral/metabolismo , Datos de Secuencia Molecular , Myoviridae/clasificación , Myoviridae/ultraestructura , Sistemas de Lectura Abierta , Filogenia , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN , Homología de Secuencia , Espectrometría de Masa por Ionización de ElectrosprayRESUMEN
UNLABELLED: Osteopontin (OPN) is an important component of the extracellular matrix (ECM), which promotes liver fibrosis and has been described as a biomarker for its severity. Previously, we have demonstrated that Sex-determining region Y-box 9 (SOX9) is ectopically expressed during activation of hepatic stellate cells (HSC) when it is responsible for the production of type 1 collagen, which causes scar formation in liver fibrosis. Here, we demonstrate that SOX9 regulates OPN. During normal development and in the mature liver, SOX9 and OPN are coexpressed in the biliary duct. In rodent and human models of fibrosis, both proteins were increased and colocalized to fibrotic regions in vivo and in culture-activated HSCs. SOX9 bound a conserved upstream region of the OPN gene, and abrogation of Sox9 in HSCs significantly decreased OPN production. Hedgehog (Hh) signaling has previously been shown to regulate OPN expression directly by glioblastoma (GLI) 1. Our data indicate that in models of liver fibrosis, Hh signaling more likely acts through SOX9 to modulate OPN. In contrast to Gli2 and Gli3, Gli1 is sparse in HSCs and is not increased upon activation. Furthermore, reduction of GLI2, but not GLI3, decreased the expression of both SOX9 and OPN, whereas overexpressing SOX9 or constitutively active GLI2 could rescue the antagonistic effects of cyclopamine on OPN expression. CONCLUSION: These data reinforce SOX9, downstream of Hh signaling, as a core factor mediating the expression of ECM components involved in liver fibrosis. Understanding the role and regulation of SOX9 during liver fibrosis will provide insight into its potential modulation as an antifibrotic therapy or as a means of identifying potential ECM targets, similar to OPN, as biomarkers of fibrosis.
Asunto(s)
Cirrosis Hepática/diagnóstico , Cirrosis Hepática/etiología , Osteopontina/fisiología , Factor de Transcripción SOX9/fisiología , Animales , Progresión de la Enfermedad , Humanos , Masculino , Osteopontina/biosíntesis , Ratas , Ratas Sprague-Dawley , Factor de Transcripción SOX9/biosíntesisRESUMEN
The peptides encoded by the VGF gene are gaining biomedical interest and are increasingly being scrutinized as biomarkers for human disease. An endocrine/neuromodulatory role for VGF peptides has been suggested but never demonstrated. Furthermore, no study has demonstrated so far the existence of a receptor-mediated mechanism for any VGF peptide. In the present study, we provide a comprehensive in vitro, ex vivo and in vivo identification of a novel pro-lipolytic pathway mediated by the TLQP-21 peptide. We show for the first time that VGF-immunoreactivity is present within sympathetic fibres in the WAT (white adipose tissue) but not in the adipocytes. Furthermore, we identified a saturable receptor-binding activity for the TLQP-21 peptide. The maximum binding capacity for TLQP-21 was higher in the WAT as compared with other tissues, and selectively up-regulated in the adipose tissue of obese mice. TLQP-21 increases lipolysis in murine adipocytes via a mechanism encompassing the activation of noradrenaline/ß-adrenergic receptors pathways and dose-dependently decreases adipocytes diameters in two models of obesity. In conclusion, we demonstrated a novel and previously uncharacterized peripheral lipolytic pathway encompassing the VGF peptide TLQP-21. Targeting the sympathetic nerve-adipocytes interaction might prove to be a novel approach for the treatment of obesity-associated metabolic complications.