Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 616(7957): 563-573, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37046094

RESUMEN

B cells are frequently found in the margins of solid tumours as organized follicles in ectopic lymphoid organs called tertiary lymphoid structures (TLS)1,2. Although TLS have been found to correlate with improved patient survival and response to immune checkpoint blockade (ICB), the underlying mechanisms of this association remain elusive1,2. Here we investigate lung-resident B cell responses in patients from the TRACERx 421 (Tracking Non-Small-Cell Lung Cancer Evolution Through Therapy) and other lung cancer cohorts, and in a recently established immunogenic mouse model for lung adenocarcinoma3. We find that both human and mouse lung adenocarcinomas elicit local germinal centre responses and tumour-binding antibodies, and further identify endogenous retrovirus (ERV) envelope glycoproteins as a dominant anti-tumour antibody target. ERV-targeting B cell responses are amplified by ICB in both humans and mice, and by targeted inhibition of KRAS(G12C) in the mouse model. ERV-reactive antibodies exert anti-tumour activity that extends survival in the mouse model, and ERV expression predicts the outcome of ICB in human lung adenocarcinoma. Finally, we find that effective immunotherapy in the mouse model requires CXCL13-dependent TLS formation. Conversely, therapeutic CXCL13 treatment potentiates anti-tumour immunity and synergizes with ICB. Our findings provide a possible mechanistic basis for the association of TLS with immunotherapy response.


Asunto(s)
Retrovirus Endógenos , Inmunoterapia , Neoplasias Pulmonares , Animales , Humanos , Ratones , Adenocarcinoma del Pulmón/inmunología , Adenocarcinoma del Pulmón/terapia , Adenocarcinoma del Pulmón/virología , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/terapia , Carcinoma de Pulmón de Células no Pequeñas/virología , Modelos Animales de Enfermedad , Retrovirus Endógenos/inmunología , Inmunoterapia/métodos , Pulmón/inmunología , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/virología , Microambiente Tumoral , Linfocitos B/inmunología , Estudios de Cohortes , Anticuerpos/inmunología , Anticuerpos/uso terapéutico
2.
Cell ; 149(3): 642-55, 2012 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-22541434

RESUMEN

Non-small cell lung cancer (NSCLC) is the most frequent cause of cancer deaths worldwide; nearly half contain mutations in the receptor tyrosine kinase/RAS pathway. Here we show that RAS-pathway mutant NSCLC cells depend on the transcription factor GATA2. Loss of GATA2 reduced the viability of NSCLC cells with RAS-pathway mutations, whereas wild-type cells were unaffected. Integrated gene expression and genome occupancy analyses revealed GATA2 regulation of the proteasome, and IL-1-signaling, and Rho-signaling pathways. These pathways were functionally significant, as reactivation rescued viability after GATA2 depletion. In a Kras-driven NSCLC mouse model, Gata2 loss dramatically reduced tumor development. Furthermore, Gata2 deletion in established Kras mutant tumors induced striking regression. Although GATA2 itself is likely undruggable, combined suppression of GATA2-regulated pathways with clinically approved inhibitors caused marked tumor clearance. Discovery of the nononcogene addiction of KRAS mutant lung cancers to GATA2 presents a network of druggable pathways for therapeutic exploitation.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Factor de Transcripción GATA2/metabolismo , Redes Reguladoras de Genes , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas ras/metabolismo , Animales , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Factor de Transcripción GATA2/genética , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Neoplasias Pulmonares/patología , Ratones , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Transducción de Señal , Proteínas ras/genética
3.
Immunity ; 47(6): 1083-1099.e6, 2017 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-29246442

RESUMEN

The immunosuppressive protein PD-L1 is upregulated in many cancers and contributes to evasion of the host immune system. The relative importance of the tumor microenvironment and cancer cell-intrinsic signaling in the regulation of PD-L1 expression remains unclear. We report that oncogenic RAS signaling can upregulate tumor cell PD-L1 expression through a mechanism involving increases in PD-L1 mRNA stability via modulation of the AU-rich element-binding protein tristetraprolin (TTP). TTP negatively regulates PD-L1 expression through AU-rich elements in the 3' UTR of PD-L1 mRNA. MEK signaling downstream of RAS leads to phosphorylation and inhibition of TTP by the kinase MK2. In human lung and colorectal tumors, RAS pathway activation is associated with elevated PD-L1 expression. In vivo, restoration of TTP expression enhances anti-tumor immunity dependent on degradation of PD-L1 mRNA. We demonstrate that RAS can drive cell-intrinsic PD-L1 expression, thus presenting therapeutic opportunities to reverse the innately immunoresistant phenotype of RAS mutant cancers.


Asunto(s)
Antígeno B7-H1/inmunología , Neoplasias Colorrectales/inmunología , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/inmunología , Proteínas Proto-Oncogénicas p21(ras)/inmunología , Tristetraprolina/inmunología , Escape del Tumor , Animales , Antígeno B7-H1/genética , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Células Epiteliales/inmunología , Células Epiteliales/patología , Femenino , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/inmunología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Trasplante de Neoplasias , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/inmunología , Proteínas Proto-Oncogénicas p21(ras)/genética , División del ARN , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/inmunología , Transducción de Señal , Tristetraprolina/genética
5.
Biochem J ; 454(3): 437-45, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23819782

RESUMEN

Under several adverse conditions, such as hypoxia or ischaemia, extracellular levels of adenosine are elevated because of increased energy demands and ATP metabolism. Because extracellular adenosine affects metabolism through G-protein-coupled receptors, its regulation is of high adaptive importance. CNT2 (concentrative nucleoside transporter 2) may play physiological roles beyond nucleoside salvage in brain as it does in other tissues. Even though nucleoside transport in brain has mostly been seen as being of equilibrative-type, in the present study, we prove that the rat phaeochromocytoma cell line PC12 shows a concentrative adenosine transport of CNT2-type when cells are differentiated to a neuronal phenotype by treatment with NGF (nerve growth factor). Differentiation of PC12 cells was also associated with the up-regulation of adenosine A1 receptors. Addition of adenosine receptor agonists to cell cultures increased CNT2-related activity by a mechanism consistent with A1 and A2A receptor activation. The addition of adenosine to the culture medium also induced the phosphorylation of the intracellular regulatory kinase AMPK (AMP-activated protein kinase), with this effect being dependent upon adenosine transport. CNT2-related activity of differentiated PC12 cells was also dramatically down-regulated under hypoxic conditions. Interestingly, the analysis of nucleoside transporter expression after experimental focal ischaemia in rat brain showed that CNT2 expression was down-regulated in the infarcted tissue, with this effect somehow being restricted to other adenosine transporter proteins such as CNT3 and ENT1 (equilibrative nucleoside transporter 1). In summary, CNT2 is likely to modulate extracellular adenosine and cell energy balance in neuronal tissue.


Asunto(s)
Proteínas de Transporte de Membrana/metabolismo , Receptores Purinérgicos P1/metabolismo , Adenosina/metabolismo , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Diferenciación Celular , Hipoxia de la Célula , Metabolismo Energético , Tranportador Equilibrativo 1 de Nucleósido , Expresión Génica , Regulación de la Expresión Génica , Infarto de la Arteria Cerebral Media/metabolismo , Masculino , Proteínas de Transporte de Membrana/genética , Neuronas/metabolismo , Células PC12 , Ratas , Ratas Sprague-Dawley
6.
Cancer Cell ; 42(3): 338-357, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38471457

RESUMEN

Over the past decade, RAS oncogenic proteins have transitioned from being deemed undruggable to having two clinically approved drugs, with several more in advanced stages of development. Despite the initial benefit of KRAS-G12C inhibitors for patients with tumors harboring this mutation, the rapid emergence of drug resistance underscores the urgent need to synergize these inhibitors with other therapeutic approaches to improve outcomes. RAS mutant tumor cells can create an immunosuppressive tumor microenvironment (TME), suggesting an increased susceptibility to immunotherapies following RAS inhibition. This provides a rationale for combining RAS inhibitory drugs with immune checkpoint blockade (ICB). However, achieving this synergy in the clinical setting has proven challenging. Here, we explore how understanding the impact of RAS mutant tumor cells on the TME can guide innovative approaches to combining RAS inhibition with immunotherapies, review progress in both pre-clinical and clinical stages, and discuss challenges and future directions.


Asunto(s)
Neoplasias , Proteínas Proto-Oncogénicas p21(ras) , Humanos , Mutación , Inmunoterapia , Microambiente Tumoral
7.
Cancer Res ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38635884

RESUMEN

Oncogenic KRAS impairs anti-tumor immune responses. As effective strategies to combine KRAS inhibitors and immunotherapies have so far proven elusive, a better understanding of how oncogenic KRAS drives immune evasion is needed to identify approaches that could sensitize KRAS-mutant lung cancer to immunotherapy. In vivo CRISPR-Cas9 screening in an immunogenic murine lung cancer model identified mechanisms by which oncogenic KRAS promotes immune evasion, most notably via upregulation of immunosuppressive cyclooxygenase-2 (COX-2) in cancer cells. Oncogenic KRAS potently induced COX-2 in both mouse and human lung cancer, which was suppressed using KRAS inhibitors. COX-2 acted via prostaglandin E2 (PGE2) to promote resistance to immune checkpoint blockade (ICB) in lung adenocarcinoma. Targeting COX-2/PGE2 remodeled the tumor microenvironment by inducing pro-inflammatory polarization of myeloid cells and influx of activated cytotoxic CD8+ T cells, which increased the efficacy of ICB. Restoration of COX-2 expression contributed to tumor relapse after prolonged KRAS inhibition. These results provide the rationale for testing COX-2/PGE2 pathway inhibitors in combination with KRASG12C inhibition or ICB in patients with KRAS-mutant lung cancer.

8.
Clin Cancer Res ; 29(24): 5012-5020, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37581538

RESUMEN

Although the past decade has seen great strides in the development of immunotherapies that reactivate the immune system against tumors, there have also been major advances in the discovery of drugs blocking oncogenic drivers of cancer growth. However, there has been very little progress in combining immunotherapies with drugs that target oncogenic driver pathways. Some of the most important oncogenes in human cancer encode RAS family proteins, although these have proven challenging to target. Recently drugs have been approved that inhibit a specific mutant form of KRAS: G12C. These have improved the treatment of patients with lung cancer harboring this mutation, but development of acquired drug resistance after initial responses has limited the impact on overall survival. Because of the immunosuppressive nature of the signaling network controlled by oncogenic KRAS, targeted KRAS G12C inhibition can indirectly affect antitumor immunity, and does so without compromising the critical role of normal RAS proteins in immune cells. This serves as a rationale for combination with immune checkpoint blockade, which can provide additional combinatorial therapeutic benefit in some preclinical cancer models. However, in clinical trials, combination of KRAS G12C inhibitors with PD-(L)1 blockade has yet to show improved outcome, in part due to treatment toxicities. A greater understanding of how oncogenic KRAS drives immune evasion and how mutant-specific KRAS inhibition impacts the tumor microenvironment can lead to novel approaches to combining RAS inhibition with immunotherapies.


Asunto(s)
Antineoplásicos , Neoplasias Pulmonares , Humanos , Proteínas Proto-Oncogénicas p21(ras)/genética , Neoplasias Pulmonares/tratamiento farmacológico , Antineoplásicos/uso terapéutico , Oncogenes , Mutación , Inmunoterapia , Microambiente Tumoral
9.
Sci Rep ; 13(1): 1889, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36732563

RESUMEN

P110α is a member of the phosphoinositide 3-kinase (PI3K) enzyme family that functions downstream of RAS. RAS proteins contribute to the activation of p110α by interacting directly with its RAS binding domain (RBD), resulting in the promotion of many cellular functions such as cell growth, proliferation and survival. Previous work from our lab has highlighted the importance of the p110α/RAS interaction in tumour initiation and growth. Here we report the discovery and characterisation of a cyclic peptide inhibitor (cyclo-CRVLIR) that interacts with the p110α-RBD and blocks its interaction with KRAS. cyclo-CRVLIR was discovered by screening a "split-intein cyclisation of peptides and proteins" (SICLOPPS) cyclic peptide library. The primary cyclic peptide hit from the screen initially showed a weak affinity for the p110α-RBD (Kd about 360 µM). However, two rounds of amino acid substitution led to cyclo-CRVLIR, with an improved affinity for p110α-RBD in the low µM (Kd 3 µM). We show that cyclo-CRVLIR binds selectively to the p110α-RBD but not to KRAS or the structurally-related RAF-RBD. Further, using biophysical, biochemical and cellular assays, we show that cyclo-CRVLIR effectively blocks the p110α/KRAS interaction in a dose dependent manner and reduces phospho-AKT levels in several oncogenic KRAS cell lines.


Asunto(s)
Fosfatidilinositol 3-Quinasa , Transducción de Señal , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo
10.
BMC Cancer ; 12: 434, 2012 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-23017148

RESUMEN

BACKGROUND: Nucleoside analogs used in the chemotherapy of solid tumors, such as the capecitabine catabolite 5'-deoxy-5-fluorouridine (5'-DFUR) trigger a transcriptomic response that involves the aquaglyceroporin aquaporin 3 along with other p53-dependent genes. Here, we examined whether up-regulation of aquaporin 3 (AQP3) mRNA in cancer cells treated with 5'-DFUR represents a collateral transcriptomic effect of the drug, or conversely, AQP3 participates in the activity of genotoxic agents. METHODS: The role of AQP3 in cell volume increase, cytotoxicity and cell cycle arrest was analyzed using loss-of-function approaches. RESULTS: 5'-DFUR and gemcitabine, but not cisplatin, stimulated AQP3 expression and cell volume, which was partially and significantly blocked by knockdown of AQP3. Moreover, AQP3 siRNA significantly blocked other effects of nucleoside analogs, including G1/S cell cycle arrest, p21 and FAS up-regulation, and cell growth inhibition. Short incubations with 5-fluorouracil (5-FU) also induced AQP3 expression and increased cell volume, and the inhibition of AQP3 expression significantly blocked growth inhibition triggered by this drug. To further establish whether AQP3 induction is related to cell cycle arrest and apoptosis, cells were exposed to long incubations with escalating doses of 5-FU. AQP3 was highly up-regulated at doses associated with cell cycle arrest, whereas at doses promoting apoptosis induction of AQP3 mRNA expression was reduced. CONCLUSIONS: Based on the results, we propose that the aquaglyceroporin AQP3 is required for cytotoxic activity of 5'-DFUR and gemcitabine in the breast cancer cell line MCF7 and the colon adenocarcinoma cell line HT29, and is implicated in cell volume increase and cell cycle arrest.


Asunto(s)
Antineoplásicos/farmacología , Acuaporina 3/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Nucleósidos/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/genética , Acuaporina 3/metabolismo , Western Blotting , Puntos de Control del Ciclo Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/genética , Línea Celular Tumoral , Tamaño de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Relación Dosis-Respuesta a Droga , Floxuridina/farmacología , Fluorouracilo/farmacología , Células HT29 , Humanos , Células MCF-7 , Nucleósidos/química , Análisis de Secuencia por Matrices de Oligonucleótidos , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Regulación hacia Arriba/efectos de los fármacos , Receptor fas/genética , Receptor fas/metabolismo , Gemcitabina
11.
Sci Adv ; 8(29): eabm8780, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35857848

RESUMEN

Recently developed KRASG12C inhibitory drugs are beneficial to lung cancer patients harboring KRASG12C mutations, but drug resistance frequently develops. Because of the immunosuppressive nature of the signaling network controlled by oncogenic KRAS, these drugs can indirectly affect antitumor immunity, providing a rationale for their combination with immune checkpoint blockade. In this study, we have characterized how KRASG12C inhibition reverses immunosuppression driven by oncogenic KRAS in a number of preclinical lung cancer models with varying levels of immunogenicity. Mechanistically, KRASG12C inhibition up-regulates interferon signaling via Myc inhibition, leading to reduced tumor infiltration by immunosuppressive cells, enhanced infiltration and activation of cytotoxic T cells, and increased antigen presentation. However, the combination of KRASG12C inhibitors with immune checkpoint blockade only provides synergistic benefit in the most immunogenic tumor model. KRASG12C inhibition fails to sensitize cold tumors to immunotherapy, with implications for the design of clinical trials combining KRASG12C inhibitors with anti-PD1 drugs.


Asunto(s)
Neoplasias Pulmonares , Proteínas Proto-Oncogénicas p21(ras) , Humanos , Inhibidores de Puntos de Control Inmunológico , Interferones , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Mutación , Proteínas Proto-Oncogénicas p21(ras)/genética
12.
Cancer Res ; 82(19): 3435-3448, 2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-35930804

RESUMEN

Mutations in oncogenes such as KRAS and EGFR cause a high proportion of lung cancers. Drugs targeting these proteins cause tumor regression but ultimately fail to elicit cures. As a result, there is an intense interest in how to best combine targeted therapies with other treatments, such as immunotherapies. However, preclinical systems for studying the interaction of lung tumors with the host immune system are inadequate, in part due to the low tumor mutational burden in genetically engineered mouse models. Here we set out to develop mouse models of mutant KRAS-driven lung cancer with an elevated tumor mutational burden by expressing the human DNA cytosine deaminase, APOBEC3B, to mimic the mutational signature seen in human lung cancer. This failed to substantially increase clonal tumor mutational burden and autochthonous tumors remained refractory to immunotherapy. However, establishing clonal cell lines from these tumors enabled the generation of an immunogenic syngeneic transplantation model of KRAS-mutant lung adenocarcinoma that was sensitive to immunotherapy. Unexpectedly, antitumor immune responses were not directed against neoantigens but instead targeted derepressed endogenous retroviral antigens. The ability of KRASG12C inhibitors to cause regression of KRASG12C -expressing tumors was markedly potentiated by the adaptive immune system, highlighting the importance of using immunocompetent models for evaluating targeted therapies. Overall, this model provides a unique opportunity for the study of combinations of targeted and immunotherapies in immune-hot lung cancer. SIGNIFICANCE: This study develops a mouse model of immunogenic KRAS-mutant lung cancer to facilitate the investigation of optimal combinations of targeted therapies with immunotherapies.


Asunto(s)
Neoplasias Pulmonares , Proteínas Proto-Oncogénicas p21(ras) , Animales , Citidina Desaminasa/genética , Citosina Desaminasa/genética , Citosina Desaminasa/uso terapéutico , Modelos Animales de Enfermedad , Receptores ErbB/genética , Humanos , Inmunoterapia , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/terapia , Ratones , Antígenos de Histocompatibilidad Menor , Mutación , Proteínas Proto-Oncogénicas p21(ras)/genética
13.
Genes (Basel) ; 12(6)2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34200676

RESUMEN

Around 20% of all malignancies harbour activating mutations in RAS isoforms. Despite this, there is a deficiency of RAS-targeting agents licensed for therapeutic use. The picomolar affinity of RAS for GTP, and the lack of suitable pockets for high-affinity small-molecule binding, precluded effective therapies despite decades of research. Recently, characterisation of the biochemical properties of KRAS-G12C along with discovery of its 'switch-II pocket' have allowed development of effective mutant-specific inhibitors. Currently seven KRAS-G12C inhibitors are in clinical trials and sotorasib has become the first one to be granted FDA approval. Here, we discuss historical efforts to target RAS directly and approaches to target RAS effector signalling, including combinations that overcome limitations of single-agent targeting. We also review pre-clinical and clinical evidence for the efficacy of KRAS-G12C inhibitor monotherapy followed by an illustration of combination therapies designed to overcome primary resistance and extend durability of response. Finally, we briefly discuss novel approaches to targeting non-G12C mutant isoforms.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores Enzimáticos/farmacología , Neoplasias/tratamiento farmacológico , Proteínas ras/antagonistas & inhibidores , Animales , Antineoplásicos/uso terapéutico , Inhibidores Enzimáticos/uso terapéutico , Humanos , Mutación , Neoplasias/genética , Proteínas ras/genética , Proteínas ras/metabolismo
14.
Nat Commun ; 12(1): 5906, 2021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34625563

RESUMEN

Mouse models are critical in pre-clinical studies of cancer therapy, allowing dissection of mechanisms through chemical and genetic manipulations that are not feasible in the clinical setting. In studies of the tumour microenvironment (TME), multiplexed imaging methods can provide a rich source of information. However, the application of such technologies in mouse tissues is still in its infancy. Here we present a workflow for studying the TME using imaging mass cytometry with a panel of 27 antibodies on frozen mouse tissues. We optimise and validate image segmentation strategies and automate the process in a Nextflow-based pipeline (imcyto) that is scalable and portable, allowing for parallelised segmentation of large multi-image datasets. With these methods we interrogate the remodelling of the TME induced by a KRAS G12C inhibitor in an immune competent mouse orthotopic lung cancer model, highlighting the infiltration and activation of antigen presenting cells and effector cells.


Asunto(s)
Citometría de Imagen/métodos , Oncogenes , Microambiente Tumoral/inmunología , Animales , Anticuerpos , Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Modelos Animales de Enfermedad , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/tratamiento farmacológico , Macrófagos , Ratones , Ratones Endogámicos C57BL , Oncogenes/efectos de los fármacos , Linfocitos T , Microambiente Tumoral/efectos de los fármacos
15.
Sci Transl Med ; 13(602)2021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-34261798

RESUMEN

Lung and bladder cancers are mostly incurable because of the early development of drug resistance and metastatic dissemination. Hence, improved therapies that tackle these two processes are urgently needed to improve clinical outcome. We have identified RSK4 as a promoter of drug resistance and metastasis in lung and bladder cancer cells. Silencing this kinase, through either RNA interference or CRISPR, sensitized tumor cells to chemotherapy and hindered metastasis in vitro and in vivo in a tail vein injection model. Drug screening revealed several floxacin antibiotics as potent RSK4 activation inhibitors, and trovafloxacin reproduced all effects of RSK4 silencing in vitro and in/ex vivo using lung cancer xenograft and genetically engineered mouse models and bladder tumor explants. Through x-ray structure determination and Markov transient and Deuterium exchange analyses, we identified the allosteric binding site and revealed how this compound blocks RSK4 kinase activation through binding to an allosteric site and mimicking a kinase autoinhibitory mechanism involving the RSK4's hydrophobic motif. Last, we show that patients undergoing chemotherapy and adhering to prophylactic levofloxacin in the large placebo-controlled randomized phase 3 SIGNIFICANT trial had significantly increased (P = 0.048) long-term overall survival times. Hence, we suggest that RSK4 inhibition may represent an effective therapeutic strategy for treating lung and bladder cancer.


Asunto(s)
Neoplasias Pulmonares , Neoplasias de la Vejiga Urinaria , Animales , Línea Celular Tumoral , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , Humanos , Pulmón/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Ratones , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/genética
16.
Mol Pharmacol ; 78(2): 157-65, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20421346

RESUMEN

The human concentrative nucleoside transporter-3 C602R (hCNT3C602R), a recently identified human concentrative nucleoside transporter-3 (hCNT3) variant, has been shown to interact with natural nucleosides with apparent K(m) values similar to those of the wild-type transporter, although binding of one of the two sodium ions required for nucleoside translocation is impaired, resulting in decreased V(max) values (Mol Pharmacol 73:379-386, 2008). We have further analyzed the properties of this hCNT3 variant by determining its localization in plasma membrane lipid domains and its interaction with nucleoside-derived drugs used in anticancer and antiviral therapies. When expressed heterologously in HeLa cells, wild-type hCNT3 localized to both lipid raft and nonlipid raft domains. Treatment of cells with the cholesterol-depleting agent methyl-beta-cyclodextrin resulted in a marked decrease in hCNT3-related transport activity that was associated with the loss of wild-type hCNT3 from lipid rafts. It is noteworthy that although exogenously expressed hCNT3C602R was present in nonlipid raft domains at a level similar to that of the wild-type transporter, the mutant transporter was present at much lower amounts in lipid rafts. A substrate profile analysis showed that interactions with a variety of nucleoside-derived drugs were altered in the hCNT3C602R variant and revealed that sugar hydroxyl residues are key structural determinants for substrate recognition by the hCNT3C602R variant.


Asunto(s)
Metabolismo de los Lípidos , Proteínas de Transporte de Membrana/metabolismo , Nucleósidos/farmacología , Animales , Secuencia de Bases , Células Cultivadas , Cartilla de ADN , Perros , Células HeLa , Humanos , Proteínas de Transporte de Membrana/genética , Mutagénesis Sitio-Dirigida , Polimorfismo Genético
17.
FASEB J ; 23(1): 172-82, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18827020

RESUMEN

Nucleoside transporters are plasma membrane proteins essential for nucleoside salvage. Among them, human concentrative nucleoside transporter 3 (hCNT3, SLC28A3) plays an essential role in this process because of its broader substrate selectivity and higher concentrative ability than the other members of the SLC28 protein family, hCNT1 and hCNT2. The aim of this study was to characterize an isoform of hCNT3, encoded by an alternatively spliced SLC28A3-related mRNA, the first identified for a CNT protein. This variant, named hCNT3ins, is the result of the insertion of 176 bp corresponding to an intron located between exons 2 and 3 of the gene. This insertion results in a shift of the reading frame, yielding a protein lacking 69 residues of the N terminus. hCNT3 and hCNT3ins mRNAs are simultaneously expressed both in normal and transformed cells and are differentially regulated by activation and differentiation. Because of the N-terminal deletion, hCNT3ins is retained in the endoplasmic reticulum, where it shows a typical hCNT3-related activity. hCNT3ins exhibits a shorter half-life than its plasma membrane counterpart, being degraded via a proteasome-dependent pathway. We suggest that this novel hCNT3 isoform would be involved in the salvage of intracellular nucleosides from the lumen of the endoplasmic reticulum to the cytoplasm.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas de Transporte de Membrana/genética , Isoformas de Proteínas/genética , Animales , Composición de Base , Línea Celular , Perros , Regulación de la Expresión Génica , Humanos , Proteínas de Transporte de Membrana/metabolismo , Datos de Secuencia Molecular , Transporte de Proteínas
18.
Nat Commun ; 11(1): 764, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-32034154

RESUMEN

Our understanding of the signalling pathways regulating early human development is limited, despite their fundamental biological importance. Here, we mine transcriptomics datasets to investigate signalling in the human embryo and identify expression for the insulin and insulin growth factor 1 (IGF1) receptors, along with IGF1 ligand. Consequently, we generate a minimal chemically-defined culture medium in which IGF1 together with Activin maintain self-renewal in the absence of fibroblast growth factor (FGF) signalling. Under these conditions, we derive several pluripotent stem cell lines that express pluripotency-associated genes, retain high viability and a normal karyotype, and can be genetically modified or differentiated into multiple cell lineages. We also identify active phosphoinositide 3-kinase (PI3K)/AKT/mTOR signalling in early human embryos, and in both primed and naïve pluripotent culture conditions. This demonstrates that signalling insights from human blastocysts can be used to define culture conditions that more closely recapitulate the embryonic niche.


Asunto(s)
Autorrenovación de las Células/fisiología , Células Madre Embrionarias Humanas/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Activinas/metabolismo , Animales , Blastocisto/metabolismo , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Técnicas de Cocultivo , Medios de Cultivo/química , Medios de Cultivo/metabolismo , Medios de Cultivo/farmacología , Endodermo/citología , Endodermo/metabolismo , Membranas Extraembrionarias/citología , Membranas Extraembrionarias/metabolismo , Fibroblastos/citología , Regulación del Desarrollo de la Expresión Génica , Células Madre Embrionarias Humanas/citología , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/fisiología , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Receptor IGF Tipo 1/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Transcriptoma , Inactivación del Cromosoma X/fisiología
19.
J Pharmacol Exp Ther ; 329(1): 252-61, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19141712

RESUMEN

Nucleoside reverse transcriptase inhibitors (NRTIs) need to enter cells to act against the HIV-1. Human organic cation transporters (hOCT1-3) are expressed and active in CD4+ T cells, the main target of HIV-1, and have been associated with antiviral uptake in different tissues. In this study, we examined whether NRTIs interact and are substrates of hOCT in cells stably expressing these transporters. Using [(3)H]N-methyl-4-phenylpyridinium, we found a high-affinity interaction among abacavir [[(1S,4R)-4-[2-amino-6-(cyclopropylamino)purin-9-yl]-cyclopent-2-enyl]methanol sulfate] (ABC); <0.08 nM], azidothymidine [3'-azido-3'-deoxythymidine (AZT); <0.4 nM], tenofovir disoproxil fumarate (<1.0 nM), and emtricitabine (<2.5 nM) and hOCTs. Using a wide range of concentrations of lamivudine [(-)-beta-L-2',3'-dideoxy-3'-thiacyitidine (3TC)], we determined two different binding sites for hOCTs: a high-affinity site (K(d1) = 12.3-15.4 pM) and a low-affinity site (K(d2) = 1.9-3.4 mM). Measuring direct uptake of [(3)H]3TC and inhibition with hOCT substrates, we identified 3TC as a novel substrate for hOCT1, 2, and 3, with hOCT1 as the most efficient transporter (K(m) = 1.25 +/- 0.1 mM; V(max) = 10.40 +/- 0.32 nmol/mg protein/min; V(max)/K(m) = 8.32 +/- 0.40 microl/mg protein/min). In drug-drug interaction experiments, we analyzed cis-inhibition of [(3)H]3TC uptake by ABC and AZT and found that 40 to 50% was inhibited at low concentrations of the drugs (K(i) = 22-500 pM). These data reveal that NRTIs experience a high-affinity interaction with hOCTs, suggesting a putative role for these drugs as modulators of hOCT activity. Finally, 3TC is a novel substrate for hOCTs and the inhibition of its uptake at low concentrations of ABC and AZT could have implications for the pharmacokinetics of 3TC.


Asunto(s)
Fármacos Anti-VIH/metabolismo , Lamivudine/metabolismo , Proteína 1 de Transporte de Anión Orgánico/metabolismo , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Inhibidores de la Transcriptasa Inversa/metabolismo , Animales , Sitios de Unión/efectos de los fármacos , Transporte Biológico Activo/efectos de los fármacos , Células CHO , Cricetinae , Cricetulus , Didesoxinucleósidos/metabolismo , Interacciones Farmacológicas , Humanos , Cinética , Transfección , Zidovudina/metabolismo
20.
Sci Transl Med ; 11(510)2019 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-31534020

RESUMEN

KRAS represents an excellent therapeutic target in lung cancer, the most commonly mutated form of which can now be blocked using KRAS-G12C mutant-specific inhibitory trial drugs. Lung adenocarcinoma cells harboring KRAS mutations have been shown previously to be selectively sensitive to inhibition of mitogen-activated protein kinase kinase (MEK) and insulin-like growth factor 1 receptor (IGF1R) signaling. Here, we show that this effect is markedly enhanced by simultaneous inhibition of mammalian target of rapamycin (mTOR) while maintaining selectivity for the KRAS-mutant genotype. Combined mTOR, IGF1R, and MEK inhibition inhibits the principal signaling pathways required for the survival of KRAS-mutant cells and produces marked tumor regression in three different KRAS-driven lung cancer mouse models. Replacing the MEK inhibitor with the mutant-specific KRAS-G12C inhibitor ARS-1620 in these combinations is associated with greater efficacy, specificity, and tolerability. Adding mTOR and IGF1R inhibitors to ARS-1620 greatly improves its effectiveness on KRAS-G12C mutant lung cancer cells in vitro and in mouse models. This provides a rationale for the design of combination treatments to enhance the impact of the KRAS-G12C inhibitors, which are now entering clinical trials.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Mutación/genética , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/genética , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Supervivencia Celular/efectos de los fármacos , Imidazoles/farmacología , Imidazoles/uso terapéutico , Ratones Desnudos , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Pirazinas/farmacología , Pirazinas/uso terapéutico , Piridonas/farmacología , Piridonas/uso terapéutico , Pirimidinonas/farmacología , Pirimidinonas/uso terapéutico , ARN Interferente Pequeño/metabolismo , Receptor IGF Tipo 1/antagonistas & inhibidores , Receptor IGF Tipo 1/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA