Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Nature ; 610(7933): 693-698, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36224389

RESUMEN

Soils are the foundation of all terrestrial ecosystems1. However, unlike for plants and animals, a global assessment of hotspots for soil nature conservation is still lacking2. This hampers our ability to establish nature conservation priorities for the multiple dimensions that support the soil system: from soil biodiversity to ecosystem services. Here, to identify global hotspots for soil nature conservation, we performed a global field survey that includes observations of biodiversity (archaea, bacteria, fungi, protists and invertebrates) and functions (critical for six ecosystem services) in 615 composite samples of topsoil from a standardized survey in all continents. We found that each of the different ecological dimensions of soils-that is, species richness (alpha diversity, measured as amplicon sequence variants), community dissimilarity and ecosystem services-peaked in contrasting regions of the planet, and were associated with different environmental factors. Temperate ecosystems showed the highest species richness, whereas community dissimilarity peaked in the tropics, and colder high-latitudinal ecosystems were identified as hotspots of ecosystem services. These findings highlight the complexities that are involved in simultaneously protecting multiple ecological dimensions of soil. We further show that most of these hotspots are not adequately covered by protected areas (more than 70%), and are vulnerable in the context of several scenarios of global change. Our global estimation of priorities for soil nature conservation highlights the importance of accounting for the multidimensionality of soil biodiversity and ecosystem services to conserve soils for future generations.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Mapeo Geográfico , Microbiología del Suelo , Suelo , Animales , Conservación de los Recursos Naturales/métodos , Suelo/parasitología , Invertebrados , Archaea
2.
Glob Chang Biol ; 30(5): e17295, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38804108

RESUMEN

Plant-soil biodiversity interactions are fundamental for the functioning of terrestrial ecosystems. Yet, the existence of a set of globally distributed topsoil microbial and small invertebrate organisms consistently associated with land plants (i.e., their consistent soil-borne microbiome), together with the environmental preferences and functional capabilities of these organisms, remains unknown. We conducted a standardized field survey under 150 species of land plants, including 58 species of bryophytes and 92 of vascular plants, across 124 locations from all continents. We found that, despite the immense biodiversity of soil organisms, the land plants evaluated only shared a small fraction (less than 1%) of all microbial and invertebrate taxa that were present across contrasting climatic and soil conditions and vegetation types. These consistent taxa were dominated by generalist decomposers and phagotrophs and their presence was positively correlated with the abundance of functional genes linked to mineralization. Finally, we showed that crossing environmental thresholds in aridity (aridity index of 0.65, i.e., the transition from mesic to dry ecosystems), soil pH (5.5; i.e., the transition from acidic to strongly acidic soils), and carbon (less than 2%, the lower limit of fertile soils) can result in drastic disruptions in the associations between land plants and soil organisms, with potential implications for the delivery of soil ecosystem processes under ongoing global environmental change.


Asunto(s)
Embryophyta , Microbiota , Microbiología del Suelo , Biodiversidad , Suelo/química
3.
Plant Cell Environ ; 46(10): 3158-3169, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37309267

RESUMEN

Plants inhabiting environments with stressful conditions often exhibit a low number of flowers, which can be attributed to the energetic cost associated with reproduction. One of the most stressful environments for plants is the Antarctic continent, characterized by limited soil water availability and low temperatures. Induction of dehydrins like those from the COR gene family and auxin transcriptional response repressor genes (IAAs), which are involved in floral repression, has been described in response to water stress. Here, we investigated the relationship between the water deficit-induced stress response and the number of flowers in Colobanthus quitensis plants collected from populations along a latitudinal gradient. The expression levels of COR47 and IAA12 genes in response to water deficit were found to be associated with the number of flowers. The relationship was observed both in the field and growth chambers. Watering the plants in the growth chambers alleviated the stress and stimualted flowering, thereby eliminating the trade-off observed in the field. Our study provides a mechanistic understanding of the ecological constraints on plant reproduction along a water availability gradient. However, further experiments are needed to elucidate the primary role of water availability in regulating resource allocation to reproduction in plants inhibiting extreme environments.


Asunto(s)
Resistencia a la Sequía , Plantas , Regiones Antárticas , Reproducción , Frío
4.
Mol Ecol ; 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36479720

RESUMEN

Solar activity has a significant influence on Earth's climate and may drive many biological processes. Here, we measured growth in 11 tree species distributed along an ≈600-km latitudinal gradient in South-Central Chile, recording the width of their growth-rings among periods of maximum (highest number of sunspots) and minimum (lowest number of sunspots) solar activity. In one of these species, Quillaja saponaria, we experimentally assessed three ecophysiological traits (CO2 fixation through photosynthesis [Amax ], growth and leaf production) as well as the expression of five genes related to cell wall elongation and expansion following exposure to high and low levels of UV-B radiation, simulating scenarios of maximum and minimum solar activity, respectively. We found lower tree growth during the periods of maximum solar activity, with this trend being more evident at lower latitudes, where UV-B radiation is higher. Exposure of Q. saponaria to higher levels of UV-B affected the ecophysiological parameters, revealing a decrease in Amax , growth and leaf production. In addition, higher levels of UV-B led to repression in four of the five genes studied. Our results may help foresee environmental scenarios for different plant species associated with solar activity.

5.
Planta ; 254(3): 46, 2021 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-34370110

RESUMEN

MAIN CONCLUSION: The epigenetic could be an important, but seldom assessed, mechanisms in plants inhabiting cold ecosystems. Thus, this review could help to fill a gap in the current literature. Low temperatures are one of the most critical environmental conditions that negatively affect the growth, development, and geographic distribution of plants. Exposure to low temperatures results in a suit of physiological, biochemical and molecular modifications through the reprogramming of the expression of genes and transcription factors. Scientific evidence shows that the average annual temperature has increased in recent years worldwide, with cold ecosystems (polar and high mountain) being among the most sensitive to these changes. However, scientific evidence also indicates that there would be specific events of low temperatures, due it is highly relevant to know the capacity for adaptation, regulation and epigenetic memory in the face of these events, by plants. Epigenetic regulation has been described to play an important role in the face of environmental stimuli, especially in response to abiotic stress. Several studies on epigenetic mechanisms have focused on responses to stress as drought and/or salinity; however, there is a gap in the current literature considering those related to low temperatures. In this review, we focus on systematizing the information published to date, related to the regulation of epigenetic mechanisms such as DNA methylation, histone modification, and non-coding RNA-dependent silencing mechanisms, in the face of plant´s stress due to low temperatures. Finally, we present a schematic model about the potential responses by plants taking in count their epigenetic memory; considering a global warming scenario and with the presence or absence of extreme specific events of low temperatures.


Asunto(s)
Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Frío , Ecosistema , Plantas/genética , Estrés Fisiológico/genética
6.
Plant Cell Environ ; 44(8): 2716-2728, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33721328

RESUMEN

Ground-level ozone is a global air pollutant with high toxicity and represents a threat to plants and microorganisms. Although beneficial microorganisms can improve host performance, their role in connecting environmentally induced maternal plant phenotypes to progeny (transgenerational effects [TGE]) is unknown. We evaluated fungal endophyte-mediated consequences of maternal plant exposure to ozone on performance of the progeny under contrasting scenarios of the same factor (high and low) at two stages: seedling and young plant. With no variation in biomass, maternal ozone-induced oxidative damage in the progeny that was lower in endophyte-symbiotic plants. This correlated with an endophyte-mediated higher concentration of proline, a defence compound associated with stress control. Interestingly, ozone-induced TGE was not associated with reductions in plant survival. On the contrary, there was an overall positive effect on seedling survival in the presence of endophytes. The positive effect of maternal ozone increasing young plant survival was irrespective of symbiosis and only expressed under high ozone condition. Our study shows that hereditary microorganisms can modulate the capacity of plants to transgenerationally adjust progeny phenotype to atmospheric change.


Asunto(s)
Endófitos/fisiología , Epichloe/fisiología , Lolium/fisiología , Ozono , Biomasa , Lolium/efectos de los fármacos , Lolium/microbiología , Ozono/farmacología , Plantones/fisiología , Simbiosis
7.
Mol Biol Rep ; 48(4): 3877-3883, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33893926

RESUMEN

Nothofagus alessandrii (Nothofagaceae) is one of the most endangered trees from Chile due to high rates of habitat disturbance caused by human activities. Despite its conservation status, few molecular markers are available to study its population genetic, connectivity and to assist reproduction programs. Thus, the species needs urgent actions to restore its original distribution. Novel polymorphic microsatellites from the genome of N. alessandrii were isolated and characterized using high-through sequencing. A total of 30 primer pairs were synthesized and 18 microsatellites were amplified correctly. Polymorphism and genetic diversity was evaluated in 58 individuals from three populations of N. alessandrii. Sixteen of them were polymorphic and the number of alleles in the pooled sample ranged from 2 to 14, the mean number of alleles was 4.81. The mean values of observed heterozigosity (HO) and excepted heterozygosity (HE) are similar in all studied populations. Linkage disequilibrium was found between a few pairs of loci (five out of 263 tests) suggesting that most of the markers can be considered as independent. Significant deviations from Hardy-Weinberg equilibrium (P < 0.05) were found in four loci probably due to low sampling size. Transferability to the congeneric N. pumilio was successful in only four out of the sixteen polymorphic markers. The microsatellite markers developed in this study will be useful to study the genetic diversity and structure and to develop integrated management plans for the conservation of this endangered species.


Asunto(s)
Especies en Peligro de Extinción , Fagales/genética , Repeticiones de Microsatélite , Polimorfismo Genético , Desequilibrio de Ligamiento
8.
Ecol Lett ; 23(6): 1034-1048, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32281227

RESUMEN

In this review, we examine the functional roles of microbial symbionts in plant tolerance to cold and freezing stresses. The impacts of symbionts on antioxidant activity, hormonal signaling and host osmotic balance are described, including the effects of the bacterial endosymbionts Burkholderia, Pseudomonas and Azospirillum on photosynthesis and the accumulation of carbohydrates such as trehalose and raffinose that improve cell osmotic regulation and plasma membrane integrity. The influence of root fungal endophytes and arbuscular mycorrhizal fungi on plant physiology at low temperatures, for example their effects on nutrient acquisition and the accumulation of indole-3-acetic acid and antioxidants in tissues, are also reviewed. Meta-analyses are presented showing that aspects of plant performance (shoot biomass, relative water content, sugar and proline concentrations and Fv /Fm ) are enhanced in symbiotic plants at low (-1 to 15 °C), but not at high (20-26 °C), temperatures. We discuss the implications of microbial symbionts for plant performance at low and sub-zero temperatures in the natural environment and propose future directions for research into the effects of symbionts on the cold and freezing tolerances of plants, concluding that further studies should routinely incorporate symbiotic microbes in their experimental designs.


Asunto(s)
Micorrizas , Biomasa , Fenómenos Fisiológicos de las Plantas , Raíces de Plantas , Plantas , Simbiosis
9.
Extremophiles ; 24(5): 721-732, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32699913

RESUMEN

Fungal endophyte associations have been suggested as a possible strategy of Antarctic vascular plants for surviving the extreme environmental conditions of Antarctica. However, the mechanisms by which this occurs are still poorly understood. The role of root fungal endophytes in nitrogen mineralization and nutrient uptake, as well as their impact on the performance of Antarctic plants, were studied. We tested root endophytes, isolated from Colobanthus quitensis and Deschampsia antarctica, for lignocellulolytic enzyme production, nitrogen mineralization, and growth enhancement of their host plants. Penicillium chrysogenum and Penicillium brevicompactum were identified using a molecular approach as the main root endophytes inhabiting C. quitensis and D. antarctica, respectively. Both root endophytes were characterized as psychrophilic fungi displaying amylase, esterase, protease, cellulase, hemicellulase, phosphatase and urease enzymatic activities, mainly at 4 °C. Moreover, the rates and percentages of nitrogen mineralization, as well as the final total biomass, were significantly higher in symbiotic C. quitensis and D. antarctica individuals. Our findings suggest that root endophytes exert a pivotal ecological role based not only to breakdown different nutrient sources but also on accelerating nitrogen mineralization, improving nutrient acquisition, and therefore promoting plant growth in Antarctic terrestrial ecosystems.


Asunto(s)
Nitrógeno , Penicillium , Desarrollo de la Planta , Regiones Antárticas , Ecosistema , Endófitos , Humanos , Penicillium/fisiología , Plantas
10.
New Phytol ; 222(2): 1043-1053, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30565261

RESUMEN

To obtain insights into the dynamics of nutrient exchange in arbuscular mycorrhizal (AM) symbiosis, we modelled mathematically the two-membrane system at the plant-fungus interface and simulated its dynamics. In computational cell biology experiments, the full range of nutrient transport pathways was tested for their ability to exchange phosphorus (P)/carbon (C)/nitrogen (N) sources. As a result, we obtained a thermodynamically justified, independent and comprehensive model of the dynamics of the nutrient exchange at the plant-fungus contact zone. The predicted optimal transporter network coincides with the transporter set independently confirmed in wet-laboratory experiments previously, indicating that all essential transporter types have been discovered. The thermodynamic analyses suggest that phosphate is released from the fungus via proton-coupled phosphate transporters rather than anion channels. Optimal transport pathways, such as cation channels or proton-coupled symporters, shuttle nutrients together with a positive charge across the membranes. Only in exceptional cases does electroneutral transport via diffusion facilitators appear to be plausible. The thermodynamic models presented here can be generalized and adapted to other forms of mycorrhiza and open the door for future studies combining wet-laboratory experiments with computational simulations to obtain a deeper understanding of the investigated phenomena.


Asunto(s)
Micorrizas/metabolismo , Nitrógeno/metabolismo , Fósforo/metabolismo , Simbiosis , Transporte Biológico , Membrana Celular/metabolismo , Modelos Biológicos , Termodinámica
12.
Ecology ; 94(11): 2415-25, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24400493

RESUMEN

Oceanic island ecosystems are particularly sensitive to El Niño effects due to their dependence on energy and nutrient inputs from marine systems. Seabirds play a key role in transporting resources of marine origin to insular ecosystems. We report tree-growth patterns showing how the effects of El Niño rainy events on tree species in a southern Pacific island depend on the presence of local seabird colonies. We performed manipulative experiments in order to assess the mechanisms underlying these patterns. Tree ring data showed that, in normal years, the growth of all tree species (Aextoxicon punctatum, Cryptocarya alba, and Pinus radiata) was significantly lower in seabird sites compared to adjacent patches without seabirds (control sites). In contrast, in El Niño years, trees formerly hosting seabird colonies grew more than those in control sites. Experiments showed that (1) pine plants on soil from seabird sites grew more than those on soil from control sites, (2) pine individuals with seabird feces on their leaves grew less than those sprayed with an aqueous solution, and (3) soil moisture had little effect on plant growth. The stress produced by massive cormorant nesting on trees, which impairs tree growth and physiological performance, is relieved during El Niño events because of seabird migration due to decreased prey availability and pouring rains that flood nests. Soils enriched by the seabird guano, together with the increased water availability associated with El Niño, foster the growth of trees from seabird sites. We suggest that El Niño may be a key determinant of tree performance in forest communities from island and coastal ecosystems of the Pacific Ocean.


Asunto(s)
Charadriiformes/fisiología , Ecosistema , El Niño Oscilación del Sur , Árboles/crecimiento & desarrollo , Migración Animal , Animales , Islas del Pacífico , Factores de Tiempo
13.
J Fungi (Basel) ; 9(4)2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37108876

RESUMEN

The Chilean matorral is a heavily threatened Mediterranean-type ecosystem due to human-related activities such as anthropogenic fires. Mycorrhizal fungi may be the key microorganisms to help plants cope with environmental stress and improve the restoration of degraded ecosystems. However, the application of mycorrhizal fungi in the restoration of the Chilean matorral is limited because of insufficient local information. Consequently, we assessed the effect of mycorrhizal inoculation on the survival and photosynthesis at set intervals for two years after a fire event in four native woody plant species, namely: Peumus boldus, Quillaja saponaria, Cryptocarya alba, and Kageneckia oblonga, all dominant species of the matorral. Additionally, we assessed the enzymatic activity of three enzymes and macronutrient in the soil in mycorrhizal and non-mycorrhizal plants. The results showed that mycorrhizal inoculation increased survival in all studied species after a fire and increased photosynthesis in all, but not in P. boldus. Additionally, the soil associated with mycorrhizal plants had higher enzymatic activity and macronutrient levels in all species except in Q. saponaria, in which there was no significant mycorrhization effect. The results suggest that mycorrhizal fungi could increase the fitness of plants used in restoration initiatives after severe disturbances such as fires and, consequently, should be considered for restoration programs of native species in threatened Mediterranean ecosystems.

14.
Front Plant Sci ; 14: 1139704, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37426965

RESUMEN

Introduction: Technological advances have made possible long space travels and even exoplanetary colonies in the future. Nevertheless, the success of these activities depends on our ability to produce edible plants in stressful conditions such as high radiation, extreme temperatures and low oxygen levels. Since beneficial microorganisms, such as fungal endophytes from extreme environments, have helped agriculture cope with those difficulties, endophytic fungi may be a putative tool to ensure plant growth under exoplanetary conditions. Additionally, growing crops in polyculture has been shown to increase productivity and spatial efficiency, which is essential given the likely space restrictions in such conditions. Methods: We evaluated the effect of the inoculation with a mix of two fungal endophytes from the Atacama Desert on performance (survival and biomass) and nutritional quality of three crop species (lettuce, chard and spinach) grown under exoplanetary conditions. In addition, we measured the amount of antioxidants (flavonoids and phenolics) as possible mechanisms to cope with such abiotic conditions. The exoplanetary conditions were; high UV radiation, low temperature, low water availability, and low oxygen levels. These crops were put in growing chambers in monoculture, dual culture and polyculture (the three species in the same pot) for 30 days. Results and Discussion: Our results show that inoculation with extreme endophytes improved survival by ca. 15 - 35% and biomass by ca. 30 - 35% in all crop species. The most evident increase was when grown in polyculture, except for survival in spinach, where inoculated plants had higher survival only in dual culture. Nutritional quality and the amount of the antioxidant compounds antioxidants increased in all crop species when inoculated with the endophytes. Overall, fungal endophytes isolated from extreme environments such as the Atacama Desert, the driest desert in the world, could be a key biotechnological tool for future space agriculture, helping plants cope with environmental stress. Additionally, inoculated plants should be grown in polyculture to increase crop turnover and space-use efficiency. Lastly, these results provide useful insights to face the future challenges of space-farming.

15.
Sci Total Environ ; 879: 163046, 2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-36965736

RESUMEN

The Arctic and the Antarctic Continent correspond to two eco-regions with extreme climatic conditions. These regions are exposed to the presence of contaminants resulting from human activity (local and global), which, in turn, represent a challenge for life forms in these environments. Anthropogenic pollution by semi-volatile organic compounds (SVOCs) in polar ecosystems has been documented since the 1960s. Currently, various studies have shown the presence of SVOCs and their bioaccumulation and biomagnification in the polar regions with negative effects on biodiversity and the ecosystem. Although the production and use of these compounds has been regulated, their persistence continues to threaten biodiversity and the ecosystem. Here, we summarize the current literature regarding microbes and SVOCs in polar regions and pose that bioremediation by native microorganisms is a feasible strategy to mitigate the presence of SVOCs. Our systematic review revealed that microbial communities in polar environments represent a wide reservoir of biodiversity adapted to extreme conditions, found both in terrestrial and aquatic environments, freely or in association with vegetation. Microorganisms adapted to these environments have the potential for biodegradation of SVOCs through a variety of genes encoding enzymes with the capacity to metabolize SVOCs. We suggest that a comprehensive approach at the molecular and ecological level is required to mitigate SVOCs presence in these regions. This is especially patent when considering that SVOCs degrade at slow rates and possess the ability to accumulate in polar ecosystems. The implications of SVOC degradation are relevant for the preservation of polar ecosystems with consequences at a global level.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Compuestos Orgánicos Volátiles , Humanos , Ecosistema , Biodiversidad , Contaminación Ambiental , Bioacumulación , Hidrocarburos Policíclicos Aromáticos/análisis
16.
Sci Adv ; 9(19): eadh1455, 2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-37172085

RESUMEN

We assessed the effect that electromagnetic field (EMF) exerts on honeybees' pollination efficiency using field and laboratory experiments. First, we measured levels of gene and protein expression in metabolic pathways involved in stress and behavioral responses elicited by EMF. Second, we assessed the effect of EMF on honeybee behavior and seed production by the honeybee-pollinated California poppy and, lastly, by measuring the consequences of pollination failure on plants' community richness and abundance. EMF exposure exerted strong physiological stress on honeybees as shown by the enhanced expression of heat-shock proteins and genes involved in antioxidant activity and affected the expression levels of behavior-related genes. Moreover, California poppy individuals growing near EMF received fewer honeybee visits and produced fewer seeds than plants growing far from EMF. Last, we found a hump-shaped relationship between EMF and plant species richness and plant abundance. Our study provides conclusive evidence of detrimental impacts of EMF on honeybee's pollination behavior, leading to negative effects on plant community.


Asunto(s)
Campos Electromagnéticos , Polinización , Humanos , Abejas , Animales , Polinización/fisiología , Campos Electromagnéticos/efectos adversos , Semillas/fisiología , Antioxidantes , Proteínas de Choque Térmico
17.
Nat Commun ; 14(1): 1706, 2023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-36973286

RESUMEN

Soil contamination is one of the main threats to ecosystem health and sustainability. Yet little is known about the extent to which soil contaminants differ between urban greenspaces and natural ecosystems. Here we show that urban greenspaces and adjacent natural areas (i.e., natural/semi-natural ecosystems) shared similar levels of multiple soil contaminants (metal(loid)s, pesticides, microplastics, and antibiotic resistance genes) across the globe. We reveal that human influence explained many forms of soil contamination worldwide. Socio-economic factors were integral to explaining the occurrence of soil contaminants worldwide. We further show that increased levels of multiple soil contaminants were linked with changes in microbial traits including genes associated with environmental stress resistance, nutrient cycling, and pathogenesis. Taken together, our work demonstrates that human-driven soil contamination in nearby natural areas mirrors that in urban greenspaces globally, and highlights that soil contaminants have the potential to cause dire consequences for ecosystem sustainability and human wellbeing.


Asunto(s)
Ciudades , Ecosistema , Internacionalidad , Parques Recreativos , Contaminantes del Suelo , Suelo , Microbiota , Factores Socioeconómicos , Suelo/química , Microbiología del Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/química , Plásticos
18.
Conserv Biol ; 26(4): 717-23, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22624790

RESUMEN

Few non-native species have colonized Antarctica, although increased human activity and accelerated climate change may increase their number, distributional range, and effects on native species on the continent. We searched 13 sites on the maritime Antarctic islands and 12 sites on the Antarctic Peninsula for annual bluegrass (Poa annua), a non-native flowering plant. We also evaluated the possible effects of competition between P. annua and 2 vascular plants native to Antarctica, Antarctic pearlwort (Colobanthus quitensis) and Antarctic hairgrass (Deschampsia antarctica). We grew the native species in experimental plots with and without annual bluegrass under conditions that mimicked the Antarctic environment. After 5 months, we measured photosynthetic performance on the basis of chlorophyll fluorescence and determined total biomass of both native species. We found individual specimens of annual bluegrass at 3 different sites on the Antarctic Peninsula during the 2007-2008 and 2009-2010 austral summers. The presence of bluegrass was associated with a statistically significant reduction in biomass of pearlwort and hairgrass, whereas the decrease in biomass of bluegrass was not statistically significant. Similarly, the presence of bluegrass significantly reduced the photosynthetic performance of the 2 native species. Sites where bluegrass occurred were close to major maritime routes of scientific expeditions and of tourist cruises to Antarctica. We believe that if current levels of human activity and regional warming persist, more non-native plant species are likely to colonize the Antarctic and may affect native species.


Asunto(s)
Caryophyllaceae/crecimiento & desarrollo , Especies Introducidas , Poa/crecimiento & desarrollo , Poaceae/crecimiento & desarrollo , Regiones Antárticas , Caryophyllaceae/metabolismo , Cambio Climático , Actividades Humanas , Humanos , Poa/metabolismo , Poaceae/metabolismo , Estaciones del Año , Especificidad de la Especie
19.
Front Microbiol ; 13: 755014, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35391734

RESUMEN

Biological soil crusts (BSC) are considered as pivotal ecological elements among different ecosystems of the world. The effects of these BSC at the micro-site scale have been related to the development of diverse plant species that, otherwise, might be strongly limited by the harsh abiotic conditions found in environments with low water availability. Here, we describe for the first time the bacterial composition of BSCs found in the proximities of Admiralty Bay (Maritime Antarctica) through 16S metabarcoding. In addition, we evaluated their effect on soils (nutrient levels, enzymatic activity, and water retention), and on the fitness and performance of Colobanthus quitensis, one of the two native Antarctic vascular plants. This was achieved by comparing the photochemical performance, foliar nutrient, biomass, and reproductive investment between C. quitensis plants growing with or without the influence of BSC. Our results revealed a high diversity of prokaryotes present in these soil communities, although we found differences in terms of their abundances. We also found that the presence of BSCs is linked to a significant increase in soils' water retention, nutrient levels, and enzymatic activity when comparing with control soils (without BSCs). In the case of C. quitensis, we found that measured ecophysiological performance parameters were significantly higher on plants growing in association with BSCs. Taken together, our results suggest that BSCs in Antarctic soils are playing a key role in various biochemical processes involved in soil development, while also having a positive effect on the accompanying vascular flora. Therefore, BSCs would be effectively acting as ecosystem engineers for the terrestrial Antarctic ecosystem.

20.
Microbiome ; 10(1): 219, 2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36503688

RESUMEN

BACKGROUND: Little is known about the global distribution and environmental drivers of key microbial functional traits such as antibiotic resistance genes (ARGs). Soils are one of Earth's largest reservoirs of ARGs, which are integral for soil microbial competition, and have potential implications for plant and human health. Yet, their diversity and global patterns remain poorly described. Here, we analyzed 285 ARGs in soils from 1012 sites across all continents and created the first global atlas with the distributions of topsoil ARGs. RESULTS: We show that ARGs peaked in high latitude cold and boreal forests. Climatic seasonality and mobile genetic elements, associated with the transmission of antibiotic resistance, were also key drivers of their global distribution. Dominant ARGs were mainly related to multidrug resistance genes and efflux pump machineries. We further pinpointed the global hotspots of the diversity and proportions of soil ARGs. CONCLUSIONS: Together, our work provides the foundation for a better understanding of the ecology and global distribution of the environmental soil antibiotic resistome. Video Abstract.


Asunto(s)
Antibacterianos , Suelo , Humanos , Antibacterianos/farmacología , Ecología , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA