RESUMEN
BACKGROUND: A current challenge in bioprocessing is the ability to analyse critical quality attributes such as aggregation without prior purification. This study evaluated the use of fluorescent dyes (Bis-ANS, SYPRO Orange, Thioflavin T and ProteoStat) to characterise mAb aggregates in Chinese hamster ovary clarified cultures. RESULTS: The null and mAb culture supernatants showed an increase in fluorescence intensity over the duration of the culture. The null cultures on day 14 saw a rapid increase in fluorescence intensity; day 10 to day 14, Bis-ANS and Thioflavin T had average increases of 21% and 48%, respectively, whereas ProteoStat and SYPRO Orange showed an average increase of 60%. Higher fluorescence intensity on day 14 with the null cultures, also correlated with loss of viability. CONCLUSION: Fluorescent dyes are not a specific indicator of mAb aggregation, but rather an indicator of overall protein aggregation or high molecular weight species. SYPRO Orange was more sensitive at detecting very large molecular weight species and ProteoStat seemed better suited to smaller aggregates. Although the assay cannot be used to measure mAb aggregates in cell culture, it could be used to aid cell line selection in maximising viabilities and minimising the amount of aggregates. © 2017 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
RESUMEN
As part of a program to develop DNA vaccines for pharmaceutical applications, we recently established a manufacturing process for the production of clinical grade plasmid DNA. In an evaluation of two cell separation methods, the cell culture experienced a temperature spike in a new tangential flow filtration rig, resulting in an aberrant plasmid HPLC peak. Analysis by agarose gel electrophoresis and HPLC demonstrated that the aberrant plasmid material's overall primary structure, methylation pattern and topological integrity was indistinguishable from that of reference material. Transmission electron microscopy and high-resolution agarose gel electrophoresis revealed that the unknown plasmid form exhibited a very low level of supercoiling, whereas the normal supercoiled fraction contained highly twisted DNA. We hypothesized that an enzymatic process, induced by stress during the temperature spike, caused the distinct plasmid topology. This idea was supported by a lab-scale fermentation experiment, where plasmid topology was shown to be similarly altered by conditions designed to induce metabolic stress.