Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Org Chem ; 88(6): 3724-3739, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36847759

RESUMEN

By exploring an efficient and versatile method for the 6-functionalization of its scaffold, we investigated the opening of a new chemical space around benzylidenethiazolidine-2,4-dione (BTZD). The 6-chloro- and 6-formyl BTZD obtained in two steps starting from 5-lithioTZD were selected as key intermediates and involved in a Pd-catalyzed cross-coupling or Wittig olefination. A variety of aryl, heteroaryl, or alkenyl substituents was successfully introduced on the vinylic position of BTZD, and particular attention was paid to elucidate the stereochemistry of the benzylidene derivatives by using a combined DFT/NMR study.

2.
J Chem Inf Model ; 63(10): 2992-3004, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37126823

RESUMEN

As weak acids or bases, in solution, drug molecules are in either their ionized or nonionized states. A high degree of ionization is essential for good water solubility of a drug molecule and is required for drug-receptor interactions, whereas the nonionized form improves a drug's lipophilicity, allowing the ligand to cross the cell membrane. The penetration of a drug ligand through cell membranes is mainly governed by the pKa of the drug molecule and the membrane environment. In this study, with the aim of predicting the acetonitrile pKa's (pKa(MeCN)) of eight drug-like thiazol-2-imine derivatives, we propose a very accurate and computationally affordable protocol by using several quantum mechanical approaches. Benchmark studies were conducted on a set of training molecules, which were selected from the literature with known pKa(water) and pKa(MeCN). Highly well-correlated pKa values were obtained when the calculations were performed with the isodesmic method at the M062X/6-31G** level of theory in conjunction with SMD solvation model for nitrogen-containing heterocycles. Finally, experimentally unknown pKa(MeCN) values of eight thiazol-2-imine structures, which were previously synthesized by some of us, are proposed.


Asunto(s)
Iminas , Agua , Fenómenos Químicos , Ligandos , Solubilidad , Agua/química
3.
Biochemistry ; 61(13): 1286-1297, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35737372

RESUMEN

Peptidylarginine deiminase 2 (PAD2) is a Ca2+-dependent enzyme that catalyzes the conversion of protein arginine residues to citrulline. This kind of structural modification in histone molecules may affect gene regulation, leading to effects that may trigger several diseases, including breast cancer, which makes PAD2 an attractive target for anticancer drug development. To design new effective inhibitors to control activation of PAD2, improving our understanding of the molecular mechanisms of PAD2 using up-to-date computational techniques is essential. We have designed five different PAD2-substrate complex systems based on varying protonation states of the active site residues. To search the conformational space broadly, multiple independent molecular dynamics simulations of the complexes have been performed. In total, 50 replica simulations have been performed, each of 1 µs, yielding a total simulation time of 50 µs. Our findings identify that the protonation states of Cys647, Asp473, and His471 are critical for the binding and localization of the N-α-benzoyl-l-arginine ethyl ester substrate within the active site. A novel mechanism for enzyme activation is proposed according to near attack conformers. This represents an important step in understanding the mechanism of citrullination and developing PAD2-inhibiting drugs for the treatment of breast cancer.


Asunto(s)
Neoplasias de la Mama , Simulación de Dinámica Molecular , Arginina Deiminasa Proteína-Tipo 2 , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/metabolismo , Citrulinación , Femenino , Humanos , Arginina Deiminasa Proteína-Tipo 2/química , Arginina Deiminasa Proteína-Tipo 2/metabolismo
4.
J Chem Inf Model ; 62(1): 102-115, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-34942070

RESUMEN

Bcl-xL is an antiapoptotic mitochondrial trans-membrane protein, which is known to play a crucial role in the survival of tumor cells. The deamidation of Bcl-xL is a pivotal switch that regulates its biological function. The potential impact of deamidation on the structure and dynamics of Bcl-xL is directly linked to the intrinsically disordered region (IDR), which is the main site for post-translational modifications (PTMs). In this study, we explored deamidation-induced conformational changes in Bcl-xL to gain insight into its loss of function by performing microsecond-long molecular dynamics (MD) simulations. MD simulation outcomes showed that the IDR motion and interaction patterns have changed notably upon deamidation. Principal component analysis (PCA) demonstrates significant differences between wild-type and deamidated Bcl-xL and suggests that deamidation affects the structure and dynamics of Bcl-xL. The combination of clustering analysis, H-bond analysis, and PCA revealed changes in conformation, interaction, and dynamics upon deamidation. Differences in contact patterns and essential dynamics that lead to a narrowing in the binding groove (BG) are clear indications of deamidation-induced allosteric effects. In line with previous studies, we show that the IDR plays a very important role in the loss of apoptotic functions of Bcl-xL while providing a unique perspective on the underlying mechanism of Bcl-xL deamidation-induced cell death.


Asunto(s)
Apoptosis , Procesamiento Proteico-Postraduccional , Proteínas de la Membrana/metabolismo , Proteína bcl-X/química
5.
J Chem Inf Model ; 61(6): 2733-2743, 2021 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-34137248

RESUMEN

In this study, we present an accurate protocol for the fast prediction of pKa's of carboxylic acids based on the linear relationship between computed atomic charges of the anionic form of the carboxylate fragment and their experimental pKa values. Five charge descriptors, three charge models, three solvent models, gas-phase calculations, several DFT methods (a combination of eight DFT functionals and fifteen basis sets), and four different semiempirical approaches were tested. Among those, the best combination to reproduce experimental pKa's is to compute the natural population analysis atomic charge using the solvation model based on density model at the M06L/6-311G(d,p) level of theory and selecting the maximum atomic charge on the carboxylic oxygen atoms (R2 = 0.955). The applicability of the suggested protocol and its stability along geometrical changes are verified by molecular dynamics simulations performed for a set of aspartate, glutamate, and alanine peptides. By reporting the calculated atomic charge of the carboxylate form into the linear relationship derived in this work, it should be possible to accurately estimate the amino acid's pKa's in a protein environment.


Asunto(s)
Ácidos Carboxílicos , Solventes
6.
Org Biomol Chem ; 18(12): 2233-2241, 2020 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-32022073

RESUMEN

Recently, Sarigul and Dogan have synthesized a number of enantiomerically enriched axially chiral atropoisomeric 2-thiohydantoins by the reaction of l-amino acid ester salts and o-aryl isothiocyanates in the presence of triethyl amine (TEA) in dichloromethane. The non-axially chiral derivative 5-methyl-3-phenyl-2-thiohydantoin gave a racemic product whereas the axially chiral 5-methyl-3-o-bromophenyl-2-thiohydantoin was less prone to racemize at C5 of the heterocyclic ring. In this study, we present a computational study (M06-2X/6-311+G(d,p) for C, H, O, N and S; M06-2X/6-311++G(3df,3pd) for Br) in order to propose plausible mechanisms for the racemization and cyclization steps for 2-thiohydantoin derivatives. The study includes rationalization based on steric as well as the electrostatic effects to elucidate the epimerization differences at C5.

7.
J Chem Inf Model ; 59(1): 206-214, 2019 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-30433776

RESUMEN

Semi-empirical quantum methods from the neglect of differential diatomic overlap (NDDO) family such as MNDO, AM1, or PM3 are fast albeit approximate quantum methods. By combining them with linear scaling methods like the divide & conquer (D&C) method, it is possible to quickly evaluate the energy of systems containing hundreds to thousands of atoms. We here present our implementation in the Amber biomolecular package of a SEBOMD module that provides a way to run semi-empirical Born-Oppenheimer molecular dynamics. At each step of a SEBOMD, a fully converged self-consistent field (SCF) calculation is performed to obtain the semiempirical quantum potential energy of a molecular system encaged or not in periodic boundary conditions. We describe the implementation and the features of our SEBOMD implementation. We show the requirements to conserve the total energy in NVE simulations, and how to accelerate SCF convergence through density matrix extrapolation. Specific ways of handling periodic boundary conditions using mechanical embedding or electrostatic embedding through a tailored quantum Ewald summation is developed. The parallel performance of SEBOMD simulations using the D&C scheme are presented for liquid water systems of various sizes, and a comparison between the traditional full diagonalization scheme and the D&C approach for the reproduction of the structure of liquid water illustrates the potentiality of SEBOMD to simulate molecular systems containing several hundreds of atoms for hundreds of picoseconds with a quantum mechanical potential in a reasonable amount of CPU time.


Asunto(s)
Simulación de Dinámica Molecular , Teoría Cuántica , Electricidad Estática , Termodinámica , Agua/química
8.
J Chem Inf Model ; 57(9): 2173-2180, 2017 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-28853871

RESUMEN

Despite the growing use of poly-l-lysine dendrigrafts in biomedical applications, a deeper understanding of the molecular level properties of these macromolecules is missing. Herein, we report a simple methodology for the construction of three-dimensional structures of poly-l-lysine dendrigrafts and the subsequent investigation of their structural features using microsecond molecular dynamics simulations. This methodology relies on the encoding of the polymers' experimental characterizations (i.e., composition, degrees of polymerization, branching ratios, charges) into alphanumeric strings that are readable by the Amber simulation package. Such an original approach opens avenues toward the in silico exploration of dendrigrafts and hyperbranched polymers.


Asunto(s)
Simulación de Dinámica Molecular , Polilisina/química , Conformación Molecular
9.
J Comput Aided Mol Des ; 31(6): 563-575, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28534194

RESUMEN

In a first step in the discovery of novel potent inhibitor structures for the PDE4B family with limited side effects, we present a protocol to rank newly designed molecules through the estimation of their IC[Formula: see text] values. Our protocol is based on reproducing the linear relationship between the logarithm of experimental IC[Formula: see text] values [[Formula: see text](IC[Formula: see text])] and their calculated binding free energies ([Formula: see text]). From 13 known PDE4B inhibitors, we show here that (1) binding free energies obtained after a docking process by AutoDock are not accurate enough to reproduce this linear relationship; (2) MM-GB/SA post-processing of molecular dynamics (MD) trajectories of the top ranked AutoDock pose improves the linear relationship; (3) by taking into account all representative structures obtained by AutoDock and by averaging MM-GB/SA computations on a series of 40 independent MD trajectories, a linear relationship between [Formula: see text](IC[Formula: see text]) and the lowest [Formula: see text] is achieved with [Formula: see text].


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/química , Ligandos , Inhibidores de Fosfodiesterasa 4/química , Bibliotecas de Moléculas Pequeñas/química , Sitios de Unión , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad Cuantitativa , Rolipram/química , Termodinámica
10.
Proteins ; 84(7): 875-91, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26800298

RESUMEN

The pyridoxal 5-phosphate (PLP) cofactor is a significant organic molecule in medicinal chemistry. It is often found covalently bound to lysine residues in proteins to form PLP dependent enzymes. An example of this family of PLP dependent enzymes is γ-aminobutyric acid aminotransferase (GABA-AT) which is responsible for the degradation of the neurotransmitter GABA. Its inhibition or inactivation can be used to prevent the reduction of GABA concentration in brain which is the source of several neurological disorders. As a test case for PLP dependent enzymes, we have performed molecular dynamics simulations of GABA-AT to reveal the roles of the protein residues and its cofactor. Three different states have been considered: the apoenzyme, the holoenzyme, and the inactive state obtained after the suicide inhibition by vigabatrin. Different protonation states have also been considered for PLP and two key active site residues: Asp298 and His190. Together, 24 independent molecular dynamics trajectories have been simulated for a cumulative total of 2.88 µs. Our results indicate that, unlike in aqueous solution, the PLP pyridine moiety is protonated in GABA-AT. This is a consequence of a pKa shift triggered by a strong charge-charge interaction with an ionic "diad" formed by Asp298 and His190 that would help the activation of the first half-reaction of the catalytic mechanism in GABA-AT: the conversion of PLP to free pyridoxamine phosphate (PMP). In addition, our MD simulations exhibit additional strong hydrogen bond networks between the protein and PLP: the phosphate group is held in place by the donation of at least three hydrogen bonds while the carbonyl oxygen of the pyridine ring interacts with Gln301; Phe181 forms a π-π stacking interaction with the pyridine ring and works as a gate keeper with the assistance of Val300. All these interactions are hypothesized to help maintain free PMP in place inside the protein active site to facilitate the second half-reaction in GABA-AT: the regeneration of PLP-bound GABA-AT (i.e., the holoenzyme). Proteins 2016; 84:875-891. © 2016 Wiley Periodicals, Inc.


Asunto(s)
4-Aminobutirato Transaminasa/antagonistas & inhibidores , 4-Aminobutirato Transaminasa/metabolismo , Inhibidores Enzimáticos/farmacología , GABAérgicos/farmacología , Vigabatrin/farmacología , 4-Aminobutirato Transaminasa/química , Animales , Dominio Catalítico/efectos de los fármacos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Fosfato de Piridoxal/metabolismo , Piridoxamina/análogos & derivados , Piridoxamina/metabolismo , Porcinos , Ácido gamma-Aminobutírico/metabolismo
11.
Biochemistry ; 54(6): 1429-39, 2015 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-25602614

RESUMEN

Deamidation is the uncatalyzed process by which asparagine or glutamine can be transformed into aspartic acid or glutamic acid, respectively. In its active homodimeric form, mammalian triosephosphate isomerase (TPI) contains two deamidation sites per monomer. Experimental evidence shows that the primary deamidation site (Asn71-Gly72) deamidates faster than the secondary deamidation site (Asn15-Gly16). To evaluate the factors controlling the rates of these two deamidation sites in TPI, we have performed graphics processing unit-enabled microsecond long molecular dynamics simulations of rabbit TPI. The kinetics of asparagine dipeptide and two deamidation sites in mammalian TPI are also investigated using quantum mechanical/molecular mechanical tools with the umbrella sampling technique. Analysis of the simulations has been performed using independent global and local descriptors that can influence the deamidation rates: desolvation effects, backbone acidity, and side chain conformations. Our findings show that all the descriptors add up to favor the primary deamidation site over the secondary one in mammalian TPI: Asn71 deamidates faster because it is more solvent accessible, the adjacent glycine NH backbone acidity is enhanced, and the Asn side chain has a preferential near attack conformation. The crucial impact of the backbone amide acidity of the adjacent glycine on the deamidation rate is shown by kinetic analysis. Our findings also shed light on the effect of high-order structure on deamidation: the deamidation in a small peptide is favored first because of the higher reactivity of the asparagine residue and then because of the stronger stability of the tetrahedral intermediate.


Asunto(s)
Amidas/química , Asparagina/química , Teoría Cuántica , Triosa-Fosfato Isomerasa/química , Animales , Simulación de Dinámica Molecular
12.
J Chem Inf Model ; 54(8): 2200-13, 2014 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-25089727

RESUMEN

In a first step toward the development of an efficient and accurate protocol to estimate amino acids' pKa's in proteins, we present in this work how to reproduce the pKa's of alcohol and thiol based residues (namely tyrosine, serine, and cysteine) in aqueous solution from the knowledge of the experimental pKa's of phenols, alcohols, and thiols. Our protocol is based on the linear relationship between computed atomic charges of the anionic form of the molecules (being either phenolates, alkoxides, or thiolates) and their respective experimental pKa values. It is tested with different environment approaches (gas phase or continuum solvent-based approaches), with five distinct atomic charge models (Mulliken, Löwdin, NPA, Merz-Kollman, and CHelpG), and with nine different DFT functionals combined with 16 different basis sets. Moreover, the capability of semiempirical methods (AM1, RM1, PM3, and PM6) to also predict pKa's of thiols, phenols, and alcohols is analyzed. From our benchmarks, the best combination to reproduce experimental pKa's is to compute NPA atomic charge using the CPCM model at the B3LYP/3-21G and M062X/6-311G levels for alcohols (R(2) = 0.995) and thiols (R(2) = 0.986), respectively. The applicability of the suggested protocol is tested with tyrosine and cysteine amino acids, and precise pKa predictions are obtained. The stability of the amino acid pKa's with respect to geometrical changes is also tested by MM-MD and DFT-MD calculations. Considering its strong accuracy and its high computational efficiency, these pKa prediction calculations using atomic charges indicate a promising method for predicting amino acids' pKa in a protein environment.


Asunto(s)
Alcoholes/química , Cisteína/química , Fenoles/química , Serina/química , Compuestos de Sulfhidrilo/química , Tirosina/química , Modelos Químicos , Proteínas/química , Teoría Cuántica , Electricidad Estática , Termodinámica , Agua/química
13.
J Chem Phys ; 141(3): 034106, 2014 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-25053300

RESUMEN

In this work, we present a study of the ability of different semiempirical methods to describe intermolecular interactions in water solution. In particular, we focus on methods based on the Neglect of Diatomic Differential Overlap approximation. Significant improvements of these methods have been reported in the literature in the past years regarding the description of non-covalent interactions. In particular, a broad range of methodologies has been developed to deal with the properties of hydrogen-bonded systems, with varying degrees of success. In contrast, the interactions between water and a molecule containing hydrophobic groups have been little analyzed. Indeed, by considering the potential energy surfaces obtained using different semiempirical Hamiltonians for the intermolecular interactions of model systems, we found that none of the available methods provides an entirely satisfactory description of both hydrophobic and hydrophilic interactions in water. In addition, a vibrational analysis carried out in a model system for these interactions, a methane clathrate cluster, showed that some recent methods cannot be used to carry out studies of vibrational properties. Following a procedure established in our group [M. I. Bernal-Uruchurtu, M. T. C. Martins-Costa, C. Millot, and M. F. Ruiz-López, J. Comput. Chem. 21, 572 (2000); W. Harb, M. I. Bernal-Uruchurtu, and M. F. Ruiz-López, Theor. Chem. Acc. 112, 204 (2004)], we developed new parameters for the core-core interaction terms based on fitting potential energy curves obtained at the MP2 level for our model system. We investigated the transferability of the new parameters to describe a system, having both hydrophilic and hydrophobic groups, interacting with water. We found that only by introducing two different sets of parameters for hydrophilic and hydrophobic hydrogen atom types we are able to match the features of the ab initio calculated properties. Once this assumption is made, a good agreement with the MP2 reference is achieved. The results reported in this work provide therefore a direction for future developments of semiempirical approaches that are still required to investigate chemical processes in biomolecules and in large disordered systems.

14.
Proteins ; 79(6): 1964-76, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21491497

RESUMEN

Urate oxidase (EC 1.7.3.3 or UOX) catalyzes the conversion of uric acid using gaseous molecular oxygen to 5-hydroxyisourate and hydrogen peroxide in absence of any cofactor or transition metal. The catalytic mechanism was investigated using X-ray diffraction, electron spin resonance spectroscopy (ESR), and quantum mechanics calculations. The X-ray structure of the anaerobic enzyme-substrate complex gives credit to substrate activation before the dioxygen fixation in the peroxo hole, where incoming and outgoing reagents (dioxygen, water, and hydrogen peroxide molecules) are handled. ESR spectroscopy establishes the initial monoelectron activation of the substrate without the participation of dioxygen. In addition, both X-ray structure and quantum mechanic calculations promote a conserved base oxidative system as the main structural features in UOX that protonates/deprotonates and activate the substrate into the doublet state now able to satisfy the Wigner's spin selection rule for reaction with molecular oxygen in its triplet ground state.


Asunto(s)
Aspergillus flavus/enzimología , Urato Oxidasa/química , Urato Oxidasa/metabolismo , Aspergillus flavus/química , Cristalografía por Rayos X , Espectroscopía de Resonancia por Spin del Electrón , Modelos Moleculares , Unión Proteica , Teoría Cuántica , Ácido Úrico/química , Ácido Úrico/metabolismo
15.
J Phys Chem A ; 115(42): 11810-7, 2011 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-21913730

RESUMEN

Peptide-cyclodextrin and protein-cyclodextrin host-guest complexes are becoming more and more important for industrial applications, in particular in the fields of pharmaceutical and food chemistry. They have already deserved many experimental investigations although the effect of complex formation in terms of peptide (or protein) structure is not well-known yet. Theoretical calculations represent a unique tool to analyze such effects, and with this aim we have carried out in the present investigation molecular dynamics simulations and combined quantum mechanics-molecular mechanics calculations. We have studied complexes formed between the model Ace-Phe-Nme peptide and the ß-cyclodextrin (ß-CD) macromolecule, and our analysis focuses on the following points: (1) how is the peptide structure modified in going from bulk water to CD environment (backbone torsion angles), (2) which are the main peptide-CD interactions, in particular in terms of hydrogen bonds, (3) which relative peptide-CD orientation is preferred and which are the structural and energetic differences between them, and (4) how the electronic properties of the peptide changes under complex formation. Overall, our calculations show that in the most stable configuration, the backbone chain lies in the narrow rim of the CD. Strong hydrogen bonds form between the H atoms of the peptidic NH groups and oxygen atoms of the secondary OH groups in the CD. These and other (weaker) hydrogen bonds formed by the carbonyl groups reduce considerably the flexibility of the peptide structure, compared to bulk water, and produce a marked increase of the local dipole moment by favoring configurations in which the two C═O bonds point toward the same direction. This effect might have important consequences in terms of the peptide secondary structure, although this hypothesis needs to be tested using larger peptide models.

16.
Org Biomol Chem ; 8(19): 4346-55, 2010 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-20697609

RESUMEN

Cyclodextrins have attracted much interest in recent years because of their potential use as molecular reactors allowing organic reactions in aqueous solution. To better understand their effect on reaction mechanisms, we have carried out a computational study of a prototypical process (neutral ester hydrolysis) in a beta-cyclodextrin (beta-CD). Two models have been used for the reactor. The first and simpler one assumes that the medium can be described by a polarizable dielectric continuum. The second one takes into account the discrete nature of the beta-CD and water molecules thanks to a computational approach that combines the use of Quantum Mechanics, Molecular Mechanics and Molecular Dynamics techniques. We focus on neutral pH processes for which either acceleration or inhibition has experimentally been observed depending on ester derivatives. Our calculations rationalize such observations by showing that the two reaction mechanisms usually invoked for hydrolysis, stepwise (involving two transitions states with formation of a -C(OH)(2)OR tetrahedral intermediate) and concerted, undergo opposite effects in the beta-CD environment. The results highlight the role played by molecular shape recognition. Thus, in spite of a higher polarity exhibited by the three transition states with respect to the reactants, the interactions with the beta-CD cavity may either increase or decrease the activation barrier due to different 3D-arrangements of the chemical structures.

17.
J Phys Chem A ; 113(6): 1111-20, 2009 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-19152321

RESUMEN

Quantum chemical calculations are reported to provide new insights on plausible mechanisms leading to the deamidation of asparagine residues in proteins and peptides. Direct hydrolysis to aspartic acid and several succinimide-mediated mechanisms have been described. The catalytic effect of water molecules has been explicitly analyzed. Calculations have been carried out at the density functional level (B3LYP/6-31+G**). Comparisons of free energy profiles show that the most favorable reaction mechanism goes through formation of a succinimide intermediate and involves tautomerization of the asparagine amide to the corresponding imidic acid as the initial reaction step. Another striking result is that direct water-assisted hydrolysis is competitive with the succinimide-mediated deamidation routes even in the absence of acid or base catalysis. The rate-determining step for the formation of the succinimide intermediate is cyclization, regardless of the mechanism. The rate-determining step for the complete deamidation is the hydrolysis of the succinimide intermediate. These results allow clarification of some well-known facts, such as the isolation of succinimide or the absence of iso-Asp among the reaction products observed in some experiments.


Asunto(s)
Amidas/química , Asparagina/química , Succinimidas/química , Ácido Aspártico/química , Catálisis , Estudios de Factibilidad , Hidrólisis , Modelos Químicos , Modelos Moleculares , Conformación Molecular , Teoría Cuántica , Agua/química
18.
Bioorg Chem ; 37(4): 111-25, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19539344

RESUMEN

Urate oxidase catalyzes the transformation of uric acid in 5-hydroxyisourate, an unstable compound which is latter decomposed into allantoïn. Crystallographic data have shown that urate oxidase binds a dianion urate species deprotonated in N3 and N7, while kinetics experiments have highlighted the existence of several intermediates during catalysis. We have employed a quantum mechanical approach to analyze why urate oxidase is selective for one particular dianion and to explore all possible reaction pathways for the oxidation of one uric acid species by molecular dioxygen in presence of water. Our results indicate the urate dianion deprotonated in N3 and N7 is among all urate species that can coexist in solution it is the compound which will lose the most easiestly one electron in presence of molecular dioxygen. In addition, the transformation of this dianion in 5-hydroxyisourate is thermodynamically the most favorable reaction. Finally, several reaction pathways can be drawn, each starting with the spontaneous transfer of one electron from the urate dianion to molecular dioxygen. During that period, the existence of a 5-hydroperoxyisourate intermediate, which has been proposed elsewhere, does not seem mandatory.


Asunto(s)
Oxígeno/química , Urato Oxidasa/metabolismo , Ácido Úrico/análogos & derivados , Alantoína/biosíntesis , Biocatálisis , Cristalografía por Rayos X , Oxidación-Reducción , Teoría Cuántica , Termodinámica , Urato Oxidasa/química , Ácido Úrico/química
19.
ACS Med Chem Lett ; 10(6): 917-922, 2019 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-31223448

RESUMEN

By using a combination of experimental and computational experiments, we demonstrated that a second-generation dendrigraft of poly-l-lysine neutralizes the anticoagulant activity of unfractionated heparin, low-molecular-weight heparin, and fondaparinux more efficiently than protamine does in human plasma, making this synthetic polymer a promising surrogate of this problematic protein in clinical settings.

20.
Biophys J ; 95(5): 2415-22, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18375516

RESUMEN

The localization of dioxygen sites in oxygen-binding proteins is a nontrivial experimental task and is often suggested through indirect methods such as using xenon or halide anions as oxygen probes. In this study, a straightforward method based on x-ray crystallography under high pressure of pure oxygen has been developed. An application is given on urate oxidase (UOX), a cofactorless enzyme that catalyzes the oxidation of uric acid to 5-hydroxyisourate in the presence of dioxygen. UOX crystals in complex with a competitive inhibitor of its natural substrate are submitted to an increasing pressure of 1.0, 2.5, or 4.0 MPa of gaseous oxygen. The results clearly show that dioxygen binds within the active site at a location where a water molecule is usually observed but does not bind in the already characterized specific hydrophobic pocket of xenon. Moreover, crystallizing UOX in the presence of a large excess of chloride (NaCl) shows that one chloride ion goes at the same location as the oxygen. The dioxygen hydrophilic environment (an asparagine, a histidine, and a threonine residues), its absence within the xenon binding site, and its location identical to a water molecule or a chloride ion suggest that the dioxygen site is mainly polar. The implication of the dioxygen location on the mechanism is discussed with respect to the experimentally suggested transient intermediates during the reaction cascade.


Asunto(s)
Cristalografía por Rayos X/métodos , Oxígeno/metabolismo , Urato Oxidasa/química , Urato Oxidasa/metabolismo , Aspergillus flavus/enzimología , Sitios de Unión , Catálisis , Cristalización , Modelos Moleculares , Presión , Cloruro de Sodio/metabolismo , Agua/metabolismo , Xenón/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA