Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 117(1): 285-291, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31871161

RESUMEN

The impact of ultrasmall nanoparticles (<10-nm diameter) on the immune system is poorly understood. Recently, ultrasmall silica nanoparticles (USSN), which have gained increasing attention for therapeutic applications, were shown to stimulate T lymphocytes directly and at relatively low-exposure doses. Delineating underlying mechanisms and associated cell signaling will hasten therapeutic translation and is reported herein. Using competitive binding assays and molecular modeling, we established that the T cell receptor (TCR):CD3 complex is required for USSN-induced T cell activation, and that direct receptor complex-particle interactions are permitted both sterically and electrostatically. Activation is not limited to αß TCR-bearing T cells since those with γδ TCR showed similar responses, implying that USSN mediate their effect by binding to extracellular domains of the flanking CD3 regions of the TCR complex. We confirmed that USSN initiated the signaling pathway immediately downstream of the TCR with rapid phosphorylation of both ζ-chain-associated protein 70 and linker for activation of T cells protein. However, T cell proliferation or IL-2 secretion were only triggered by USSN when costimulatory anti-CD28 or phorbate esters were present, demonstrating that the specific impact of USSN is in initiation of the primary, nuclear factor of activated T cells-pathway signaling from the TCR complex. Hence, we have established that USSN are partial agonists for the TCR complex because of induction of the primary T cell activation signal. Their ability to bind the TCR complex rapidly, and then to dissolve into benign orthosilicic acid, makes them an appealing option for therapies targeted at transient TCR:CD3 receptor binding.


Asunto(s)
Activación de Linfocitos/efectos de los fármacos , Nanopartículas/química , Complejo Receptor-CD3 del Antígeno de Linfocito T/efectos de los fármacos , Complejo Receptor-CD3 del Antígeno de Linfocito T/metabolismo , Dióxido de Silicio/química , Dióxido de Silicio/farmacología , Antígenos CD28/metabolismo , Complejo CD3/química , Complejo CD3/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Humanos , Interleucina-2/metabolismo , Modelos Moleculares , Fosforilación , Complejo Receptor-CD3 del Antígeno de Linfocito T/química , Complejo Receptor-CD3 del Antígeno de Linfocito T/genética , Transducción de Señal/inmunología , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Linfocitos T/metabolismo
2.
Immunol Rev ; 265(1): 181-93, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25879293

RESUMEN

Caspase-8 is an apical component of cell death pathways. Activated caspase-8 can drive classical caspase-dependent apoptosis and actively inhibits cell death mediated by RIPK3-driven necroptosis. Genetic deletion of Casp8 results in embryonic lethality as a result of uncontrolled necroptosis. This lethality can be rescued by simultaneous deletion of Ripk3. Recently, caspase-8 has been additionally connected to inflammatory pathways within the cell. In particular, caspase-8 has been shown to be crucially involved in the induction of pro-IL-1ß synthesis and processing via both non-canonical and canonical pathways. In this review, we bring together current knowledge regarding the role of caspase-8 in cellular inflammation with a particular emphasis on the interplay between caspase-8 and the classical and non-canonical inflammasomes.


Asunto(s)
Caspasa 8/metabolismo , Inflamasomas/metabolismo , Inflamación/metabolismo , Interleucina-1beta/metabolismo , Animales , Caspasa 8/genética , Muerte Celular , Humanos , Inflamasomas/inmunología , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Transducción de Señal
3.
Subcell Biochem ; 83: 43-73, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28271472

RESUMEN

The inflammasome is a multi-molecular platform crucial to the induction of an inflammatory response to cellular danger. Recognition in the cytoplasm of endogenously and exogenously derived ligands initiates conformational change in sensor proteins, such as NLRP3, that permits the subsequent rapid recruitment of adaptor proteins, like ASC, and the resulting assembly of a large-scale inflammatory signalling platform. The assembly process is driven by sensor-sensor interactions as well as sensor-adaptor and adaptor-adaptor interactions. The resulting complex, which can reach diameters of around 1 micron, has a variable composition and stoichiometry. The inflammasome complex functions as a platform for the proximity induced activation of effector caspases, such as caspase-1 and caspase-8. This ultimately leads to the processing of the inflammatory cytokines pro-IL1ß and pro-IL18 into their active forms, along with the cleavage of Gasdermin D, a key activator of cell death via pyroptosis.


Asunto(s)
Inflamasomas/química , Inflamasomas/metabolismo , Inflamación/metabolismo , Citocinas/metabolismo , Humanos , Piroptosis
4.
Pharmacol Rev ; 67(2): 462-504, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25829385

RESUMEN

Since the discovery of Toll, in the fruit fly Drosophila melanogaster, as the first described pattern recognition receptor (PRR) in 1996, many families of these receptors have been discovered and characterized. PRRs play critically important roles in pathogen recognition to initiate innate immune responses that ultimately link to the generation of adaptive immunity. Activation of PRRs leads to the induction of immune and inflammatory genes, including proinflammatory cytokines and chemokines. It is increasingly clear that many PRRs are linked to a range of inflammatory, infectious, immune, and chronic degenerative diseases. Several drugs to modulate PRR activity are already in clinical trials and many more are likely to appear in the near future. Here, we review the different families of mammalian PRRs, the ligands they recognize, the mechanisms of activation, their role in disease, and the potential of targeting these proteins to develop the anti-inflammatory therapeutics of the future.


Asunto(s)
Enfermedad Crónica , Modelos Moleculares , Mutación , Receptores de Reconocimiento de Patrones/genética , Receptores de Reconocimiento de Patrones/metabolismo , Transducción de Señal , Animales , Membrana Celular/enzimología , Membrana Celular/metabolismo , Endosomas/enzimología , Endosomas/metabolismo , Humanos , Inflamasomas/metabolismo , Agencias Internacionales , Ligandos , Membranas Mitocondriales/enzimología , Membranas Mitocondriales/metabolismo , Farmacología/tendencias , Farmacología Clínica/tendencias , Isoformas de Proteínas/química , Isoformas de Proteínas/clasificación , Isoformas de Proteínas/metabolismo , Procesamiento Proteico-Postraduccional , Receptores de Reconocimiento de Patrones/química , Receptores de Reconocimiento de Patrones/clasificación , Sociedades Científicas , Terminología como Asunto
5.
Trends Biochem Sci ; 38(3): 131-9, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23394939

RESUMEN

For the first time there is now clear biochemical and biophysical evidence indicating that members of the nucleotide-binding domain and leucine-rich repeat containing (NLR) family can be activated as a result of direct interaction between the receptor and ligand. NLRX1 leucine-rich repeats bind to RNA; murine NAIP (NLR family, apoptosis inhibitory protein) 5 binds flagellin directly; and NOD (nucleotide-binding oligomerization domain containing) 1 and NOD2 may interact directly with fragments of peptidoglycan. It remains to be seen if NLRP3 has a specific ligand, but progress has been made in addressing its mechanism of activation, with cellular imbalances and mitochondrial dysfunction being important. This review updates our understanding of NLR activation in light of these recent advances and their impact on the NLR research.


Asunto(s)
Proteína Inhibidora de la Apoptosis Neuronal/metabolismo , Proteínas Adaptadoras de Señalización NOD/metabolismo , Animales , Humanos
7.
Proc Natl Acad Sci U S A ; 111(20): 7403-8, 2014 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-24803432

RESUMEN

Pathogen recognition by nucleotide-binding oligomerization domain-like receptor (NLR) results in the formation of a macromolecular protein complex (inflammasome) that drives protective inflammatory responses in the host. It is thought that the number of inflammasome complexes forming in a cell is determined by the number of NLRs being activated, with each NLR initiating its own inflammasome assembly independent of one another; however, we show here that the important foodborne pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) simultaneously activates at least two NLRs, whereas only a single inflammasome complex is formed in a macrophage. Both nucleotide-binding domain and leucine-rich repeat caspase recruitment domain 4 and nucleotide-binding domain and leucine-rich repeat pyrin domain 3 are simultaneously present in the same inflammasome, where both NLRs are required to drive IL-1ß processing within the Salmonella-infected cell and to regulate the bacterial burden in mice. Superresolution imaging of Salmonella-infected macrophages revealed a macromolecular complex with an outer ring of apoptosis-associated speck-like protein containing a caspase activation and recruitment domain and an inner ring of NLRs, with active caspase effectors containing the pro-IL-1ß substrate localized internal to the ring structure. Our data reveal the spatial localization of different components of the inflammasome and how different members of the NLR family cooperate to drive robust IL-1ß processing during Salmonella infection.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Células de la Médula Ósea/microbiología , Proteínas de Unión al Calcio/metabolismo , Proteínas Portadoras/metabolismo , Caspasa 1/metabolismo , Caspasa 8/metabolismo , Inflamasomas/fisiología , Macrófagos/microbiología , Animales , Apoptosis , Activación Enzimática , Células HEK293 , Humanos , Inflamación , Interleucina-1beta/metabolismo , Ratones , Ratones Transgénicos , Proteína con Dominio Pirina 3 de la Familia NLR , Salmonella typhimurium
8.
J Biol Chem ; 289(33): 22900-22914, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24958724

RESUMEN

Following activation, the cytoplasmic pattern recognition receptor nucleotide-binding oligomerization domain-containing protein 1 (NOD1) interacts with its adaptor protein receptor-interacting protein 2 (RIP2) to propagate immune signaling and initiate a proinflammatory immune response. This interaction is mediated by the caspase recruitment domain (CARD) of both proteins. Polymorphisms in immune proteins can affect receptor function and predispose individuals to specific autoinflammatory disorders. In this report, we show that mutations in helix 2 of the CARD of NOD1 disrupted receptor function but did not interfere with RIP2 interaction. In particular, N43S, a rare polymorphism, resulted in receptor dysfunction despite retaining normal cellular localization, protein folding, and an ability to interact with RIP2. Mutation of Asn-43 resulted in an increased tendency to form dimers, which we propose is the source of this dysfunction. We also demonstrate that mutation of Lys-443 and Tyr-474 in RIP2 disrupted the interaction with NOD1. Mapping the key residues involved in the interaction between NOD1 and RIP2 to the known structures of CARD complexes revealed the likely involvement of both type I and type III interfaces in the NOD1·RIP2 complex. Overall we demonstrate that the NOD1-RIP2 signaling axis is more complex than previously assumed, that simple engagement of RIP2 is insufficient to mediate signaling, and that the interaction between NOD1 and RIP2 constitutes multiple CARD-CARD interfaces.


Asunto(s)
Proteína Adaptadora de Señalización NOD1/metabolismo , Multimerización de Proteína/fisiología , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/metabolismo , Transducción de Señal/fisiología , Células HEK293 , Humanos , Mutación , Proteína Adaptadora de Señalización NOD1/genética , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/genética
9.
J Immunol ; 191(10): 5239-46, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24123685

RESUMEN

Nucleotide-binding oligomerization domain-like receptors (NLRs) detect pathogens and danger-associated signals within the cell. Salmonella enterica serovar Typhimurium, an intracellular pathogen, activates caspase-1 required for the processing of the proinflammatory cytokines, pro-IL-1ß and pro-IL-18, and pyroptosis. In this study, we show that Salmonella infection induces the formation of an apoptosis-associated specklike protein containing a CARD (ASC)-Caspase-8-Caspase-1 inflammasome in macrophages. Caspase-8 and caspase-1 are recruited to the ASC focus independently of one other. Salmonella infection initiates caspase-8 proteolysis in a manner dependent on NLRC4 and ASC, but not NLRP3, caspase-1 or caspase-11. Caspase-8 primarily mediates the synthesis of pro-IL-1ß, but is dispensable for Salmonella-induced cell death. Overall, our findings highlight that the ASC inflammasome can recruit different members of the caspase family to induce distinct effector functions in response to Salmonella infection.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas de Unión al Calcio/metabolismo , Caspasa 8/metabolismo , Proteínas del Citoesqueleto/metabolismo , Interleucina-1beta/biosíntesis , Infecciones por Salmonella/inmunología , Animales , Apoptosis/inmunología , Proteínas Reguladoras de la Apoptosis/genética , Células de la Médula Ósea , Proteínas Adaptadoras de Señalización CARD , Proteínas de Unión al Calcio/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Caspasa 1/genética , Caspasa 1/metabolismo , Caspasa 8/genética , Caspasas , Caspasas Iniciadoras , Células Cultivadas , Proteínas del Citoesqueleto/biosíntesis , Proteínas del Citoesqueleto/genética , Inflamasomas/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Infecciones por Salmonella/metabolismo , Salmonella typhimurium/inmunología , Transducción de Señal
10.
FASEB J ; 27(2): 568-80, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23118027

RESUMEN

The ß subunits of voltage-gated sodium (Na(v)) channels possess an extracellular immunoglobulin (Ig) domain that is related to the L1 family of cell-adhesion molecules (CAMs). Here we show that in HEK293 cells, secretion of the free Ig domain of the ß3 subunit is reduced significantly when it is coexpressed with the full-length ß3 and ß1 subunits but not with the ß2 subunit. Using immunoprecipitation, we show that the ß3 subunit can mediate trans homophilic-binding via its Ig domain and that the ß3-Ig domain can associate heterophilically with the ß1 subunit. Evolutionary tracing analysis and structural modeling identified a cluster of surface-localized amino acids fully conserved between the Ig domains of all known ß3 and ß1 sequences. A notable feature of this conserved surface cluster is the presence of two adjacent cysteine residues that previously we have suggested may form a disulfide bond. We now confirm the presence of the disulfide bond in ß3 using mass spectrometry, and we show that its integrity is essential for the association of the full-length, membrane-anchored ß3 subunit with itself. However, selective reduction of this surface disulfide bond did not inhibit homophilic binding of the purified ß3-Ig domain in free solution. Hence, the disulfide bond itself is unlikely to be part of the homophilic binding site. Rather, we suggest that its integrity ensures the Ig domain of the membrane-tethered ß3 subunit adopts the correct orientation for productive association to occur in vivo.


Asunto(s)
Subunidad beta-3 de Canal de Sodio Activado por Voltaje/química , Secuencia de Aminoácidos , Sitios de Unión , Disulfuros/química , Evolución Molecular , Células HEK293 , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Subunidades de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/química , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/genética , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/metabolismo , Subunidad beta-3 de Canal de Sodio Activado por Voltaje/genética , Subunidad beta-3 de Canal de Sodio Activado por Voltaje/metabolismo
11.
Trends Biochem Sci ; 34(11): 553-61, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19818630

RESUMEN

The Toll-like receptors and NOD-like receptors are key families in the innate immune response. The specific detection of activating ligand facilitates receptor interactions, the formation of multiprotein signalling complexes and initiation of signal transduction cascades. This process can trigger the upregulation of proinflammatory mediators, apoptosis, and modulation of other immune defences. Recently, significant advances have been made in the identification of new activating ligands and the determination of the molecular basis of ligand recognition within these receptor families. Understanding these processes provides information essential to the development of new vaccine adjuvants and the treatment of infectious diseases, inflammatory disorders and, potentially, cancer.


Asunto(s)
Inmunidad , Proteínas Adaptadoras de Señalización NOD/química , Transducción de Señal/inmunología , Receptores Toll-Like/química , Animales , Humanos , Modelos Moleculares , Proteínas Adaptadoras de Señalización NOD/metabolismo , Unión Proteica , Multimerización de Proteína , Estructura Terciaria de Proteína , Receptores Toll-Like/metabolismo
12.
J Biol Chem ; 287(27): 23057-67, 2012 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-22549783

RESUMEN

Nucleotide binding and oligomerization domain-containing protein 2 (NOD2/Card15) is an intracellular protein that is involved in the recognition of bacterial cell wall-derived muramyl dipeptide. Mutations in the gene encoding NOD2 are associated with inherited inflammatory disorders, including Crohn disease and Blau syndrome. NOD2 is a member of the nucleotide-binding domain and leucine-rich repeat-containing protein gene (NLR) family. Nucleotide binding is thought to play a critical role in signaling by NLR family members. However, the molecular mechanisms underlying signal transduction by these proteins remain largely unknown. Mutations in the nucleotide-binding domain of NOD2 have been shown to alter its signal transduction properties in response to muramyl dipeptide in cellular assays. Using purified recombinant protein, we now demonstrate that NOD2 binds and hydrolyzes ATP. Additionally, we have found that the purified recombinant protein is able to bind directly to muramyl dipeptide and can associate with known NOD2-interacting proteins in vitro. Binding of NOD2 to muramyl dipeptide and homo-oligomerization of NOD2 are enhanced by ATP binding, suggesting a model of the molecular mechanism for signal transduction that involves binding of nucleotide followed by binding of muramyl dipeptide and oligomerization of NOD2 into a signaling complex. These findings set the stage for further studies into the molecular mechanisms that underlie detection of muramyl dipeptide and assembly of NOD2-containing signaling complexes.


Asunto(s)
Acetilmuramil-Alanil-Isoglutamina/metabolismo , Adenosina Trifosfato/metabolismo , Inmunidad Innata/fisiología , Proteína Adaptadora de Señalización NOD2/metabolismo , Transducción de Señal/inmunología , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/análogos & derivados , Animales , Proteínas Bacterianas/metabolismo , Baculoviridae/genética , Células Cultivadas , Cromatografía de Afinidad , Células HEK293 , Humanos , Insectos/citología , Proteína Adaptadora de Señalización NOD2/genética , Proteína Adaptadora de Señalización NOD2/inmunología , Unión Proteica/fisiología , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/metabolismo
13.
Immunol Rev ; 227(1): 161-75, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19120483

RESUMEN

Initiation of the innate immune response requires agonist recognition by a pathogen recognition receptor. Following ligand binding, conformational rearrangement of the receptor creates a molecular scaffold from which signal transduction is propagated via complex cellular signaling pathways. This in turn leads to the induction of a pro-inflammatory immune response. A critical component of these signaling pathways is the homotypic interaction of receptor and adapter proteins via specific protein interaction domains. Within the innate immune signaling cascade, homotypic interactions between members of the death domain family and the Toll/interleukin-1 receptor domain are particularly important. Here we discuss the current understanding of the molecular basis of these homotypic receptor:adapter interactions and their role in innate immune signal transduction.


Asunto(s)
Proteínas Adaptadoras de Señalización CARD/metabolismo , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/metabolismo , Proteínas del Helminto/inmunología , Inmunidad Innata , Receptores Citoplasmáticos y Nucleares/inmunología , Transducción de Señal/inmunología , Regulación Alostérica/inmunología , Animales , Proteínas Adaptadoras de Señalización CARD/química , Proteínas Adaptadoras de Señalización CARD/inmunología , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/química , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/inmunología , Proteínas del Helminto/metabolismo , Interacciones Huésped-Patógeno/inmunología , Humanos , Infecciones/inmunología , Dominios y Motivos de Interacción de Proteínas , Procesamiento Proteico-Postraduccional/inmunología , Transporte de Proteínas/inmunología , Receptores Citoplasmáticos y Nucleares/química , Relación Estructura-Actividad , Receptores Toll-Like/química , Receptores Toll-Like/inmunología
14.
Br J Pharmacol ; 180 Suppl 2: S241-S288, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-38123155

RESUMEN

The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and nearly 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org/), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16180. Catalytic receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, ion channels, nuclear hormone receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Asunto(s)
Bases de Datos Farmacéuticas , Farmacología , Humanos , Ligandos , Receptores Acoplados a Proteínas G , Canales Iónicos/química , Receptores Citoplasmáticos y Nucleares
15.
Proteins ; 80(8): 2063-70, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22513832

RESUMEN

The innate immune response provides our first line of defence against infection. Over the course of evolution, pathogens have evolved numerous strategies to either avoid activating or to limit the effectiveness of the innate immune system. The Kaposi's sarcoma-associated herpesvirus (KSHV) contains tegument proteins in the virion that contribute to immune evasion and aid the establishment of viral infection. For example, the KSHV tegument protein ORF63 modulates inflammasome activation to inhibit the innate immune response against the virus. Understanding the likely structure of proteins involved in immune evasion enables potential mechanisms of action to be proposed. To understand more fully how ORF63 modulates the innate immune system we have utilized widely available bioinformatics tools to analyze the primary protein sequence of ORF63 and to predict its secondary and tertiary structure. We found that ORF63 is predicted to be almost entirely alpha-helical and may possess similarity to HEAT repeat containing proteins. Consequently, ORF63 is unlikely to be a viral homolog of the NLR protein family. ORF63 may inhibit the innate immune response by flexibly interacting with its target protein and inhibiting the recruitment of protein co-factors and/or conformational changes required for immune signaling.


Asunto(s)
Herpesvirus Humano 8/química , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Virales/química , Secuencia de Aminoácidos , Biología Computacional/métodos , Humanos , Datos de Secuencia Molecular , Receptores Citoplasmáticos y Nucleares/química , Sarcoma de Kaposi/química , Sarcoma de Kaposi/virología , Homología Estructural de Proteína
16.
Nat Struct Mol Biol ; 13(9): 839-48, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16936729

RESUMEN

Polypyrimidine tract-binding protein (PTB) is a regulatory splicing repressor. Raver1 acts as a PTB corepressor for splicing of alpha-tropomyosin (Tpm1) exon 3. Here we define a minimal region of Raver1 that acts as a repressor domain when recruited to RNA. A conserved [S/G][I/L]LGxxP motif is essential for splicing repressor activity and sufficient for interaction with PTB. An adjacent proline-rich region is also essential for repressor activity but not for PTB interaction. NMR analysis shows that LLGxxP peptides interact with a hydrophobic groove on the dorsal surface of the RRM2 domain of PTB, which constitutes part of the minimal repressor region of PTB. The requirement for the PTB-Raver1 interaction that we have characterized may serve to bring the additional repressor regions of both proteins into a configuration that allows them to synergistically effect exon skipping.


Asunto(s)
Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteína de Unión al Tracto de Polipirimidina/química , Proteína de Unión al Tracto de Polipirimidina/metabolismo , Empalme del ARN/genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Transferencia Resonante de Energía de Fluorescencia , Células HeLa , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Mutación/genética , Prolina/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , ARN/genética , ARN/metabolismo , Proteínas Recombinantes de Fusión/metabolismo
17.
Clin Dev Immunol ; 2011: 579650, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21647408

RESUMEN

The gastrointestinal microbiota is a major source of immune stimulation. The interaction between host pattern-recognition receptors and conserved microbial ligands profoundly influences infection dynamics. Identifying and understanding the nature of these interactions is a key step towards obtaining a clearer picture of microbial pathogenesis. These interactions underpin a complex interplay between microbe and host that has far reaching consequences for both. Here, we review the role of pattern recognition receptors in three prototype diseases affecting the stomach, the small intestine, and large intestine, respectively (Helicobacter pylori infection, Salmonella infection, and inflammatory bowel disease). Specifically, we review the nature and impact of pathogen:receptor interactions, their impact upon pathogenesis, and address the relevance of pattern recognition receptors in the development of therapies for gastrointestinal diseases.


Asunto(s)
Infecciones Bacterianas/inmunología , Enfermedades Gastrointestinales/inmunología , Enfermedades Gastrointestinales/microbiología , Receptores de Reconocimiento de Patrones/metabolismo , Animales , Tracto Gastrointestinal/inmunología , Tracto Gastrointestinal/microbiología , Infecciones por Helicobacter/inmunología , Humanos , Inmunidad Innata , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/microbiología , Receptores de Reconocimiento de Patrones/inmunología , Infecciones por Salmonella/inmunología , Infecciones por Salmonella/microbiología
18.
Br J Pharmacol ; 178 Suppl 1: S264-S312, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34529829

RESUMEN

The Concise Guide to PHARMACOLOGY 2021/22 is the fifth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes over 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.15541. Catalytic receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, ion channels, nuclear hormone receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2021, and supersedes data presented in the 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Asunto(s)
Bases de Datos Farmacéuticas , Farmacología , Humanos , Canales Iónicos , Ligandos , Receptores Citoplasmáticos y Nucleares , Receptores Acoplados a Proteínas G
19.
Methods Mol Biol ; 517: 69-79, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19378016

RESUMEN

Continual advancements in computing power and sophistication, coupled with rapid increases in protein sequence and structural information, have made bioinformatic tools an invaluable resource for the molecular and structural biologists. With the degree of sequence information continuing to expand at an almost exponential rate, it is essential that scientists today have a basic understanding of how to utilise, manipulate, and analyse this information for the benefit of their own experiments. In the context of Toll-interleukin-1 receptor (TIR) domain containing proteins, we describe here a series of the more common and user-friendly bioinformatic tools available as internet-based resources. These will enable the identification and alignment of protein sequences, the identification of functional motifs, the characterisation of protein secondary structure, the identification of protein structural folds and distantly homologous proteins, and the validation of the structural geometry of modelled protein structures.


Asunto(s)
Análisis de Secuencia de Proteína/métodos , Receptores Toll-Like/análisis , Receptores Toll-Like/química , Secuencia de Aminoácidos , Animales , Biología Computacional , Humanos , Multimerización de Proteína , Procesamiento Proteico-Postraduccional , Receptores Toll-Like/metabolismo
20.
Structure ; 14(6): 1021-7, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16765895

RESUMEN

The polypyrimidine tract binding protein (PTB) is an RNA binding protein that normally functions as a regulator of alternative splicing but can also be recruited to stimulate translation initiation by certain picornaviruses. High-resolution structures of the four RNA recognition motifs (RRMs) that make up PTB have previously been determined by NMR. Here, we have used small-angle X-ray scattering to determine the low-resolution structure of the entire protein. Scattering patterns from full-length PTB and deletion mutants containing all possible sequential combinations of the RRMs were collected. All constructs were found to be monomeric in solution. Ab initio analysis and rigid-body modeling utilizing the high-resolution models of the RRMs yielded a consistent low-resolution model of the spatial organization of domains in PTB. Domains 3 and 4 were found to be in close contact, whereas domains 2 and especially 1 had loose contacts with the rest of the protein.


Asunto(s)
Proteína de Unión al Tracto de Polipirimidina/química , Humanos , Modelos Moleculares , Proteína de Unión al Tracto de Polipirimidina/genética , Conformación Proteica , Estructura Terciaria de Proteína/genética , Eliminación de Secuencia , Soluciones , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA