Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 617(7960): 351-359, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37076628

RESUMEN

Motor cortex (M1) has been thought to form a continuous somatotopic homunculus extending down the precentral gyrus from foot to face representations1,2, despite evidence for concentric functional zones3 and maps of complex actions4. Here, using precision functional magnetic resonance imaging (fMRI) methods, we find that the classic homunculus is interrupted by regions with distinct connectivity, structure and function, alternating with effector-specific (foot, hand and mouth) areas. These inter-effector regions exhibit decreased cortical thickness and strong functional connectivity to each other, as well as to the cingulo-opercular network (CON), critical for action5 and physiological control6, arousal7, errors8 and pain9. This interdigitation of action control-linked and motor effector regions was verified in the three largest fMRI datasets. Macaque and pediatric (newborn, infant and child) precision fMRI suggested cross-species homologues and developmental precursors of the inter-effector system. A battery of motor and action fMRI tasks documented concentric effector somatotopies, separated by the CON-linked inter-effector regions. The inter-effectors lacked movement specificity and co-activated during action planning (coordination of hands and feet) and axial body movement (such as of the abdomen or eyebrows). These results, together with previous studies demonstrating stimulation-evoked complex actions4 and connectivity to internal organs10 such as the adrenal medulla, suggest that M1 is punctuated by a system for whole-body action planning, the somato-cognitive action network (SCAN). In M1, two parallel systems intertwine, forming an integrate-isolate pattern: effector-specific regions (foot, hand and mouth) for isolating fine motor control and the SCAN for integrating goals, physiology and body movement.


Asunto(s)
Mapeo Encefálico , Cognición , Corteza Motora , Mapeo Encefálico/métodos , Mano/fisiología , Imagen por Resonancia Magnética , Corteza Motora/anatomía & histología , Corteza Motora/fisiología , Humanos , Recién Nacido , Lactante , Niño , Animales , Macaca/anatomía & histología , Macaca/fisiología , Pie/fisiología , Boca/fisiología , Conjuntos de Datos como Asunto
2.
Ecol Lett ; 25(5): 1152-1163, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35175672

RESUMEN

Disease outbreaks induced by humans increasingly threaten wildlife communities worldwide. Like predators, pathogens can be key top-down forces in ecosystems, initiating trophic cascades that may alter food webs. An outbreak of mange in a remote Andean protected area caused a dramatic population decline in a mammalian herbivore (the vicuña), creating conditions to test the cascading effects of disease on the ecological community. By comparing a suite of ecological measurements to pre-disease baseline records, we demonstrate that mange restructured tightly linked trophic interactions previously driven by a mammalian predator (the puma). Following the mange outbreak, scavenger (Andean condor) occurrence in the ecosystem declined sharply and plant biomass and cover increased dramatically in predation refuges where herbivory was historically concentrated. The evidence shows that a disease-induced trophic cascade, mediated by vicuña density, could supplant the predator-induced trophic cascade, mediated by vicuña behaviour, thereby transforming the Andean ecosystem.


Asunto(s)
Ecosistema , Infestaciones por Ácaros , Animales , Brotes de Enfermedades/veterinaria , Cadena Alimentaria , Humanos , Mamíferos , Conducta Predatoria
3.
J Anim Ecol ; 90(7): 1605-1622, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34014558

RESUMEN

Energy, nutrients and organisms move over landscapes, connecting ecosystems across space and time. Meta-ecosystem theory investigates the emerging properties of local ecosystems coupled spatially by these movements of organisms and matter, by explicitly tracking exchanges of multiple substances across ecosystem borders. To date, meta-ecosystem research has focused mostly on abiotic flows-neglecting biotic nutrient flows. However, recent work has indicated animals act as spatial nutrient vectors when they transport nutrients across landscapes in the form of excreta, egesta and their own bodies. Partly due to its high level of abstraction, there are few empirical tests of meta-ecosystem theory. Furthermore, while animals may be viewed as important mediators of ecosystem functions, better integration of tools is needed to develop predictive insights of their relative roles and impacts on diverse ecosystems. We present a methodological roadmap that explains how to do such integration by discussing how to combine insights from movement, foraging and ecosystem ecology to develop a coherent understanding of animal-vectored nutrient transport on meta-ecosystems processes. We discuss how the slate of newly developed technologies and methods-tracking devices, mechanistic movement models, diet reconstruction techniques and remote sensing-that when integrated have the potential to advance the quantification of animal-vectored nutrient flows and increase the predictive power of meta-ecosystem theory. We demonstrate that by integrating novel and established tools of animal ecology, ecosystem ecology and remote sensing, we can begin to identify and quantify animal-mediated nutrient translocation by large animals. We also provide conceptual examples that show how our proposed integration of methodologies can help investigate ecosystem impacts of large animal movement. We conclude by describing practical advancements to understanding cross-ecosystem contributions of animals on the move. Understanding the mechanisms by which animals shape ecosystem dynamics is important for ongoing conservation, rewilding and restoration initiatives around the world, and for developing more accurate models of ecosystem nutrient budgets. Our roadmap will enable ecologists to better qualify and quantify animal-mediated nutrient translocation for animals on the move.


Asunto(s)
Ecología , Ecosistema , Animales , Movimiento , Nutrientes
4.
Yale J Biol Med ; 91(4): 481-489, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30588213

RESUMEN

The emerging field of eco-evolutionary dynamics has demonstrated that both ecological and evolutionary processes can occur contemporaneously. Ecological interactions, such as between predator and prey, are important focal areas where an eco-evolutionary perspective can advance understanding about phenotypically plastic and adaptive evolutionary responses. In predator-prey interactions, both species reciprocally respond and adapt to each other in order to simultaneously ensure resource consumption and predation avoidance. Here we sketch out a way to help unify experimental and analytical approaches to both eco-evolutionary dynamics and predator-prey interactions, with a specific focus on terrestrial systems. We discuss the need to view predator-prey eco-evolutionary dynamics as a perpetually adaptive interplay with constantly shifting pressures and feedbacks, rather than viewing it as driving a set evolutionary trajectory. We then outline our perspective on how to understand eco-evolutionary patterns in a predator-prey context. We propose initiating insight by distinguishing phenotypic plasticity against genetic change (i.e., "molecular reductionism") and further applying a landscape-scale perspective (i.e., "landscape holism"). We believe that studying predator-prey interactions under an eco-evolutionary lens can provide insights into how general and, consequently, predictable species' evolutionary responses are to their contemporary environments.


Asunto(s)
Evolución Biológica , Animales , Modelos Biológicos , Conducta Predatoria/fisiología
5.
Ecology ; 105(3): e4262, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38351587

RESUMEN

Large animals could be important drivers of spatial nutrient subsidies when they ingest resources in some habitats and release them in others, even moving nutrients against elevational gradients. In high Andean deserts, vicuñas (Vicugna vicugna) move daily between nutrient-rich wet meadows, where there is abundant water and forage but high risk of predation by pumas (Puma concolor), and nutrient-poor open plains with lower risk of predation. In all habitats, vicuñas defecate and urinate in communal latrines. We investigated how these latrines impacted soil and plant nutrient concentrations across three habitats in the Andean ecosystem (meadows, plains, and canyons) and used stable isotope analysis to explore the source of fecal nutrients in latrines. Latrine soils had higher concentrations of nitrogen, carbon, and other nutrients than did nonlatrine soils across all habitats. These inputs corresponded with an increase in plant quality (lower C:N) at latrine sites in plains and canyons, but not in meadows. Stable isotope mixing models suggest that ~7% of nutrients in plains latrines originated from vegetation in meadows, which is disproportionately higher than the relative proportion of meadow habitat (2.6%) in the study area. In contrast, ~68% of nutrients in meadow latrines appear to originate from plains and canyon vegetation, though these habitats made up nearly 98% of the study area. Vicuña diel movements thus appear to concentrate nutrients in latrines within habitats and to drive cross-habitat nutrient subsidies, with disproportionate transport from low-lying, nutrient-rich meadows to more elevated, nutrient-poor plains. When these results are scaled up to the landscape scale, the amount of nitrogen and phosphorus subsidized in soil at plains latrines was of the same order of magnitude as estimates of annual atmospheric nitrogen and phosphorus deposition for this region (albeit far more localized and patchy). Thus, vicuña-mediated nutrient redistribution and deposition appears to be an important process impacting ecosystem functioning in arid Andean environments, on par with other major inputs of nutrients to the system.


Asunto(s)
Camélidos del Nuevo Mundo , Animales , Ecosistema , Nitrógeno , Nutrientes , Fósforo , Suelo , Isótopos
6.
bioRxiv ; 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-37987000

RESUMEN

Motor adaptation in cortico-striato-thalamo-cortical loops has been studied mainly in animals using invasive electrophysiology. Here, we leverage functional neuroimaging in humans to study motor circuit plasticity in the human subcortex. We employed an experimental paradigm that combined two weeks of upper-extremity immobilization with daily resting-state and motor task fMRI before, during, and after the casting period. We previously showed that limb disuse leads to decreased functional connectivity (FC) of the contralateral somatomotor cortex (SM1) with the ipsilateral somatomotor cortex, increased FC with the cingulo-opercular network (CON) as well as the emergence of high amplitude, fMRI signal pulses localized in the contralateral SM1, supplementary motor area and the cerebellum. From our prior observations, it remains unclear whether the disuse plasticity affects the thalamus and striatum. We extended our analysis to include these subcortical regions and found that both exhibit strengthened cortical FC and spontaneous fMRI signal pulses induced by limb disuse. The dorsal posterior putamen and the central thalamus, mainly CM, VLP and VIM nuclei, showed disuse pulses and FC changes that lined up with fmri task activations from the Human connectome project motor system localizer, acquired before casting for each participant. Our findings provide a novel understanding of the role of the cortico-striato-thalamo-cortical loops in human motor plasticity and a potential link with the physiology of sleep regulation. Additionally, similarities with FC observation from Parkinson Disease (PD) questions a pathophysiological link with limb disuse.

7.
bioRxiv ; 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38260662

RESUMEN

The red nucleus is a large brainstem structure that coordinates limb movement for locomotion in quadrupedal animals (Basile et al., 2021). The humans red nucleus has a different pattern of anatomical connectivity compared to quadrupeds, suggesting a unique purpose (Hatschek, 1907). Previously the function of the human red nucleus remained unclear at least partly due to methodological limitations with brainstem functional neuroimaging (Sclocco et al., 2018). Here, we used our most advanced resting-state functional connectivity (RSFC) based precision functional mapping (PFM) in highly sampled individuals (n = 5) and large group-averaged datasets (combined N ~ 45,000), to precisely examine red nucleus functional connectivity. Notably, red nucleus functional connectivity to motor-effector networks (somatomotor hand, foot, and mouth) was minimal. Instead, red nucleus functional connectivity along the central sulcus was specific to regions of the recently discovered somato-cognitive action network (SCAN; (Gordon et al., 2023)). Outside of primary motor cortex, red nucleus connectivity was strongest to the cingulo-opercular (CON) and salience networks, involved in action/cognitive control (Dosenbach et al., 2007; Newbold et al., 2021) and reward/motivated behavior (Seeley, 2019), respectively. Functional connectivity to these two networks was organized into discrete dorsal-medial and ventral-lateral zones. Red nucleus functional connectivity to the thalamus recapitulated known structural connectivity of the dento-rubral thalamic tract (DRTT) and could prove clinically useful in functionally targeting the ventral intermediate (VIM) nucleus. In total, our results indicate that far from being a 'motor' structure, the red nucleus is better understood as a brainstem nucleus for implementing goal-directed behavior, integrating behavioral valence and action plans.

8.
bioRxiv ; 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38077010

RESUMEN

Functional MRI (fMRI) data are severely distorted by magnetic field (B0) inhomogeneities which currently must be corrected using separately acquired field map data. However, changes in the head position of a scanning participant across fMRI frames can cause changes in the B0 field, preventing accurate correction of geometric distortions. Additionally, field maps can be corrupted by movement during their acquisition, preventing distortion correction altogether. In this study, we use phase information from multi-echo (ME) fMRI data to dynamically sample distortion due to fluctuating B0 field inhomogeneity across frames by acquiring multiple echoes during a single EPI readout. Our distortion correction approach, MEDIC (Multi-Echo DIstortion Correction), accurately estimates B0 related distortions for each frame of multi-echo fMRI data. Here, we demonstrate that MEDIC's framewise distortion correction produces improved alignment to anatomy and decreases the impact of head motion on resting-state functional connectivity (RSFC) maps, in higher motion data, when compared to the prior gold standard approach (i.e., TOPUP). Enhanced framewise distortion correction with MEDIC, without the requirement for field map collection, furthers the advantage of multi-echo over single-echo fMRI.

9.
Nat Ecol Evol ; 4(1): 169, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31761898

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

10.
Nat Ecol Evol ; 8(4): 602-603, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38337047
11.
Nat Ecol Evol ; 3(12): 1622-1631, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31740842

RESUMEN

Same-sex sexual behaviour (SSB) has been recorded in over 1,500 animal species with a widespread distribution across most major clades. Evolutionary biologists have long sought to uncover the adaptive origins of 'homosexual behaviour' in an attempt to resolve this apparent Darwinian paradox: how has SSB repeatedly evolved and persisted despite its presumed fitness costs? This question implicitly assumes that 'heterosexual' or exclusive different-sex sexual behaviour (DSB) is the baseline condition for animals, from which SSB has evolved. We question the idea that SSB necessarily presents an evolutionary conundrum, and suggest that the literature includes unchecked assumptions regarding the costs, benefits and origins of SSB. Instead, we offer an alternative null hypothesis for the evolutionary origin of SSB that, through a subtle shift in perspective, moves away from the expectation that the origin and maintenance of SSB is a problem in need of a solution. We argue that the frequently implicit assumption of DSB as ancestral has not been rigorously examined, and instead hypothesize an ancestral condition of indiscriminate sexual behaviours directed towards all sexes. By shifting the lens through which we study animal sexual behaviour, we can more fruitfully examine the evolutionary history of diverse sexual strategies.


Asunto(s)
Conducta Sexual Animal , Conducta Sexual , Animales
12.
Nat Ecol Evol ; 4(6): 786-787, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32313179
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA