Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Eur J Neurosci ; 58(1): 2215-2231, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37203224

RESUMEN

Early life stress (ELS) is associated with metabolic, cognitive, and psychiatric diseases and has a very high prevalence, highlighting the urgent need for a better understanding of the versatile physiological changes and identification of predictive biomarkers. In addition to programming the hypothalamic-pituitary-adrenal (HPA) axis, ELS may also affect the gut microbiota and metabolome, opening up a promising research direction for identifying early biomarkers of ELS-induced (mal)adaptation. Other factors affecting these parameters include maternal metabolic status and diet, with maternal obesity shown to predispose offspring to later metabolic disease. The aim of the present study was to investigate the long-term effects of ELS and maternal obesity on the metabolic and stress phenotype of rodent offspring. To this end, offspring of both sexes were subjected to an adverse early-life experience, and their metabolic and stress phenotypes were examined. In addition, we assessed whether a prenatal maternal and an adult high-fat diet (HFD) stressor further shape observed ELS-induced phenotypes. We show that ELS has long-term effects on male body weight (BW) across the lifespan, whereas females more successfully counteract ELS-induced weight loss, possibly by adapting their microbiota, thereby stabilizing a balanced metabolome. Furthermore, the metabolic effects of a maternal HFD on BW are exclusively triggered by a dietary challenge in adult offspring and are more pronounced in males than in females. Overall, our study suggests that the female microbiota protects against an ELS challenge, rendering them more resilient to additional maternal- and adult nutritional stressors than males.


Asunto(s)
Experiencias Adversas de la Infancia , Obesidad Materna , Efectos Tardíos de la Exposición Prenatal , Animales , Ratones , Femenino , Masculino , Humanos , Embarazo , Obesidad/metabolismo , Dieta Alta en Grasa/efectos adversos , Roedores , Biomarcadores , Efectos Tardíos de la Exposición Prenatal/metabolismo
2.
Cardiovasc Diabetol ; 22(1): 82, 2023 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-37029406

RESUMEN

BACKGROUND: A new definition of metabolically healthy obesity (MHO) has recently been proposed to stratify the heterogeneous mortality risk of obesity. Metabolomic profiling provides clues to metabolic alterations beyond clinical definition. We aimed to evaluate the association between MHO and cardiovascular events and assess its metabolomic pattern. METHODS: This prospective study included Europeans from two population-based studies, the FLEMENGHO and the Hortega study. A total of 2339 participants with follow-up were analyzed, including 2218 with metabolomic profiling. Metabolic health was developed from the third National Health and Nutrition Examination Survey and the UK biobank cohorts and defined as systolic blood pressure < 130 mmHg, no antihypertensive drugs, waist-to-hip ratio < 0.95 for women or 1.03 for men, and the absence of diabetes. BMI categories included normal weight, overweight, and obesity (BMI < 25, 25-30, ≥ 30 kg/m2). Participants were classified into six subgroups according to BMI category and metabolic healthy status. Outcomes were fatal and nonfatal composited cardiovascular events. RESULTS: Of 2339 participants, the mean age was 51 years, 1161 (49.6%) were women, 434 (18.6%) had obesity, 117 (5.0%) were classified as MHO, and both cohorts had similar characteristics. Over a median of 9.2-year (3.7-13.0) follow-up, 245 cardiovascular events occurred. Compared to those with metabolically healthy normal weight, individuals with metabolic unhealthy status had a higher risk of cardiovascular events, regardless of BMI category (adjusted HR: 3.30 [95% CI: 1.73-6.28] for normal weight, 2.50 [95% CI: 1.34-4.66] for overweight, and 3.42 [95% CI: 1.81-6.44] for obesity), whereas those with MHO were not at increased risk of cardiovascular events (HR: 1.11 [95% CI: 0.36-3.45]). Factor analysis identified a metabolomic factor mainly associated with glucose regulation, which was associated with cardiovascular events (HR: 1.22 [95% CI: 1.10-1.36]). Individuals with MHO tended to present a higher metabolomic factor score than those with metabolically healthy normal weight (0.175 vs. -0.057, P = 0.019), and the score was comparable to metabolically unhealthy obesity (0.175 vs. -0.080, P = 0.91). CONCLUSIONS: Individuals with MHO may not present higher short-term cardiovascular risk but tend to have a metabolomic pattern associated with higher cardiovascular risk, emphasizing a need for early intervention.


Asunto(s)
Enfermedades Cardiovasculares , Obesidad Metabólica Benigna , Masculino , Humanos , Femenino , Persona de Mediana Edad , Obesidad Metabólica Benigna/diagnóstico , Obesidad Metabólica Benigna/epidemiología , Sobrepeso , Factores de Riesgo , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/prevención & control , Estudios Prospectivos , Encuestas Nutricionales , Índice de Masa Corporal , Obesidad/diagnóstico , Obesidad/epidemiología , Factores de Riesgo de Enfermedad Cardiaca , Fenotipo
3.
Brain Behav Immun ; 114: 94-110, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37557963

RESUMEN

The gut microbiota has been causally linked to cognitive development. We aimed to identify metabolites mediating its effect on cognitive development, and foods or nutrients related to most promising metabolites. Faeces from 5-year-old children (DORIAN-PISAC cohort, including 90 general population families with infants, 42/48 females/males, born in 2011-2014) were transplanted (FMT) into C57BL/6 germ-free mice. Children and recipient mice were stratified by cognitive phenotype, or based on protective metabolites. Food frequency questionnaires were obtained in children. Cognitive measurements in mice included five Y-maze tests until 23 weeks post-FMT, and (at 23 weeks) PET-CT for brain metabolism and radiodensity, and ultrasound-based carotid vascular indices. Children (faeces, urine) and mice (faeces, plasma) metabolome was measured by 1H NMR spectroscopy, and the faecal microbiota was profiled in mice by 16S rRNA amplicon sequencing. Cognitive scores of children and recipient mice were correlated. FMT-dependent modifications of brain metabolism were observed. Mice receiving FMT from high-cognitive or protective metabolite-enriched children developed superior cognitive-behavioural performance. A panel of metabolites, namely xanthine, hypoxanthine, formate, mannose, tyrosine, phenylalanine, glutamine, was found to mediate the gut-cognitive axis in donor children and recipient mice. Vascular indices partially explained the metabolite-to-phenotype relationships. Children's consumption of legumes, whole-milk yogurt and eggs, and intake of iron, zinc and vitamin D appeared to support protective gut metabolites. Overall, metabolites involved in inflammation, purine metabolism and neurotransmitter synthesis mediate the gut-cognitive axis, and holds promise for screening. The related dietary and nutritional findings offer leads to microbiota-targeted interventions for cognitive protection, with long-lasting effects.

4.
Int J Clin Pract ; 75(1): e13610, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32648987

RESUMEN

BACKGROUND AND AIM: Atherosclerosis is the underlying process in cardiovascular disease (CVD), the first cause of death in developed countries. We aimed to identify people with no known CVD and normal values of LDL-C and HDL-C, but with alterations in the number and size of lipoprotein particles (as measured by nuclear magnetic resonance [NMR]) and to analyse their sociodemographic, clinical and biochemical characteristics. METHODS: Cross-sectional study in occupational risks prevention centre in Castellón (Spain) in 2017 and 2018, in consecutively recruited adults (18-65 years) with no known CVD. Sociodemographic, clinical and biochemical variables were collected. Lipid profiles were analysed (Liposcale test), along with the concentration, size and number of the main types of lipoprotein particles, determined by 2D diffusion-ordered NMR spectroscopy. Using contingency tables, we analysed the characteristics of people with normal LDL and HDL cholesterol but abnormal levels of LDL and HDL particles. The magnitude of association between explanatory variables and abnormal levels of each kind of lipoprotein was assessed with multivariable logistic regression models. RESULTS: Of the 400 total participants (31.3% women; age 46.4 ± 4.3 years), 169 had normal LDL and HDL cholesterol. Abnormal lipoprotein particle values depended on the subtype: prevalence of abnormal LDL levels ranged from 8.3% to 36.7%; and of HDL, from 28.4% to 42.6%. High systolic blood pressure and total cholesterol were significantly associated with abnormal LDL levels. Male sex and high systolic blood pressure were associated with abnormalities in HDL. CONCLUSIONS: An extended lipids profile, obtained by NMR, enables the identification of people with normal HDL-C and LDL-C levels who present abnormal levels of LDL-P and/or HDL-P. Higher total cholesterol, systolic blood pressure, BMI and male sex were significantly associated with these abnormal values.


Asunto(s)
Lipoproteínas , Adolescente , Adulto , Anciano , HDL-Colesterol , Estudios Transversales , Femenino , Humanos , Espectroscopía de Resonancia Magnética , Masculino , Persona de Mediana Edad , España , Adulto Joven
5.
Int J Mol Sci ; 22(1)2020 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-33396457

RESUMEN

Migration of glioblastoma cells into surrounding tissue is one of the main features that makes this tumor incurable. We evaluated whole-genome miRNA expression profiling associated with different EGFR amplification patterns in 30 cases of primary glioblastoma. From the 64 miRNAs that showed differential expression between tumors with a high level of EGFR amplification and tumors without EGFR amplification, 40% were related with cell migration, being miR-200c the most differentially expressed between these two groups. We investigated the effect of miR-200c on ZEB1 expression and cell migration in an in vitro transfection model with a miR-200c mimic, a miR-200c inhibitor and siRNA targeting EGFR in three short-term cultures with different levels of EGFR amplification obtained from resected glioblastomas. The cell culture with the highest EGFR amplification level presented the lowest miR-200c expression and the status of EGFR modulated the effect of miR-200c on ZEB1 expression. Silencing EGFR led to miR-200c upregulation and ZEB1 downregulation in transfected cultures, except in the presence of high levels of EGFR. Likewise, miR-200c upregulation decreased ZEB1 expression and inhibited cell migration, especially when EGFR was not amplified. Our results suggest that modulating miR-200c may serve as a novel therapeutic approach for glioblastoma depending on EGFR status.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Amplificación de Genes , Regulación Neoplásica de la Expresión Génica , Glioblastoma/patología , MicroARNs/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , Apoptosis , Biomarcadores de Tumor/genética , Movimiento Celular , Proliferación Celular , Receptores ErbB/genética , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Mutación , Pronóstico , Células Tumorales Cultivadas , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética
6.
J Card Fail ; 25(5): 319-327, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30347272

RESUMEN

BACKGROUND: Recent evidence endorses gut microbiota dysregulation in the pathophysiology of heart failure (HF). Small intestinal bacterial overgrowth (SIBO) might be present in HF and associated with poor clinical outcomes. Lactulose breath testing is a simple noninvasive test that has been advocated as a reliable indicator of SIBO. In patients with HF, we aimed to evaluate the association with clinical outcomes of the exhaled hydrogen (H2) and methane (CH4) concentrations through the lactulose breath test. METHODS AND RESULTS: We included 102 patients with HF in which lactulose SIBO breath tests were assessed. Cumulative gas was quantified by the area under the receiver operating characteristic curve of CH4 (AUC-CH4) and H2 (AUC-H2). Clinical end points included the composite of all-cause death with either all-cause or HF hospitalizations, recurrent all-cause hospitalizations, and recurrent HF hospitalizations. Medians (interquartile ranges) of AUC-H2 and AUC-CH4 were 1290 U (520-2430) and 985 U (450-2120), respectively. In multivariable analysis, AUC-H2 (per 1000 U) was associated with all-cause death/all-cause hospitalization (hazard ratio [HR] 1.21, 95% CI 1.04-1.40; P = .012), all-cause death/HF hospitalization (HR 1.20, 95% CI 1.03-1.40; P = .021), and an increase in the rate of recurrent all-cause (incidence rate ratio [IRR] 1.31, 95% CI 1.14-1.51; P < .001) and HF (IRR 1.41, 95% CI 1.15-1.72; P = .001) hospitalizations. AUC-CH4 was not associated with any of these end points. CONCLUSIONS: AUC-H2, a safe and noninvasive method for SIBO estimation, is associated with higher risk of long-term adverse clinical events in patients with HF. In contrast, AUC-CH4 did not show any prognostic value.


Asunto(s)
Pruebas Respiratorias , Insuficiencia Cardíaca/mortalidad , Hospitalización/estadística & datos numéricos , Hidrógeno/análisis , Metano/análisis , Anciano , Anciano de 80 o más Años , Bacterias/crecimiento & desarrollo , Espiración , Femenino , Estudios de Seguimiento , Microbioma Gastrointestinal , Humanos , Intestino Delgado/microbiología , Masculino , Estudios Prospectivos
7.
Gut ; 66(4): 620-632, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27196572

RESUMEN

OBJECTIVE: To examine the role of hepatocyte myeloid differentiation primary-response gene 88 (MyD88) on glucose and lipid metabolism. DESIGN: To study the impact of the innate immune system at the level of the hepatocyte and metabolism, we generated mice harbouring hepatocyte-specific deletion of MyD88. We investigated the impact of the deletion on metabolism by feeding mice with a normal control diet or a high-fat diet for 8 weeks. We evaluated body weight, fat mass gain (using time-domain nuclear magnetic resonance), glucose metabolism and energy homeostasis (using metabolic chambers). We performed microarrays and quantitative PCRs in the liver. In addition, we investigated the gut microbiota composition, bile acid profile and both liver and plasma metabolome. We analysed the expression pattern of genes in the liver of obese humans developing non-alcoholic steatohepatitis (NASH). RESULTS: Hepatocyte-specific deletion of MyD88 predisposes to glucose intolerance, inflammation and hepatic insulin resistance independently of body weight and adiposity. These phenotypic differences were partially attributed to differences in gene expression, transcriptional factor activity (ie, peroxisome proliferator activator receptor-α, farnesoid X receptor (FXR), liver X receptors and STAT3) and bile acid profiles involved in glucose, lipid metabolism and inflammation. In addition to these alterations, the genetic deletion of MyD88 in hepatocytes changes the gut microbiota composition and their metabolomes, resembling those observed during diet-induced obesity. Finally, obese humans with NASH displayed a decreased expression of different cytochromes P450 involved in bioactive lipid synthesis. CONCLUSIONS: Our study identifies a new link between innate immunity and hepatic synthesis of bile acids and bioactive lipids. This dialogue appears to be involved in the susceptibility to alterations associated with obesity such as type 2 diabetes and NASH, both in mice and humans.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Microbioma Gastrointestinal/genética , Glucosa/metabolismo , Hepatocitos/metabolismo , Metabolismo de los Lípidos/genética , Metaboloma/genética , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Adiposidad , Alanina Transaminasa/sangre , Animales , Aspartato Aminotransferasas/sangre , Peso Corporal , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Dieta Alta en Grasa , Expresión Génica , Humanos , Inmunidad Innata/genética , Resistencia a la Insulina/genética , Hígado/metabolismo , Receptores X del Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/inmunología , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Obesidad/genética , Obesidad/metabolismo , PPAR alfa/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Factor de Transcripción STAT3/metabolismo
8.
J Gen Virol ; 96(11): 3373-3381, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26341195

RESUMEN

Metabolomics analysis of biofluids is increasingly being recognized as a useful tool for the diagnosis and management of a number of infectious diseases. Here we showed that plasma metabolomics profiling by untargeted 1H nuclear magnetic resonance may allow the anticipation of the occurrence of cytomegalovirus (CMV) DNAemia in allogeneic stem cell transplant. For this purpose, key discriminatory metabolites were total glutathione, taurine, methylamine, trimethylamine N-oxide and lactate, all of which were upregulated in patients eventually developing CMV DNAemia. The overall classification accuracy (predictability) of the projection to latent structure discriminant analysis (PLS-DA) model in cross-validation technical replicates was 73 %. Increased levels of alanine, lactate and total fatty acids, and a shift in the fatty acid profile towards unsaturated species, were observed in patients with detectable CMV DNA in plasma. The classification accuracy of this PLS-DA model in cross-validation technical replicates was 81 %. Plasma metabolomics profiling may prove useful for identifying patients at highest risk for CMV DNAemia thus allowing early inception of antiviral therapy.


Asunto(s)
Infecciones por Citomegalovirus/sangre , Citomegalovirus/aislamiento & purificación , ADN Viral/sangre , Espectroscopía de Resonancia Magnética/métodos , Metabolómica , Trasplante de Células Madre/efectos adversos , Células Madre/virología , Adolescente , Adulto , Anciano , Estudios de Cohortes , Citomegalovirus/genética , Citomegalovirus/metabolismo , Infecciones por Citomegalovirus/etiología , Infecciones por Citomegalovirus/virología , Femenino , Enfermedades Hematológicas/complicaciones , Enfermedades Hematológicas/terapia , Humanos , Masculino , Persona de Mediana Edad , Receptores de Trasplantes/estadística & datos numéricos , Trasplante Homólogo/efectos adversos , Adulto Joven
9.
Mol Vis ; 21: 555-67, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25999682

RESUMEN

PURPOSE: We used nuclear magnetic resonance spectroscopy of hydrogen-1 nuclei ((1)H NMR S) to analyze the metabolic profile of reflex tears from patients with dry eye disorders. METHODS: We performed a prospective case-control study involving 90 participants: 55 patients diagnosed with dry eye syndrome (DESG) and 35 healthy subjects (control group, CG). From the DESG, two subgroups were formed: mild DES (n=22) and moderate DES (n=33). Participants were prescribed an oral nutraceutic supplementation containing antioxidants and essential polyunsaturated fatty acids to be taken as three capsules per day for 3 months. Reflex tears (20-30 µl) were collected from the tear meniscus of both eyes of each subject with a microglass pipette. Nuclear magnetic resonance (NMR) spectra were acquired with a standard one-dimensional pulse sequence with water suppression; 256 free induction decays were collected into 64,000 data points with 14 ppm spectral width. RESULTS: Basal tears showed a differential metabolomic profile between groups. Almost 50 metabolites were identified by H cholesterol, N-acetylglucosamine, glutamate, amino-n-butyrate, choline, glucose, and formate were detected before supplementation and choline/acetylcholine after supplementation. The metabolic profile of the tears was statistically different between groups, as well as before and after supplementation. CONCLUSIONS: Our data indicate that DES induces changes in the tear metabolic profile that can be modified with appropriate oral supplementation with antioxidants and essential polyunsaturated fatty acids.


Asunto(s)
Antioxidantes/administración & dosificación , Síndromes de Ojo Seco/dietoterapia , Síndromes de Ojo Seco/metabolismo , Ácidos Grasos Omega-3/administración & dosificación , Lágrimas/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Suplementos Dietéticos , Ácidos Grasos Esenciales/administración & dosificación , Femenino , Humanos , Espectroscopía de Resonancia Magnética , Masculino , Metabolómica , Persona de Mediana Edad , Estudios Prospectivos
10.
Antioxidants (Basel) ; 13(3)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38539836

RESUMEN

The purpose of the study was to determine the impact of weight loss through calorie restriction on metabolic profile, and inflammatory and oxidative stress parameters in metabolically healthy (MHO) and unhealthy (MUHO) obese individuals. A total of 74 subjects (34 MHO and 40 MUHO) received two cycles of a very low-calorie diet, alternating with a hypocaloric diet for 24 weeks. Biochemical, oxidative stress, and inflammatory markers, as well as serum metabolomic analysis by nuclear magnetic resonance, were performed at baseline and at the end of the intervention. After the diet, there was an improvement in insulin resistance, as well as a significant decrease in inflammatory parameters, enhancing oxidative damage, mitochondrial membrane potential, glutathione, and antioxidant capacity. This improvement was more significant in the MUHO group. The metabolomic analysis showed a healthier profile in lipoprotein profile. Lipid carbonyls also decrease at the same time as unsaturated fatty acids increase. We also display a small decrease in succinate, glycA, alanine, and BCAAs (valine and isoleucine), and a slight increase in taurine. These findings show that moderate weight reduction leads to an improvement in lipid profile and subfractions and a reduction in oxidative stress and inflammatory markers; these changes are more pronounced in the MUHO population.

11.
Nat Aging ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849535

RESUMEN

The mechanistic target of rapamycin complex 1 controls cellular anabolism in response to growth factor signaling and to nutrient sufficiency signaled through the Rag GTPases. Inhibition of mTOR reproducibly extends longevity across eukaryotes. Here we report that mice that endogenously express active mutant variants of RagC exhibit multiple features of parenchymal damage that include senescence, expression of inflammatory molecules, increased myeloid inflammation with extensive features of inflammaging and a ~30% reduction in lifespan. Through bone marrow transplantation experiments, we show that myeloid cells are abnormally activated by signals emanating from dysfunctional RagC-mutant parenchyma, causing neutrophil extravasation that inflicts additional inflammatory damage. Therapeutic suppression of myeloid inflammation in aged RagC-mutant mice attenuates parenchymal damage and extends survival. Together, our findings link mildly increased nutrient signaling to limited lifespan in mammals, and support a two-component process of parenchymal damage and myeloid inflammation that together precipitate a time-dependent organ deterioration that limits longevity.

12.
World J Diabetes ; 14(3): 147-158, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-37035226

RESUMEN

Selenium is a trace mineral essential for life that acts physiologically through selenoproteins. Among other actions, the endogenous antioxidant selenoprotein glutathione peroxidase and the selenium transporter in blood, selenoprotein P, seem to play an important role in type 2 diabetes mellitus and insulin resistance by weakening the insulin signaling cascade through different mechanisms. Recent findings also suggest that selenoproteins also affect insulin biosynthesis and insulin secretion. This review discussed the role of selenium in type 2 diabetes and the complex interplay between selenoproteins and insulin pathways.

13.
World J Clin Cases ; 11(6): 1236-1244, 2023 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-36926130

RESUMEN

Metabolic-associated fatty liver disease (MAFLD) refers to the build-up of fat in the liver associated with metabolic dysfunction and has been estimated to affect a quarter of the population worldwide. Although metabolism is highly influenced by the effects of sex hormones, studies of sex differences in the incidence and progression of MAFLD are scarce. Metabolomics represents a powerful approach to studying these differences and identifying potential biomarkers and putative mechanisms. First, metabolomics makes it possible to obtain the molecular phenotype of the individual at a given time. Second, metabolomics may be a helpful tool for classifying patients according to the severity of the disease and obtaining diagnostic biomarkers. Some studies demonstrate associations between circulating metabolites and early and established MAFLD, but little is known about how metabolites relate to and encompass sex differences in disease progression and risk management. In this review, we will discuss the epidemiological metabolomic studies for sex differences in the development and progression of MAFLD, the role of metabolic profiles in understanding mechanisms and identifying sex-dependent biomarkers, and how this evidence may help in the future management of the disease.

14.
Metabolites ; 13(4)2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-37110219

RESUMEN

Pre-pregnancy obesity and excessive gestational weight gain (GWG) appear to affect birth weight and the offspring's risk of obesity and disease later in life. However, the identification of the mediators of this relationship, could be of clinical interest, taking into account the presence of other confounding factors, such as genetics and other shared influences. The aim of this study was to evaluate the metabolomic profiles of infants at birth (cord blood) and 6 and 12 months after birth to identify offspring metabolites associated with maternal GWG. Nuclear Magnetic Resonance (NMR) metabolic profiles were measured in 154 plasma samples from newborns (82 cord blood samples) and in 46 and 26 of these samples at 6 months and 12 months of age, respectively. The levels of relative abundance of 73 metabolomic parameters were determined in all the samples. We performed univariate and machine-learning analysis of the association between the metabolic levels and maternal weight gain adjusted for mother's age, Body Mass Index (BMI), diabetes, diet adherence and infant sex. Overall, our results showed differences, both at the univariate level and in the machine-learning models, between the offspring, according to the tertiles of maternal weight gain. Some of these differences were resolved at 6 and 12 months of age, whereas some others remained. Lactate and leucine were the metabolites with the strongest and longest association with maternal weight gain during pregnancy. Leucine, as well as other significant metabolites, have been associated in the past with metabolic wellness in both general and obese populations. Our results suggest that the metabolic changes associated to excessive GWG are present in children from early life.

15.
Antioxidants (Basel) ; 12(10)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37891887

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is a condition in which excess fat builds up in the liver. To date, there is a lack of knowledge about the subtype of lipid structures affected in the early stages of NAFLD. The aim of this study was to analyze serum and liver lipid moieties, specifically unsaturations and carbonyls, by nuclear magnetic resonance (NMR) in a subclinical Wistar rat model of NAFLD for detecting early alterations and potential sex dimorphisms. Twelve weeks of a high-fat diet (HFD) induced fat accumulation in the liver to a similar extent in male and female Wistar rats. In addition to total liver fat accumulation, Wistar rats showed a shift in lipid subtype composition. HFD rats displayed increased lipid carbonyls in both liver and serum, and decreased in unsaturated fatty acids (UFAs) and polyunsaturated fatty acids (PUFAs), with a much stronger effect in male than female animals. Our results revealed that the change in fat was not only quantitative but also qualitative, with dramatic shifts in relevant lipid structures. Finally, we compared the results found in Wistar rats with an analysis in a human patient cohort of extreme obesity. For the first time to our knowledge, lipid carbonyl levels and lipoproteins profiles were analyzed in the context of subclinical NAFLD. The association found between lipid carbonyls and alanine aminotransferase (ALT) in a human cohort of extremely obese individuals further supports the potential role of lipid moieties as biomarkers of early NAFLD.

16.
Antioxidants (Basel) ; 12(12)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38136241

RESUMEN

Exposure to traffic-related air pollution (TRAP) generates oxidative stress, with downstream effects at the metabolic level. Human studies of traffic density and metabolomic markers, however, are rare. The main objective of this study was to evaluate the cross-sectional association between traffic density in the street of residence with oxidative stress and metabolomic profiles measured in a population-based sample from Spain. We also explored in silico the potential biological implications of the findings. Secondarily, we assessed the contribution of oxidative stress to the association between exposure to traffic density and variation in plasma metabolite levels. Traffic density was defined as the average daily traffic volume over an entire year within a buffer of 50 m around the participants' residence. Plasma metabolomic profiles and urine oxidative stress biomarkers were measured in samples from 1181 Hortega Study participants by nuclear magnetic resonance spectroscopy and high-performance liquid chromatography, respectively. Traffic density was associated with 7 (out of 49) plasma metabolites, including amino acids, fatty acids, products of bacterial and energy metabolism and fluid balance metabolites. Regarding urine oxidative stress biomarkers, traffic associations were positive for GSSG/GSH% and negative for MDA. A total of 12 KEGG pathways were linked to traffic-related metabolites. In a protein network from genes included in over-represented pathways and 63 redox-related candidate genes, we observed relevant proteins from the glutathione cycle. GSSG/GSH% and MDA accounted for 14.6% and 12.2% of changes in isobutyrate and the CH2CH2CO fatty acid moiety, respectively, which is attributable to traffic exposure. At the population level, exposure to traffic density was associated with specific urine oxidative stress and plasma metabolites. Although our results support a role of oxidative stress as a biological intermediary of traffic-related metabolic alterations, with potential implications for the co-bacterial and lipid metabolism, additional mechanistic and prospective studies are needed to confirm our findings.

17.
Free Radic Biol Med ; 194: 52-61, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36370960

RESUMEN

BACKGROUND: The potential joint influence of metabolites on bone fragility has been rarely evaluated. We assessed the association of plasma metabolic patterns with bone fragility endpoints (primarily, incident osteoporosis-related bone fractures, and, secondarily, bone mineral density BMD) in the Hortega Study participants. Redox balance plays a key role in bone metabolism. We also assessed differential associations in participant subgroups by redox-related metal exposure levels and candidate genetic variants. MATERIAL AND METHODS: In 467 participants older than 50 years from the Hortega Study, a representative sample from a region in Spain, we estimated metabolic principal components (mPC) for 54 plasma metabolites from NMR-spectrometry. Metals biomarkers were measured in plasma by AAS and in urine by HPLC-ICPMS. Redox-related SNPs (N = 341) were measured by oligo-ligation assay. RESULTS: The prospective association with incident bone fractures was inverse for mPC1 (non-essential and essential amino acids, including branched-chain, and bacterial co-metabolites, including isobutyrate, trimethylamines and phenylpropionate, versus fatty acids and VLDL) and mPC4 (HDL), but positive for mPC2 (essential amino acids, including aromatic, and bacterial co-metabolites, including isopropanol and methanol). Findings from BMD models were consistent. Participants with decreased selenium and increased antimony, arsenic and, suggestively, cadmium exposures showed higher mPC2-associated bone fractures risk. Genetic variants annotated to 19 genes, with the strongest evidence for NCF4, NOX4 and XDH, showed differential metabolic-related bone fractures risk. CONCLUSIONS: Metabolic patterns reflecting amino acids, microbiota co-metabolism and lipid metabolism were associated with bone fragility endpoints. Carriers of redox-related variants may benefit from metabolic interventions to prevent the consequences of bone fragility depending on their antimony, arsenic, selenium, and, possibly, cadmium, exposure levels.


Asunto(s)
Arsénico , Fracturas Óseas , Selenio , Humanos , Cadmio , Antimonio , Densidad Ósea/genética , Oxidación-Reducción
18.
J Transl Med ; 10: 142, 2012 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-22776444

RESUMEN

BACKGROUND: Low birth weight has been linked to an increased risk to develop obesity, type 2 diabetes, and hypertension in adult life, although the mechanisms underlying the association are not well understood. The objective was to determine whether the metabolomic profile of plasma from umbilical cord differs between low and normal birth weight newborns. METHODS: Fifty healthy pregnant women and their infants were selected. The eligibility criteria were being born at term and having a normal pregnancy. Pairs were grouped according to their birth weight: low birth weight (LBW, birth weight < 10th percentile, n = 20) and control (control, birth weight between the 75th-90th percentiles, n = 30). Nuclear Magnetic Resonance (NMR) was used to generate metabolic fingerprints of umbilical cord plasma samples. Simultaneously, the metabolomic profiles of the mothers were analysed. The resulting data were subjected to chemometric, principal component and partial least squares discriminant analyses. RESULTS: Umbilical cord plasma from LBW and control newborns displayed a clearly differentiated metabolic profile. Seven metabolites were identified that discriminate the LBW from the control group. LBW newborns had lower levels of choline, proline, glutamine, alanine and glucose than did the control newborns, while plasma levels of phenylalanine and citrulline were higher in LBW newborns (p < 0.05). No significant differences were found between the two groups of mothers. CONCLUSIONS: Low birth weight newborns display a differential metabolomic profile than those of normal birth weight, a finding not present in the mothers. The meaning and the potential utility of the findings as biomarkers of risk need to be addressed in future studies.


Asunto(s)
Recién Nacido de Bajo Peso/sangre , Recién Nacido de Bajo Peso/metabolismo , Metabolómica , Cordón Umbilical/metabolismo , Adulto , Estudios de Casos y Controles , Análisis Discriminante , Femenino , Humanos , Recién Nacido , Análisis de los Mínimos Cuadrados , Madres , Embarazo
19.
World J Hepatol ; 14(2): 304-318, 2022 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-35317178

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) prevalence has increased drastically in recent decades, affecting up to 25% of the world's population. NAFLD is a spectrum of different diseases that starts with asymptomatic steatosis and continues with development of an inflammatory response called steatohepatitis, which can progress to fibrosis. Several molecular and metabolic changes are required for the hepatocyte to finally vary its function; hence a "multiple hit" hypothesis seems a more accurate proposal. Previous studies and current knowledge suggest that in most cases, NAFLD initiates and progresses through most of nine hallmarks of the disease, although the triggers and mechanisms for these can vary widely. The use of animal models remains crucial for understanding the disease and for developing tools based on biological knowledge. Among certain requirements to be met, a good model must imitate certain aspects of the human NAFLD disorder, be reliable and reproducible, have low mortality, and be compatible with a simple and feasible method. Metabolism studies in these models provides a direct reflection of the workings of the cell and may be a useful approach to better understand the initiation and progression of the disease. Metabolomics seems a valid tool for studying metabolic pathways and crosstalk between organs affected in animal models of NAFLD and for the discovery and validation of relevant biomarkers with biological understanding. In this review, we provide a brief introduction to NAFLD hallmarks, the five groups of animal models available for studying NAFLD and the potential role of metabolomics in the study of experimental NAFLD.

20.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 3051-3054, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36085792

RESUMEN

Meningioma is the most common intracranial tumor in adulthood. With a clear female predominance and a recurrence rate that reaches 20%, it is, despite being considered a benign tumor, a pathology that greatly compromises post-diagnosis quality of life. Its prone to recur or progress to a higher degree is difficult to predict in the absence of obvious histological criteria. This project aims to develop an automatic methodology to aid in the diagnosis of meningiomas that is objective and easily reproducible. The methodology is based on histopathological image analysis using artificial intelligence and machine learning algorithms. It includes a semi-automatic process of identification and cleaning of the scanned samples, an automatic detection of the nuclei of each image and, finally, the parameterization of the samples. The obtained data together with the clinical information will be analyzed using statistical methods in order to provide a methodology to support clinical diagnosis and decision-making in patient management. The result is the development of an effective methodology that generates a set of data associated with morphological parameters with different trends according to the pathological groups studied. A tool has been developed that allows an effective semiautomatic analysis of the images to evaluate these parameters in an objective and reproducible way, helping in clinical decision-making and facilitating to undertake projects with large sample series. Clinical Relevance- The main contribution of this project is in the field of neuropathology, for the diagnosis of meningiomas, the most common brain tumor. The present project provides an objective and quantifiable prognosis methodology for the meningiomas, offering a more precise monitoring of the treatment applied to the patient, resulting in a better prognosis and better quality of life.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Meníngeas , Meningioma , Adulto , Inteligencia Artificial , Femenino , Humanos , Masculino , Neoplasias Meníngeas/diagnóstico por imagen , Neoplasias Meníngeas/patología , Meningioma/diagnóstico por imagen , Meningioma/patología , Calidad de Vida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA