Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Am J Physiol Renal Physiol ; 327(4): F623-F636, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39116350

RESUMEN

The chemotherapeutic agent cisplatin accumulates in the kidneys, leading to acute kidney injury (AKI). Preclinical and clinical studies have demonstrated sex-dependent outcomes of cisplatin-AKI. Deranged histone deacetylase (HDAC) activity is hypothesized to promote the pathogenesis of male murine cisplatin-AKI; however, it is unknown whether there are sex differences in the kidney HDACs. We hypothesized that there would be sex-specific Hdac expression, localization, or enzymatic activity, which may explain sexual dimorphic responses to cisplatin-AKI. In normal human kidney RNA samples, HDAC10 was significantly greater in the kidneys of women compared with men, whereas HDAC1, HDAC6, HDAC10, and HDAC11 were differentially expressed between the kidney cortex and medulla, regardless of sex. In a murine model of cisplatin-AKI (3 days after a 15 mg/kg injection), we found few sex- or cisplatin-related differences in Hdac kidney transcripts among the mice. Although Hdac9 was significantly greater in female mice compared with male mice, HDAC9 protein localization did not differ. Hdac7 transcripts were greater in the inner medulla of cisplatin-AKI mice, regardless of sex, and this agreed with a greater HDAC7 abundance. HDAC activity within the cortex, outer medulla, and inner medulla was significantly lower in cisplatin-AKI mice but did not differ between the sexes. In agreement with these findings, a class I HDAC inhibitor did not improve kidney injury or function. In conclusion, even though cisplatin-AKI was evident and there were transcript level differences among the different kidney regions in this model, there were few sex- or cisplatin-dependent effects on kidney HDAC localization or activity.NEW & NOTEWORTHY Kidney histone deacetylases (HDACs) are abundant in male and female mice, and the inner medulla has the greatest HDAC activity. A low dose of cisplatin caused acute kidney injury (AKI) in these mice, but there were few changes in kidney HDACs at the RNA/protein/activity level. A class I HDAC inhibitor failed to improve AKI outcomes. Defining the HDAC isoform, cellular source, and interventional timing is necessary to determine whether HDAC inhibition is a therapeutic strategy to prevent cisplatin-AKI in both sexes.


Asunto(s)
Lesión Renal Aguda , Cisplatino , Histona Desacetilasas , Ratones Endogámicos C57BL , Animales , Cisplatino/toxicidad , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/enzimología , Lesión Renal Aguda/patología , Femenino , Masculino , Histona Desacetilasas/metabolismo , Histona Desacetilasas/genética , Humanos , Factores Sexuales , Ratones , Inhibidores de Histona Desacetilasas/farmacología , Modelos Animales de Enfermedad , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/enzimología , Riñón/patología , Antineoplásicos/toxicidad , Corteza Renal/metabolismo , Corteza Renal/efectos de los fármacos , Corteza Renal/enzimología , Caracteres Sexuales
2.
Can J Physiol Pharmacol ; 100(9): 868-879, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35704945

RESUMEN

The chemotherapeutic agent cisplatin accumulates in the kidney and induces acute kidney injury (AKI). Preclinical and clinical studies suggest that young female mice and women show greater recovery from cisplatin-AKI compared to young male mice and men. The endothelin (ET) and ET receptors are enriched in the kidney and may be dysfunctional in cisplatin-AKI; however, there is a gap in our knowledge about the putative effects of sex and cisplatin on the renal ET system. We hypothesized that cisplatin-AKI male and female mice will have increased expression of the renal ET system. As expected, all cisplatin-AKI mice had kidney damage and body weight loss greater than control mice. Cisplatin-AKI mice had greater cortical Edn1, Edn3, Ednra, and Ednrb, while outer medullary Ednra was significantly suppressed in both sexes. Of the ∼25 000 genes sequenced from the inner medulla, only 91 genes (comparing saline mice) and 134 genes (comparing cisplatin-AKI mice) were differentially expressed and they were unrelated to the ET system. However, Edn1 was significantly greater in the inner medulla of male and female cisplatin-AKI mice. Thus, RNA profiles of the ET system were significantly affected by cisplatin-AKI throughout the kidney regardless of sex and this may help determine the therapeutic potential of targeting the ET receptors in cisplatin-AKI.


Asunto(s)
Lesión Renal Aguda , Antineoplásicos , Cisplatino , Endotelina-1 , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/genética , Animales , Antineoplásicos/toxicidad , Apoptosis , Cisplatino/toxicidad , Endotelina-1/metabolismo , Femenino , Riñón , Masculino , Ratones , Ratones Endogámicos C57BL
3.
Am J Physiol Renal Physiol ; 316(5): F875-F888, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30810062

RESUMEN

Deranged histone deacetylase (HDAC) activity causes uncontrolled proliferation, inflammation, fibrosis, and organ damage. It is unclear whether deranged HDAC activity results in acute kidney injury in the renal hypoperfusion model of bilateral ischemia-reperfusion injury (IRI) and whether in vivo inhibition is an appropriate therapeutic approach to limit injury. Male mice were implanted with intraperitoneal osmotic minipumps containing vehicle, the class I HDAC inhibitor, MS275, or the pan-HDAC inhibitor, trichostatin A (TSA), 3 days before sham/bilateral IRI surgery. Kidney cortical samples were analyzed using histological, immunohistochemical, and Western blotting techniques. HDAC-dependent proliferation rate was measured in immortalized rat epithelial cells and primary mouse or human proximal tubule (PT) cells. There were dynamic changes in cortical HDAC localization and abundance following IRI including a fourfold increase in HDAC4 in the PT. HDAC inhibition resulted in a significantly higher plasma creatinine, increased kidney damage, but reduced interstitial fibrosis compared with vehicle-treated IRI mice. HDAC-inhibited mice had reduced interstitial α-smooth muscle actin, fibronectin expression, and Sirius red-positive area, suggesting that IRI activates HDAC-mediated fibrotic pathways. In vivo proliferation of the kidney epithelium was significantly reduced in TSA-treated, but not MS275-treated, IRI mice, suggesting class II HDACs mediate proliferation. Furthermore, HDAC4 activation increased proliferation of human and mouse PTs. Kidney HDACs are activated during IRI with isoform-specific expression patterns. Our data point to mechanisms whereby IRI activates HDACs resulting in fibrotic pathways but also activation of PT proliferation and repair pathways. This study demonstrates the need to develop isoform-selective HDAC inhibitors for the treatment of renal hypoperfusion-induced injury.


Asunto(s)
Lesión Renal Aguda/enzimología , Proliferación Celular , Células Epiteliales/enzimología , Histona Desacetilasas/metabolismo , Túbulos Renales Proximales/enzimología , Daño por Reperfusión/enzimología , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/patología , Animales , Autofagia , Línea Celular , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Inhibidores de Histona Desacetilasas/farmacología , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/patología , Masculino , Ratones Endogámicos C57BL , Ratas , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/patología , Transducción de Señal , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA