Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Chembiochem ; 24(12): e202300265, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37146230

RESUMEN

G-quadruplexes (G4s) are nucleic acid secondary structures that have been linked to the functional regulation of eukaryotic organisms. G4s have been extensively characterised in humans and emerging evidence suggests that they might also be biologically relevant for human pathogens. This indicates that G4s might represent a novel class of therapeutic targets for tackling infectious diseases. Bioinformatic studies revealed a high prevalence of putative quadruplex-forming sequences (PQSs) in the genome of protozoans, which highlights their potential roles in regulating vital processes of these parasites, including DNA transcription and replication. In this work, we focus on the neglected trypanosomatid parasites, Trypanosoma and Leishmania spp., which cause debilitating and deadly diseases across the poorest populations worldwide. We review three examples where G4-formation might be key to modulate transcriptional activity in trypanosomatids, providing an overview of experimental approaches that can be used to exploit the regulatory roles and relevance of these structures to fight parasitic infections.


Asunto(s)
G-Cuádruplex , Parásitos , Trypanosoma , Animales , Humanos , Parásitos/genética , Trypanosoma/genética , ADN/química , Genoma
2.
Bioorg Med Chem Lett ; 81: 129123, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36608774

RESUMEN

Trypanosoma brucei is a protozoan parasite that causes Human African Trypanosomiasis (HAT), a neglected tropical disease (NTD) that is endemic in 36 countries in sub-Saharan Africa. Only a handful drugs are available for treatment, and these have limitations, including toxicity and drug resistance. Using the natural product, curcumin, as a starting point, several curcuminoids and related analogs were evaluated against bloodstream forms of T. b. brucei. A particular subset of dibenzylideneacetone (DBA) compounds exhibited potent in vitro antitrypanosomal activity with sub-micromolar EC50 values. A structure-activity relationship study including 26 DBA analogs was initiated, and several compounds exhibited EC50 values as low as 200 nM. Cytotoxicity counter screens in HEK293 cells identified several compounds having selectivity indices above 10. These data suggest that DBAs offer starting points for a new small molecule therapy of HAT.


Asunto(s)
Tripanocidas , Trypanosoma brucei brucei , Tripanosomiasis Africana , Animales , Humanos , Tripanocidas/farmacología , Tripanocidas/uso terapéutico , Enfermedades Desatendidas/tratamiento farmacológico , Células HEK293 , Tripanosomiasis Africana/tratamiento farmacológico , Tripanosomiasis Africana/parasitología , Relación Estructura-Actividad
3.
Bioorg Med Chem Lett ; 26(5): 1401-5, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26850005

RESUMEN

A series of 31 arylboronic acids designed on the basis of the pharmacophore model for a variety of TRPV1 antagonists was prepared and tested on FAAH and TRPV1 channel. Four of them, that is, compounds 3c, 4a, 5a,b acted as dual FAAH/TRPV1 blockers with IC50 values between 0.56 and 8.11µM whereas ten others (compounds 1c,f-i, 2c-f, 4b) inhibited FAAH and activated/desensitized TRPV1.


Asunto(s)
Amidohidrolasas/antagonistas & inhibidores , Ácidos Borónicos/farmacología , Inhibidores Enzimáticos/farmacología , Canales Catiónicos TRPV/antagonistas & inhibidores , Amidohidrolasas/metabolismo , Ácidos Borónicos/síntesis química , Ácidos Borónicos/química , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Concentración 50 Inhibidora , Ligandos , Estructura Molecular , Relación Estructura-Actividad , Canales Catiónicos TRPV/metabolismo
4.
J Enzyme Inhib Med Chem ; 31(6): 1638-47, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27063555

RESUMEN

Fentanyl is a powerful opiate analgesic typically used for the treatment of severe and chronic pain, but its prescription is strongly limited by the well-documented side-effects. Different approaches have been applied to develop strong analgesic drugs with reduced pharmacologic side-effects. One of the most promising is the design of multitarget drugs. In this paper we report the synthesis, characterization and biological evaluation of twelve new 4-anilidopiperidine (fentanyl analogues). In vivo hot-Plate test, shows a moderate antinociceptive activity for compounds OMDM585 and OMDM586, despite the weak binding affinity on both µ and δ-opioid receptors. A strong inverse agonist activity in the GTP-binding assay was revealed suggesting the involvement of alternative systems in the brain. Fatty acid amide hydrolase inhibition was evaluated, together with binding assays of cannabinoid receptors. We can conclude that compounds OMDM585 and 586 are capable to elicit antinociception due to their multitarget activity on different systems involved in pain modulation.


Asunto(s)
Analgésicos/farmacología , Carbamatos/análisis , Piperidinas/farmacología , Urea/análisis , Analgésicos/química , Animales , Femenino , Cobayas , Masculino , Ratones , Piperidinas/química , Ratas , Ratas Wistar , Análisis Espectral/métodos
5.
ChemMedChem ; 18(20): e202300193, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37429821

RESUMEN

Tubulin and microtubules (MTs) are potential protein targets to treat parasitic infections and our previous studies have shown that the triazolopyrimidine (TPD) class of MT-active compounds hold promise as antitrypanosomal agents. MT-targeting TPDs include structurally related but functionally diverse congeners that interact with mammalian tubulin at either one or two distinct interfacial binding sites; namely, the seventh and vinca sites, which are found within or between α,ß-tubulin heterodimers, respectively. Evaluation of the activity of 123 TPD congeners against cultured Trypanosoma brucei enabled a robust quantitative structure-activity relationship (QSAR) model and the prioritization of two congeners for in vivo pharmacokinetics (PK), tolerability and efficacy studies. Treatment of T. brucei-infected mice with tolerable doses of TPDs significantly decreased blood parasitemia within 24 h. Further, two once-weekly doses at 10 mg/kg of a candidate TPD significantly extended the survival of infected mice relative to infected animals treated with vehicle. Further optimization of dosing and/or the dosing schedule of these CNS-active TPDs may provide alternative treatments for human African trypanosomiasis.


Asunto(s)
Tripanocidas , Trypanosoma brucei brucei , Tripanosomiasis Africana , Humanos , Ratones , Animales , Tripanosomiasis Africana/tratamiento farmacológico , Tubulina (Proteína)/metabolismo , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Pirimidinas/química , Microtúbulos/metabolismo , Relación Estructura-Actividad , Trypanosoma brucei brucei/metabolismo , Tripanocidas/farmacología , Tripanocidas/uso terapéutico , Tripanocidas/química , Mamíferos/metabolismo
6.
bioRxiv ; 2023 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-36945407

RESUMEN

Tubulin and microtubules (MTs) are potential protein targets to treat parasitic infections and our previous studies have shown that the triazolopyrimidine (TPD) class of MT- active compounds hold promise as antitrypanosomal agents. MT-targeting TPDs include structurally related but functionally diverse congeners that interact with mammalian tubulin at either one or two distinct interfacial binding sites; namely, the seventh and vinca sites, which are found within or between α,ß-tubulin heterodimers, respectively. Evaluation of the activity of 123 TPD congeners against cultured Trypanosoma brucei enabled a robust quantitative structure-activity relationship (QSAR) model and the prioritization of two congeners for in vivo pharmacokinetics (PK), tolerability and efficacy studies. Treatment of T. brucei -infected mice with tolerable doses of TPDs 3 and 4 significantly decreased blood parasitemia within 24 h. Further, two once-weekly doses of 4 at 10 mg/kg significantly extended the survival of infected mice relative to infected animals treated with vehicle. Further optimization of dosing and/or the dosing schedule of these CNS-active TPDs may provide alternative treatments for human African trypanosomiasis.

7.
Genes (Basel) ; 13(9)2022 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-36140833

RESUMEN

Regulation of the epigenome is critical for healthy cell function but can become disrupted with age, leading to aberrant epigenetic profiles including altered DNA methylation. Recent studies have indicated that DNA methylation homeostasis can be compromised by the formation of DNA secondary structures known as G-quadruplexes (G4s), which form in guanine-rich regions of the genome. G4s can be recognised and bound by certain methylation-regulating enzymes, and in turn perturb the surrounding methylation architecture. However, the effect G4 formation has on DNA methylation at critical epigenetic sites remains elusive and poorly explored. In this work, we investigate the association between G4 sequences and prominent DNA methylation sites, termed 'ageing clocks', that act as bona fide dysregulated regions in aged and cancerous cells. Using a combination of in vitro (G4-seq) and in cellulo (BG4-ChIP) G4 distribution maps, we show that ageing clocks sites are significantly enriched with G4-forming sequences. The observed enrichment also varies across species and cell lines, being least significant in healthy cells and more pronounced in tumorigenic cells. Overall, our results suggest a biological significance of G4s in the realm of DNA methylation, which may be important for further deciphering the driving forces of diseases characterised by epigenetic abnormality, including ageing.


Asunto(s)
G-Cuádruplex , Neoplasias , Anciano , Envejecimiento/genética , ADN/genética , Metilación de ADN/genética , Guanina , Humanos , Neoplasias/genética
8.
Chem Commun (Camb) ; 58(92): 12753-12762, 2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36281554

RESUMEN

Guanine-rich DNA sequences are known to fold into secondary structures called G-quadruplexes (G4s), which can form from either individual DNA strands (intra-molecular) or multiple DNA strands (inter-molecular, iG4s). Intra-molecular G4s have been the object of extensive biological investigation due to their enrichment in gene-promoters and telomers. On the other hand, iG4s have never been considered in biological contexts, as the interaction between distal sequences of DNA to form an iG4 in cells was always deemed as highly unlikely. In this feature article, we challenge this dogma by presenting our recent discovery of the first human protein (CSB) displaying astonishing picomolar affinity and binding selectivity for iG4s. These findings suggest potential for iG4 structures to form in cells and highlight the need of further studies to unravel the fundamental biological roles of these inter-molecular DNA structures. Furthermore, we discuss how the potential for formation of iG4s in neuronal cells, triggered by repeat expansions in the C9orf72 gene, can lead to the formation of nucleic-acids based pathological aggregates in neurodegenerative diseases like ALS and FTD. Finally, based on our recent work on short LNA-modified probes, we provide a prespective on how the rational design of G4-selective chemical tools can be leveraged to further elucidate the biological relevance of iG4 structures in the context of ageing-related diseases.


Asunto(s)
G-Cuádruplex , Humanos , ADN/química , Telómero , Guanina , Estructura Molecular
9.
Eur J Med Chem ; 244: 114876, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36343429

RESUMEN

Chagas disease is a major public health problem caused by Trypanosoma cruzi, with an estimated 6-7 million people infected and 70 million at risk of infection. T. brucei gambiense and T. brucei rhodesiense are two subspecies of related parasites that cause human African trypanosomiasis, a neglected tropical disease with also millions of people at risk of infection. Pharmacotherapy for both diseases suffers from low efficacy, side effects, or drug resistance. Recently, we reported a noncovalent competitive inhibitor of cruzain (IC50 26 µM, Ki 3 µM) and TbrCatL (IC50 50 µM), two cysteine proteases considered promising drug targets for trypanosomiasis. Here, we describe the design and synthesis of derivatives of our lead compound. The new thiosemicarbazone derivatives showed potency in the nanomolar concentration range against the two enzymes, but they were later characterized as aggregators. Nevertheless, the thiosemicarbazone derivatives showed promising antiparasitic activities against T. b. brucei (EC50 13-49.7 µM) and T. cruzi (EC50 0.027-0.59 µM) under in vitro conditions. The most active thiosemicarbazone was 200-fold more potent than the current anti-chagasic drug, benznidazole, and showed a selectivity index of 370 versus myoblast cells. We have identified an excellent candidate for further optimization and in vivo studies.


Asunto(s)
Enfermedad de Chagas , Tiosemicarbazonas , Tripanocidas , Trypanosoma brucei brucei , Trypanosoma cruzi , Humanos , Tripanocidas/farmacología , Tiosemicarbazonas/farmacología , Inhibidores de Cisteína Proteinasa/farmacología , Relación Estructura-Actividad , Enfermedad de Chagas/tratamiento farmacológico
10.
J Med Chem ; 64(17): 13054-13071, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34461718

RESUMEN

The cysteine proteases, cruzain and TbrCATL (rhodesain), are therapeutic targets for Chagas disease and Human African Trypanosomiasis, respectively. Among the known inhibitors for these proteases, we have described N4-benzyl-N2-phenylquinazoline-2,4-diamine (compound 7 in the original publication, 1a in this study), as a competitive cruzain inhibitor (Ki = 1.4 µM). Here, we describe the synthesis and biological evaluation of 22 analogs of 1a, containing modifications in the quinazoline core, and in the substituents in positions 2 and 4 of this ring. The analogs demonstrate low micromolar inhibition of the target proteases and cidal activity against Trypanosoma cruzi with up to two log selectivity indices in counterscreens with myoblasts. Fourteen compounds were active against Trypanosoma brucei at low to mid micromolar concentrations. During the optimization of 1a, structure-based design and prediction of physicochemical properties were employed to maintain potency against the enzymes while removing colloidal aggregator characteristics observed for some molecules in this series.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Inhibidores de Cisteína Proteinasa/farmacología , Proteínas Protozoarias/antagonistas & inhibidores , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma cruzi/efectos de los fármacos , Modelos Moleculares , Estructura Molecular , Conformación Proteica , Relación Estructura-Actividad
11.
J Med Chem ; 64(2): 1073-1102, 2021 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-33411523

RESUMEN

Studies in tau and Aß plaque transgenic mouse models demonstrated that brain-penetrant microtubule (MT)-stabilizing compounds, including the 1,2,4-triazolo[1,5-a]pyrimidines, hold promise as candidate treatments for Alzheimer's disease and related neurodegenerative tauopathies. Triazolopyrimidines have already been investigated as anticancer agents; however, the antimitotic activity of these compounds does not always correlate with stabilization of MTs in cells. Indeed, previous studies from our laboratories identified a critical role for the fragment linked at C6 in determining whether triazolopyrimidines promote MT stabilization or, conversely, disrupt MT integrity in cells. To further elucidate the structure-activity relationship (SAR) and to identify potentially improved MT-stabilizing candidates for neurodegenerative disease, a comprehensive set of 68 triazolopyrimidine congeners bearing structural modifications at C6 and/or C7 was designed, synthesized, and evaluated. These studies expand upon prior understanding of triazolopyrimidine SAR and enabled the identification of novel analogues that, relative to the existing lead, exhibit improved physicochemical properties, MT-stabilizing activity, and pharmacokinetics.


Asunto(s)
Microtúbulos/efectos de los fármacos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Pirimidinas/química , Pirimidinas/farmacología , Tauopatías/tratamiento farmacológico , Triazoles/química , Triazoles/farmacología , Animales , Encéfalo/metabolismo , Línea Celular , Células Cultivadas , Simulación por Computador , Humanos , Ratones , Ratones Transgénicos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Neuronas/efectos de los fármacos , Ratas , Relación Estructura-Actividad
12.
ACS Infect Dis ; 7(5): 1089-1103, 2021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-33135408

RESUMEN

Schistosomiasis is a parasitic disease that affects approximately 200 million people in developing countries. Current treatment relies on just one partially effective drug, and new drugs are needed. Tubulin and microtubules (MTs) are essential constituents of the cytoskeleton in all eukaryotic cells and considered potential drug targets to treat parasitic infections. The α- and ß-tubulin of Schistosoma mansoni have ∼96% and ∼91% sequence identity to their respective human tubulins, suggesting that compounds which bind mammalian tubulin may interfere with MT-mediated functions in the parasite. To explore the potential of different classes of tubulin-binding molecules as antischistosomal leads, we completed a series of in vitro whole-organism screens of a target-based compound library against S. mansoni adults and somules (postinfective larvae), and identified multiple biologically active compounds, among which phenylpyrimidines were the most promising. Further structure-activity relationship studies of these hits identified a series of thiophen-2-yl-pyrimidine congeners, which induce a potent and long-lasting paralysis of the parasite. Moreover, compared to the originating compounds, which showed cytotoxicity values in the low nanomolar range, these new derivatives were 1-4 orders of magnitude less cytotoxic and exhibited weak or undetectable activity against mammalian MTs in a cell-based assay of MT stabilization. Given their selective antischistosomal activity and relatively simple drug-like structures, these molecules hold promise as candidates for the development of new treatments for schistosomiasis.


Asunto(s)
Microtúbulos , Schistosoma mansoni , Animales , Humanos , Parálisis , Relación Estructura-Actividad
13.
PLoS Negl Trop Dis ; 14(3): e0008150, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32196500

RESUMEN

Parasitic infections are a major source of human suffering, mortality, and economic loss, but drug development for these diseases has been stymied by the significant expense involved in bringing a drug though clinical trials and to market. Identification of single compounds active against multiple parasitic pathogens could improve the economic incentives for drug development as well as simplifying treatment regimens. We recently performed a screen of repurposed compounds against the protozoan parasite Entamoeba histolytica, causative agent of amebic dysentery, and identified four compounds (anisomycin, prodigiosin, obatoclax and nithiamide) with low micromolar potency and drug-like properties. Here, we extend our investigation of these drugs. We assayed the speed of killing of E. histolytica trophozoites and found that all four have more rapid action than the current drug of choice, metronidazole. We further established a multi-institute collaboration to determine whether these compounds may have efficacy against other parasites and opportunistic pathogens. We found that anisomycin, prodigiosin and obatoclax all have broad-spectrum antiparasitic activity in vitro, including activity against schistosomes, T. brucei, and apicomplexan parasites. In several cases, the drugs were found to have significant improvements over existing drugs. For instance, both obatoclax and prodigiosin were more efficacious at inhibiting the juvenile form of Schistosoma than the current standard of care, praziquantel. Additionally, low micromolar potencies were observed against pathogenic free-living amebae (Naegleria fowleri, Balamuthia mandrillaris and Acanthamoeba castellanii), which cause CNS infection and for which there are currently no reliable treatments. These results, combined with the previous human use of three of these drugs (obatoclax, anisomycin and nithiamide), support the idea that these compounds could serve as the basis for the development of broad-spectrum anti-parasitic drugs.


Asunto(s)
Anisomicina/farmacología , Antiparasitarios/farmacología , Reposicionamiento de Medicamentos , Parásitos/efectos de los fármacos , Prodigiosina/farmacología , Pirroles/farmacología , Animales , Anisomicina/efectos adversos , Anisomicina/farmacocinética , Antiparasitarios/efectos adversos , Antiparasitarios/farmacocinética , Línea Celular , Supervivencia Celular , Fibroblastos/efectos de los fármacos , Humanos , Indoles , Ratones , Pruebas de Sensibilidad Parasitaria , Prodigiosina/efectos adversos , Prodigiosina/farmacocinética , Pirroles/efectos adversos , Pirroles/farmacocinética , Ratas
14.
ChemMedChem ; 13(17): 1751-1754, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-29969537

RESUMEN

In vitro whole-organism screens of Trypanosoma brucei with representative examples of brain-penetrant microtubule (MT)-stabilizing agents identified lethal triazolopyrimidines and phenylpyrimidines with sub-micromolar potency. In mammalian cells, these antiproliferative compounds disrupt MT integrity and decrease total tubulin levels. Their parasiticidal potency, combined with their generally favorable pharmacokinetic properties, which include oral bioavailability and brain penetration, suggest that these compounds are potential leads against human African trypanosomiasis.


Asunto(s)
Encéfalo/metabolismo , Microtúbulos/metabolismo , Pirimidinas/farmacología , Tripanocidas/farmacología , Trypanosoma brucei brucei/efectos de los fármacos , Tripanosomiasis Africana/tratamiento farmacológico , Relación Dosis-Respuesta a Droga , Humanos , Microtúbulos/química , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Pirimidinas/química , Pirimidinas/metabolismo , Relación Estructura-Actividad , Tripanocidas/química , Tripanocidas/metabolismo
15.
ACS Med Chem Lett ; 8(8): 864-868, 2017 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-28835803

RESUMEN

The oxetane ring serves as an isostere of the carbonyl moiety, suggesting that oxetan-3-ol may be considered as a potential surrogate of the carboxylic acid functional group. To investigate this structural unit, as well as thietan-3-ol and the corresponding sulfoxide and sulfone derivatives, as potential carboxylic acid bioisosteres, a set of model compounds has been designed, synthesized, and evaluated for physicochemical properties. Similar derivatives of the cyclooxygenase inhibitor, ibuprofen, were also synthesized and evaluated for inhibition of eicosanoid biosynthesis in vitro. Collectively, the data suggest that oxetan-3-ol, thietan-3-ol, and related structures hold promise as isosteric replacements of the carboxylic acid moiety.

16.
J Med Chem ; 60(12): 5120-5145, 2017 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-28530811

RESUMEN

Alzheimer's disease (AD) is a complex, multifactorial disease in which different neuropathological mechanisms are likely involved, including those associated with pathological tau and Aß species as well as neuroinflammation. In this context, the development of single multitargeted therapeutics directed against two or more disease mechanisms could be advantageous. Starting from a series of 1,5-diarylimidazoles with microtubule (MT)-stabilizing activity and structural similarities with known NSAIDs, we conducted structure-activity relationship studies that led to the identification of multitargeted prototypes with activities as MT-stabilizing agents and/or inhibitors of the cyclooxygenase (COX) and 5-lipoxygenase (5-LOX) pathways. Several examples are brain-penetrant and exhibit balanced multitargeted in vitro activity in the low µM range. As brain-penetrant MT-stabilizing agents have proven effective against tau-mediated neurodegeneration in animal models, and because COX- and 5-LOX-derived eicosanoids are thought to contribute to Aß plaque deposition, these 1,5-diarylimidazoles provide tools to explore novel multitargeted strategies for AD and other neurodegenerative diseases.


Asunto(s)
Inhibidores de la Ciclooxigenasa/farmacología , Imidazoles/farmacología , Inhibidores de la Lipooxigenasa/farmacología , Enfermedades Neurodegenerativas/tratamiento farmacológico , Relación Estructura-Actividad , Enfermedad de Alzheimer/tratamiento farmacológico , Animales , Araquidonato 5-Lipooxigenasa/metabolismo , Técnicas de Química Sintética , Inhibidores de la Ciclooxigenasa/química , Evaluación Preclínica de Medicamentos/métodos , Femenino , Humanos , Imidazoles/química , Leucotrienos/biosíntesis , Inhibidores de la Lipooxigenasa/química , Masculino , Ratones Endogámicos , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Terapia Molecular Dirigida , Prostaglandinas/metabolismo , Ratas
17.
J Med Chem ; 58(21): 8564-72, 2015 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-26497049

RESUMEN

New 1,1'-biphenylsulfonamides were synthesized and evaluated as inhibitors of the ubiquitous human carbonic anhydrase isoforms I, II, IX, XII, and XIV using acetazolamide (AAZ) as reference compound. The sulfonamides 1-21 inhibited all the isoforms, with Ki values in the nanomolar range of concentration, and were superior to AAZ against all of them. X-ray crystallography and molecular modeling studies on the adducts that compound 20, the most potent hCA XIV inhibitor of the series (Ki = 0.26 nM), formed with the five hCAs, provided insight into the molecular determinants responsible for the high affinity of this molecule toward the target enzymes. The results pave the way to the development of 1.1'-biphenylsulfonamides as a new class of highy potent hCA XIV inhibitors.


Asunto(s)
Compuestos de Bifenilo/química , Compuestos de Bifenilo/farmacología , Inhibidores de Anhidrasa Carbónica/química , Inhibidores de Anhidrasa Carbónica/farmacología , Anhidrasas Carbónicas/metabolismo , Sulfonamidas/química , Sulfonamidas/farmacología , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Relación Estructura-Actividad
18.
J Med Chem ; 58(15): 5789-807, 2015 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-26132075

RESUMEN

We designed 39 new 2-phenylindole derivatives as potential anticancer agents bearing the 3,4,5-trimethoxyphenyl moiety with a sulfur, ketone, or methylene bridging group at position 3 of the indole and with halogen or methoxy substituent(s) at positions 4-7. Compounds 33 and 44 strongly inhibited the growth of the P-glycoprotein-overexpressing multi-drug-resistant cell lines NCI/ADR-RES and Messa/Dx5. At 10 nM, 33 and 44 stimulated the cytotoxic activity of NK cells. At 20-50 nM, 33 and 44 arrested >80% of HeLa cells in the G2/M phase of the cell cycle, with stable arrest of mitotic progression. Cell cycle arrest was followed by cell death. Indoles 33, 44, and 81 showed strong inhibition of the SAG-induced Hedgehog signaling activation in NIH3T3 Shh-Light II cells with IC50 values of 19, 72, and 38 nM, respectively. Compounds of this class potently inhibited tubulin polymerization and cancer cell growth, including stimulation of natural killer cell cytotoxic activity and repression of Hedgehog-dependent cancer.


Asunto(s)
Citotoxicidad Inmunológica/efectos de los fármacos , Proteínas Hedgehog/fisiología , Indoles/farmacología , Células Asesinas Naturales/efectos de los fármacos , Mitosis/efectos de los fármacos , Neoplasias/patología , Tubulina (Proteína)/efectos de los fármacos , Animales , División Celular/efectos de los fármacos , Línea Celular Tumoral , Resistencia a Antineoplásicos , Humanos , Células Asesinas Naturales/inmunología , Ratones , Células 3T3 NIH , Neoplasias/inmunología , Tubulina (Proteína)/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA