RESUMEN
A SARS-CoV-2 variant carrying the Spike protein amino acid change D614G has become the most prevalent form in the global pandemic. Dynamic tracking of variant frequencies revealed a recurrent pattern of G614 increase at multiple geographic levels: national, regional, and municipal. The shift occurred even in local epidemics where the original D614 form was well established prior to introduction of the G614 variant. The consistency of this pattern was highly statistically significant, suggesting that the G614 variant may have a fitness advantage. We found that the G614 variant grows to a higher titer as pseudotyped virions. In infected individuals, G614 is associated with lower RT-PCR cycle thresholds, suggestive of higher upper respiratory tract viral loads, but not with increased disease severity. These findings illuminate changes important for a mechanistic understanding of the virus and support continuing surveillance of Spike mutations to aid with development of immunological interventions.
Asunto(s)
Betacoronavirus/genética , Betacoronavirus/patogenicidad , Infecciones por Coronavirus/virología , Neumonía Viral/virología , Glicoproteína de la Espiga del Coronavirus/genética , COVID-19 , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/fisiopatología , Monitoreo Epidemiológico , Aptitud Genética , Variación Genética , Sistemas de Información Geográfica , Hospitalización , Humanos , Pandemias , Filogenia , Neumonía Viral/epidemiología , Neumonía Viral/fisiopatología , Sistema Respiratorio/virología , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Carga ViralRESUMEN
Lymphocytic choriomeningitis virus (LCMV) is a rodent-borne zoonotic arenavirus that causes congenital abnormalities and can be fatal for transplant recipients. Using a genome-wide loss-of-function screen, we identify host factors required for LCMV entry into cells. We identify the lysosomal mucin CD164, glycosylation factors, the heparan sulfate biosynthesis machinery, and the known receptor alpha-dystroglycan (α-DG). Biochemical analysis revealed that the LCMV glycoprotein binds CD164 at acidic pH and requires a sialylated glycan at residue N104. We demonstrate that LCMV entry proceeds by the virus switching binding from heparan sulfate or α-DG at the plasma membrane to CD164 prior to membrane fusion, thus identifying additional potential targets for therapeutic intervention.
Asunto(s)
Virus de la Coriomeningitis Linfocítica/fisiología , Internalización del Virus , Células A549 , Sistemas CRISPR-Cas , Endolina/fisiología , Edición Génica , Células HEK293 , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Concentración de Iones de Hidrógeno , Virus de la Coriomeningitis Linfocítica/patogenicidad , Fusión de Membrana , Factores de VirulenciaRESUMEN
Lymphocytic choriomeningitis virus (LCMV) is an enveloped and segmented negative-sense RNA virus classified within the Arenaviridae family of the Bunyavirales order. LCMV is associated with fatal disease in immunocompromised populations and, as the prototypical arenavirus member, acts as a model for the many highly pathogenic members of the Arenaviridae family, such as Junín, Lassa, and Lujo viruses, all of which are associated with devastating hemorrhagic fevers. To enter cells, the LCMV envelope fuses with late endosomal membranes, for which two established requirements are low pH and interaction between the LCMV glycoprotein (GP) spike and secondary receptor CD164. LCMV subsequently uncoats, where the RNA genome-associated nucleoprotein (NP) separates from the Z protein matrix layer, releasing the viral genome into the cytosol. To further examine LCMV endosome escape, we performed an siRNA screen which identified host cell potassium ion (K+) channels as important for LCMV infection, with pharmacological inhibition confirming K+ channel involvement during the LCMV entry phase completely abrogating productive infection. To better understand the K+-mediated block in infection, we tracked incoming virions along their entry pathway under physiological conditions, where uncoating was signified by separation of NP and Z proteins. In contrast, K+ channel blockade prevented uncoating, trapping virions within Rab7 and CD164-positive endosomes, identifying K+ as a third LCMV entry requirement. K+ did not increase GP-CD164 binding or alter GP-CD164-dependent fusion. Thus, we propose that K+ mediates uncoating by modulating NP-Z interactions within the virion interior. These results suggest K+ channels represent a potential anti-arenaviral target.IMPORTANCEArenaviruses can cause fatal human disease for which approved preventative or therapeutic options are not available. Here, using the prototypical LCMV, we identified K+ channels as critical for arenavirus infection, playing a vital role during the entry phase of the infection cycle. We showed that blocking K+ channel function resulted in entrapment of LCMV particles within late endosomal compartments, thus preventing productive replication. Our data suggest K+ is required for LCMV uncoating and genome release by modulating interactions between the viral nucleoprotein and the matrix protein layer inside the virus particle.
Asunto(s)
Endosomas , Virus de la Coriomeningitis Linfocítica , Potasio , Internalización del Virus , Desencapsidación Viral , Endosomas/virología , Endosomas/metabolismo , Virus de la Coriomeningitis Linfocítica/fisiología , Virus de la Coriomeningitis Linfocítica/genética , Humanos , Potasio/metabolismo , Proteínas de Unión a GTP rab7 , Línea Celular , Animales , Canales de Potasio/metabolismo , Canales de Potasio/genéticaRESUMEN
The mammarenavirus lymphocytic choriomeningitis virus (LCMV) is a globally distributed zoonotic pathogen that can be lethal in immunocompromised patients and can cause severe birth defects if acquired during pregnancy. The structure of the trimeric surface glycoprotein, essential for entry, vaccine design, and antibody neutralization, remains unknown. Here, we present the cryoelectron microscopy (cryo-EM) structure of the LCMV surface glycoprotein (GP) in its trimeric pre-fusion assembly both alone and in complex with a rationally engineered monoclonal neutralizing antibody termed 18.5C-M28 (M28). Additionally, we show that passive administration of M28, either as a prophylactic or therapeutic, protects mice from LCMV clone 13 (LCMVcl13) challenge. Our study illuminates not only the overall structural organization of LCMV GP and the mechanism for its inhibition by M28 but also presents a promising therapeutic candidate to prevent severe or fatal disease in individuals who are at risk of infection by a virus that poses a threat worldwide.
Asunto(s)
Coriomeningitis Linfocítica , Virus de la Coriomeningitis Linfocítica , Ratones , Animales , Coriomeningitis Linfocítica/prevención & control , Microscopía por Crioelectrón , Glicoproteínas de MembranaRESUMEN
Lassa virus (LASV) is the causative agent of the deadly Lassa fever (LF). Seven distinct LASV lineages circulate through western Africa, among which lineage I (LI), the first to be identified, is particularly resistant to antibody neutralization. Lineage I LASV evades neutralization by half of known antibodies in the GPC-A antibody competition group and all but one of the antibodies in the GPC-B competition group. Here, we solve two cryo-electron microscopy (cryo-EM) structures of LI GP in complex with a GPC-A and a GPC-B antibody. We used complementary structural and biochemical techniques to identify single-amino-acid substitutions in LI that are responsible for immune evasion by each antibody group. Further, we show that LI infection is more dependent on the endosomal receptor lysosome-associated membrane protein 1 (LAMP1) for viral entry relative to LIV. In the absence of LAMP1, LI requires a more acidic fusion pH to initiate membrane fusion with the host cell relative to LIV. IMPORTANCE No vaccine or therapeutics are approved to prevent LASV infection or treat LF. All vaccine platforms currently under development present only the LIV GP sequence. However, our data suggest that the high genetic diversity of LASV may be problematic for designing both a broadly reactive immunogen and therapeutic. Here, we examine antibodies that are highly potent against LIV yet are ineffective against LI. By pinpointing LI mutations responsible for this decrease in antibody efficacy, we suggest that future vaccine platforms may need to incorporate specific LI-like mutations in order to generate a broadly neutralizing antibody response against all LASV lineages.
Asunto(s)
Fiebre de Lassa , Virus Lassa , Anticuerpos Neutralizantes , Microscopía por Crioelectrón , Humanos , Virus Lassa/genética , Internalización del VirusRESUMEN
Lassa virus (LASV) is the etiologic agent of Lassa Fever, a hemorrhagic disease that is endemic to West Africa. During LASV infection, LASV glycoprotein (GP) engages with multiple host receptors for cell entry. Neutralizing antibodies against GP are rare and principally target quaternary epitopes displayed only on the metastable, pre-fusion conformation of GP. Currently, the structural features of the neutralizing GPC-A antibody competition group are understudied. Structures of two GPC-A antibodies presented here demonstrate that they bind the side of the pre-fusion GP trimer, bridging the GP1 and GP2 subunits. Complementary biochemical analyses indicate that antibody 25.10C, which is broadly specific, neutralizes by inhibiting binding of the endosomal receptor LAMP1 and also by blocking membrane fusion. The other GPC-A antibody, 36.1F, which is lineage-specific, prevents LAMP1 association only. These data illuminate a site of vulnerability on LASV GP and will guide efforts to elicit broadly reactive therapeutics and vaccines.
Asunto(s)
Fiebre de Lassa , Virus Lassa , Anticuerpos Neutralizantes , Epítopos , Glicoproteínas/metabolismo , Humanos , Fiebre de Lassa/prevención & control , Virus Lassa/metabolismo , Proteínas del Envoltorio ViralRESUMEN
Developing potent therapeutics and effective vaccines are the ultimate goals in controlling infectious diseases. Lassa virus (LASV), the causative pathogen of Lassa fever (LF), infects hundreds of thousands annually, but effective antivirals or vaccines against LASV infection are still lacking. Furthermore, neutralizing antibodies against LASV are rare. Here, we describe biochemical analyses and high-resolution cryo-electron microscopy structures of a therapeutic cocktail of three broadly protective antibodies that target the LASV glycoprotein complex (GPC), previously identified from survivors of multiple LASV infections. Structural and mechanistic analyses reveal compatible neutralizing epitopes and complementary neutralization mechanisms that offer high potency, broad range, and resistance to escape. These antibodies either circumvent or exploit specific glycans comprising the extensive glycan shield of GPC. Further, they require mammalian glycosylation, native GPC cleavage, and proper GPC trimerization. These findings guided engineering of a next-generation GPC antigen suitable for future neutralizing antibody and vaccine discovery. Together, these results explain protective mechanisms of rare, broad, and potent antibodies and identify a strategy for the rational design of therapeutic modalities against LF and related infectious diseases.
Asunto(s)
Fiebre de Lassa , Vacunas Virales , Animales , Humanos , Virus Lassa , Microscopía por Crioelectrón , Anticuerpos Neutralizantes , Epítopos , Glicoproteínas , Polisacáridos , Antivirales , MamíferosRESUMEN
Bacterial small RNAs (sRNAs) have been established as powerful parts for controlling gene expression. However, development and application of engineered sRNAs has primarily focused on regulating novel synthetic targets. In this work, we demonstrate a rational modular RNA engineering approach that uses in vivo structural accessibility measurements to tune the regulatory activity of a multisubstrate sRNA for differential control of its native target network. Employing the CsrB global sRNA regulator as a model system, we use published in vivo structural accessibility data to infer the contribution of its local structures (substructures) to function and select a subset for engineering. We then modularly recombine the selected substructures, differentially representing those of presumed high or low functional contribution, to build a library of 21 CsrB variants. Using fluorescent translational reporter assays, we demonstrate that the CsrB variants achieve a 5-fold gradient of control of well-characterized Csr network targets. Interestingly, results suggest that less conserved local structures within long, multisubstrate sRNAs may represent better targets for rational engineering than their well-conserved counterparts. Lastly, mapping the impact of sRNA variants on a signature Csr network phenotype indicates the potential of this approach for tuning the activity of global sRNA regulators in the context of metabolic engineering applications.