Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Monit Assess ; 194(2): 131, 2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35089440

RESUMEN

In this study, we evaluate the geochemistry of macro- (Fe, P, Ca, S, K, Na, Mg) and micronutrients (Mo, Cu, Pb, Zn, Co, Mn, Cd, Sr, Cr, Hg, Se), along with possible health risks of heavy metals contamination in agricultural soils and vegetables of the Mahshahr industrial port in Iran. Calculation of geochemical coefficients revealed the low pollution load of Mahshahr agricultural soils. Most of the investigated elements exhibited lower concentrations in soil than international standards. Element concentrations in plant samples were far below the permissible values set by environmental agencies. Based on permissible values, there was deficiency of several soil elements, including Cu, in vegetables because they are mostly present in the soil residual phase. An exception was Mn, which is the most mobile element in soil. The transfer factor (TF) of elements showed the following trend: K > Na > P > S > Mo > Hg > Se > Zn > Cd > Cu > Mg > Mn > Ca > Cr > Co ≈ Fe = Pb. There was high transfer of major elements from soil to plants, and lower values for micronutrients and heavy metals. The calculated daily intake (DIM) and health risk index (HRI) for ten plant species for adults were < 1, while the HRI was larger than 1 for Mn via radish consumption. According to geochemical investigations and statistical tests such as principal component analysis, Kruskal-Wallis, and correlation coefficient calculations, plant species play the most important role in elemental uptake by plants.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Oligoelementos , Adulto , Monitoreo del Ambiente , Humanos , Irán , Metales Pesados/análisis , Plantas Comestibles , Medición de Riesgo , Suelo , Contaminantes del Suelo/análisis , Oligoelementos/análisis
2.
Environ Res ; 196: 110963, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33675802

RESUMEN

The objectives of the current study are to investigate the concentration, biological risks, chemical speciation, and mobility of of heavy metals and also the determination of their distribution, physicochemical characteristics, and abundance of microplastics in coastal sediments and edible bivalves in the Persian Gulf, the coastal area of Hormozgan Province. Sampling points were selected considering the location of industrial, urban and Hara forest protected areas. In November 2017, a total of 18 sediment samples from coastal sediments (top 0-10 cm) and the most consumed bivalve species in the region were collected from two stations, Lengeh and Bandar Abbas Ports. The average concentration of heavy metals (except for Ni and Cd) in the sediments were lower than their average shale and the upper continental crust. Enrichment factors revealed significant enrichment of Ni, Mn, Cr, Cd and As. The fractionation of heavy metals using the Community Bureau of Reference (BCR) sequential extraction scheme indicated the high bioavailability of Zn, As, Mn, and Co. In general, the highest concentration of Mo, Cd, Pb, Zn, Cr, Cu, Mn, Hg, and Sb was detected in areas with frequent human activities including Shahid Rajaee Port, Shahid Bahonar Port, and Tavanir station. Shahid Rajaee and Shahid Bahonar Ports are the most important ports on the coast of Hormozgan province. The Risk Assessment Code calculated for the study elements indicates that As, Co, Zn, and Cu pose a moderate environmental risk a threat to the aquatic biota. Health risks of most heavy metals arising from bivalves consumption were safe, except for As which is associated with the high target cancer risk values. With reference to the type of microplastics found, they were mainly fibeours with lengths ranging between 100 and 250 µm in sediments and bivalves. Most of the microfibers found in the sediments were made of polyethylene terephthalate (PET) and polypropylene (PP), and the fibers found in the bivalves were made of PP.


Asunto(s)
Bivalvos , Metales Pesados , Contaminantes Químicos del Agua , Animales , Monitoreo del Ambiente , Sedimentos Geológicos , Humanos , Océano Índico , Metales Pesados/análisis , Microplásticos , Plásticos , Medición de Riesgo , Contaminantes Químicos del Agua/análisis
3.
Ecotoxicol Environ Saf ; 212: 111972, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33513479

RESUMEN

Dust emitted from mining, ore processing, and tailing dumps have direct effects on miners who work close to these operations. The Gol-E-Gohar (GEG) mining and industrial company is one of the most important iron concentrate producers in the Middle East. The objective of the present study was to estimate the distribution, fractionation, and oral bioaccessibility of potentially toxic elements (PTEs) in dust generated by the GEG mining and industrial company. Total PTE content including Al, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, V, and Zn was quantified for suspended particulate matter (PM) in PM2.5, PM10, and total suspended particulate matter (TSP). As, Cd, Co, Cu, Fe, Ni, and Pb were quantified in fallout dust samples for oral bioaccessibility using in vitro Unified BARGE (UBM) Method and modified BCR fractionation analysis. Enrichment factors (EF) were calculated for the studied elements in PM; Cu, Fe, and As were found to be extremely enriched. Oral bioaccessibility of selected PTEs in fallout dust samples ranged from 0.35% to 41.55% and 0.06-37.58% in the gastric and intestinal phases, respectively. Regression modeling revealed that the bioaccessibilities of the PTEs could mostly be explained by total concentrations in dust particles. Average daily intake (ADI) calculations revealed that the intake of PTEs did not exceed the tolerable daily intake (TDI) values and as such was not considered a significant risk to workers. Additionally, the hazard quotients (HQ) and carcinogenic risk (CR) values were lower than the acceptable level. This study can provide further risk assessment and management of PTE pollution in occupational environments.


Asunto(s)
Polvo/análisis , Monitoreo del Ambiente , Contaminantes Ambientales/análisis , Contaminación Ambiental/análisis , Humanos , Hierro/análisis , Metales Pesados/análisis , Minería , Material Particulado/análisis , Medición de Riesgo
4.
Environ Geochem Health ; 43(1): 485-519, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33033901

RESUMEN

Contamination level, source, and ecological-health risk of potentially toxic elements (PTEs) and polycyclic aromatic hydrocarbons (PAHs) in the street dust of Yazd, a central capital city in Iran, were investigated for the first time regarding samples collected from 21 sites. Geochemical indices pointed out an enrichment trend of [Formula: see text] and an ecological risk trend of [Formula: see text]. The ecological risk indices of PAHs reflected high ecological risk for pyrene (Pyr). The statistical approach along with the isomeric ratios of PAHs suggested that the traffic-related sources, such as wearing of tires and brake pads, and the vehicular exhaust emissions were greatly responsible for the elevated concentrations of Pb, Cu, Sb, and PAHs, while Al, Ni, Co, V, Mn, As, and, to a lesser extent, Fe, Zn, Mo, and Cr were mainly influenced by geogenic sources. The human health risk assessment of PTEs and PAHs reflected that As, Cr, and Pb pose the highest non-carcinogenic risk in adults and children, compared with other PTEs and also PAHs. The carcinogenic health risk of Pb in the children and PAHs in both subpopulations was high for cancer development.


Asunto(s)
Polvo/análisis , Contaminantes Ambientales/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Carcinógenos/análisis , Carcinógenos/toxicidad , Monitoreo del Ambiente , Contaminantes Ambientales/toxicidad , Humanos , Irán , Metales Pesados/análisis , Hidrocarburos Policíclicos Aromáticos/química , Hidrocarburos Policíclicos Aromáticos/toxicidad , Medición de Riesgo , Emisiones de Vehículos/análisis , Emisiones de Vehículos/toxicidad
5.
Environ Monit Assess ; 193(7): 452, 2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34181101

RESUMEN

This study investigates the occurrence, distribution, and potential ecological risk of trace elements (TEs) along with the hydrogeochemical characteristics of coastal surface water collected from the southern Caspian coasts in the Mazandaran province of Iran. Eighteen coastal water sites were sampled and analyzed using inductively coupled plasma-mass spectrometry and ion chromatography to determine concentrations of TEs and major ions, respectively. Mean concentrations (µg/l) of TEs in the water followed the order: Al (154.3) > Fe (73.6) > Zn (67.8) > Mn (29.9) > Cu (5.7) > Mo (3.7) > Cd (2.8) > Se (2.3) > V (1.9) > Co = As (1.8) > Sb (1.2) > Pb (0.6). TEs displayed high variations within samples, reflecting many sources that control their concentrations in the coastal water. Most TEs displayed elevated concentrations in the east and west of the study area. The Na-Cl water type in the majority of investigated sites indicates excess alkaline elements and strong acid anions relative to alkaline earth cations and weak acid anions. Considering the saturation states of minerals, carbonate and evaporite minerals are oversaturated and unsaturated in surface water, respectively. Compositional interrelations between aqueous species showed that reverse cation exchange may have occurred. The excess SO42- content, derived from irrigation return flow and domestic greywater, probably plays a crucial role in the mobilization and transport of Zn and Pb by binding to sulfate ligands and forming aqueous complexes. Ecological risk assessment of TEs revealed that water in the majority of sites is safe in terms of As, Se, Pb, and Cd content, and unsuitable with respect to Zn and Cu. Acute and chronic toxicities of Cu and Zn are reported in several sites, thus coastal water cannot be used for fishery and protecting "nature reserve" purposes. However, industrial activity and tourism are safe to be conducted in most coastal water sites.


Asunto(s)
Metales Pesados , Oligoelementos , Contaminantes Químicos del Agua , Mar Caspio , Monitoreo del Ambiente , Irán , Metales Pesados/análisis , Medición de Riesgo , Oligoelementos/análisis , Agua , Contaminantes Químicos del Agua/análisis
6.
Ecotoxicol Environ Saf ; 206: 111137, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-32858324

RESUMEN

This study assesses the occurrence of microplastics (MPs) in coastal and sea surface sediments, as well as water samples, collected from the coastal region of the southern Caspian Sea, Mazandaran province, Iran. A total of 32 sediment and 10 water samples were studied. The mean concentration of MPs was 15 units kg-1 in the sediments and 710 units m-3 in the coastal water. Fibers constituted by far the dominant MPs in both media, accounting for 97% of the MPs in both sediment and water samples. The MPs were mainly black in color. The dominant size of MP particles in sediment samples was between 250 and 500 µm, while the fraction >1000 µm dominated in the water samples. Polyethylene terephthalate (PET), polystyrene (PS), and nylon (NYL) were the main polymers and/or copolymers composing MPs in both sediment and water samples. The MP particles had a relatively smooth surface morphology, although signs of weathering were observed. The number of MP particles in sediment and water samples showed a general decrease from west to east in the study area. This may be reflecting the spreading of MP loading from the outlets of Sefidrud, Tonekabon, Chalus, the major rivers entering the Caspian Sea just west of the study area, and the overall decrease in the spatial distribution of touristic and fishery activity. The main sources of MP particles could be local emissions from a large number of domestic wastewater effluents and urban surface runoff due to high population density, and industrial and fishing activities in this region. This study indicated that MP particles, based on their characteristics and chemical composition, are circulated between coastal waters, and shore and sea surface sediments of the Caspian Sea, leading to their uneven distribution in the different depths. To the best of our knowledge, this is the first work studying the distribution of MP particles in sea surface sediments and also the most comprehensive on MPs in shoreline sediments and coastal waters in the southern Caspian Sea.


Asunto(s)
Sedimentos Geológicos/química , Microplásticos/análisis , Agua de Mar/química , Contaminantes Químicos del Agua/análisis , Mar Caspio , Monitoreo del Ambiente , Irán , Microplásticos/química , Plásticos/análisis , Plásticos/química , Ríos/química , Aguas Residuales/química , Contaminantes Químicos del Agua/química
7.
Environ Geochem Health ; 42(11): 3659-3673, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32440917

RESUMEN

Following earlier reports of water contamination and arsenic (As) toxicity symptoms in residents of Kurdistan Province, As was determined in rock, soil and plant samples to investigate its fate from rock to crops and its potential effects on human health. Total As content ranged from 4.9 to 10,000 mg/kg, 7.7-430 mg/kg and < 0.05-25,079 µg/kg (dry weight) in rock, soil and plant samples, respectively. The Qorveh-Bijar region data indicated that magmatic differentiation has enriched late magmatic fluids in As. High rare earth elements concentration, dissociation coefficient, and positive Eu anomaly in volcanic rocks, indicated the prevalence of intermediate to felsic composition. The highest As concentration was measured in travertine. In soil, As average level in Qorveh and Bijar was 48.5 and 107 mg/kg, respectively. Higher pollution index and geoaccumulation index (Igeo) were also calculated for Bijar County. The As concentration in crop samples was greater than the recommended maximum permissible concentration for foodstuff. Mann-Whitney U test revealed significant differences between As concentration in different plant species and no difference between plants in Bijar and Qorveh. Also, alfalfa displayed the highest biological accumulation coefficient among the investigated plants. The calculated chronic daily intake of As in Bijar County was higher than the recommended levels for wheat and barley grains. Moreover, the hazard quotient (HQ) and incremental lifetime cancer risk assessments revealed high non-cancer (HQ > 1 for both adults and children) and cancer (particularly for barley in Bijar) risks for inhabitants via consumption of As contaminated crops cultivated in the study area.


Asunto(s)
Arsénico/análisis , Productos Agrícolas/química , Exposición Dietética/análisis , Contaminación de Alimentos/análisis , Contaminantes del Suelo/análisis , Adulto , Arsénico/farmacocinética , Arsénico/toxicidad , Bioacumulación , Carcinógenos Ambientales/análisis , Carcinógenos Ambientales/farmacocinética , Carcinógenos Ambientales/toxicidad , Niño , Hordeum/química , Humanos , Irán , Medicago sativa , Nivel sin Efectos Adversos Observados , Medición de Riesgo , Contaminantes del Suelo/farmacocinética , Contaminantes del Suelo/toxicidad , Triticum/química
8.
Environ Monit Assess ; 192(10): 639, 2020 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-32929590

RESUMEN

Soil and the dominant plant species in the vicinity of Khatoon Abad copper smelter in Kerman province of Iran are examined to determine contamination, bioavailability, and ecological-health risk of potentially toxic elements (PTEs) based on 23 collected soil samples and 13 Artemisia siebri plant species. Cu, Mo, As, and Sb display a significant level of enrichment in soil. Ecological risk assessment shows that Cu, As, and Cd pose the highest ecological risk. The results of PTEs fractionation reveal that, on average, Cu, As, Cd, Pb, Zn, and Mo are mostly distributed between non-residual fractions reflecting higher mobility and potential ecological risk, while Cr, Ni, and Co are significantly distributed within the residual fraction, and do not pose a serious ecological risk. Mobility factor suggests high bioavailability of Cu for plants followed by As, Cd, Pb, Mo, Co, Ni, and Cr. Biological accumulation coefficient displays higher phytoavailability of Mo and Cd. PTEs transfer within plant follows the order of Mo > As > Pb > Zn > Cu > Ni > Co > Cr > Cd. The results of phytoavailability indicate the high tendency of Cd to bioaccumulate in Artemisia's root, while Mo, As, and Pb tend to translocate towards Artemisia's shoot. Calculated hazard index and incremental lifetime cancer risk revealed that As poses the highest non-carcinogenic health risk, and As and Pb pose the greatest carcinogenic health risk in both adults and children.


Asunto(s)
Metales Pesados/análisis , Contaminantes del Suelo/análisis , Adulto , Disponibilidad Biológica , Niño , Cobre , Monitoreo del Ambiente , Humanos , Irán , Medición de Riesgo , Suelo
9.
Ecotoxicol Environ Saf ; 173: 251-265, 2019 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-30772715

RESUMEN

This study aimed to speciate and quantify potentially toxic elements (PTEs) and polycyclic aromatic hydrocarbons (PAHs), in addition to estimate potential human health risk of PTEs (As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Se, V, and Zn) through the consumption of three edible fish species (Leuciscus vorax, Liza abu, and Coptodon zillii) and two prawn species (Metapenaeus affinis and Penaeus semisulcatus) collected from Arvand River and Musa Estuary in the Persian Gulf. The concentration of As in prawn species exceeded permissible limit set by international organizations. PAHs were dominated by low molecular weight species such as naphthalene, phenanthrene, and, fluorene but generally exhibited low mean concentrations in fish and prawn samples. The human health hazard posed by PTEs was assessed using methods that consider estimated daily intake (EDI), estimated weekly intake (EWI), target hazard quotients (THQ), and combined THQ. The results suggested that elevated As concentrations in almost all prawn samples may pose a probable health hazard to local inhabitants.


Asunto(s)
Arsénico/análisis , Decápodos , Peces , Contaminación de Alimentos/análisis , Metales Pesados/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes Químicos del Agua/análisis , Adulto , Animales , Niño , Monitoreo del Ambiente , Estuarios , Humanos , Océano Índico , Irán , Medición de Riesgo , Ríos , Alimentos Marinos
10.
Ecotoxicol Environ Saf ; 167: 365-375, 2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-30359903

RESUMEN

The main purpose of this research was to assess the level of contamination, source identification, geochemical fractionation, and health risk of potentially toxic elements (PTEs) in industrial soils from urban and peri-urban areas of Ahvaz city. A total of 92 surface soil samples were gathered and concentrations of sixteen PTEs were measured using aqua regia digestion by an inductively coupled plasma mass spectrometry (ICP-MS). Possible sources of PTEs were quantitatively determined by positive matrix factorization (PMF) receptor model combined with geostatistical analyses and geochemical methods. The results showed that long-term industrial activities have enhanced the levels of some PTEs particularly Pb, Hg, Zn, Mo, Sb, Fe, Cu, and Cd to different extents. Contamination indices including geoaccumulation index, pollution index, and Nemerov integrated pollution index along with multivariate statistical analyses confirmed that steel and iron industries are the most contaminating industries in the study area. The outcomes attained from Kruskal-Wallis test affirmed that there was a significant difference among the concentrations of As, Hg, Mn, Cu, Fe, Pb, Mo, Cd, V, Zn, and Sb in soils around different industrial clusters. Among the studied elements, the highest mobility factors belonged to Zn (81.49%), Pb (76.71%), Cu (71.65%), Hg (66.23%), Mn (62.48%), and Mo (59.27%), respectively. Also, the PMF model showed that steel and iron industries (51.2%) and natural sources (23.4%) are the main sources of PTEs, followed by industrial towns (16.7%) and power plants (8.7%). This is in line with the results of principal component analysis (PCA). Majority of the measured PTEs showed the highest bioavailability in surface soils collected from around the steel and iron industries. Also, based on the outcomes of the health risk assessment model, particular attention should be paid to Hg, Pb, Zn, and Cu in industrial soils of Ahvaz.


Asunto(s)
Contaminación Ambiental/análisis , Metalurgia , Metales Pesados/análisis , Centrales Eléctricas , Contaminantes del Suelo/análisis , Suelo/química , Ciudades , Monitoreo del Ambiente , Irán , Medición de Riesgo
11.
Int J Environ Health Res ; 29(6): 668-685, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30714393

RESUMEN

In this study, the concentrations of street dust-bound polycyclic aromatic hydrocarbons (PAHs) in Kerman metropolis as a typical arid urban area were determined to investigate the contamination, molecular composition, toxicity, and sources of PAHs. Sixteen individual PAHs on the United States Environmental Protection Agency priority list were analyzed using gas chromatography-mass spectrometry in street dust samples from 30 sites. ∑PAHs ranged between 165 and 5314.7 µg·kg-1 with a mean of 770.8 µg·kg-1. The most abundant individual PAHs were fluoranthene, phenanthrene, pyrene, and chrysene, respectively. High molecular weight PAHs (4-6 rings) made 74.8% of ∑PAHs mass and were dominant in all sites. Source apportionment was performed using ring classification, diagnostic ratios, and principal component analysis-multiple linear regression. The results indicated that primary contributors of PAHs in the street dust of Kerman could be liquid fossil fuel combustion, natural gas combustion, and petrogenic sources, accounting for 82.4%, 11.5%, and 6.1%, respectively. The calculated incremental lifetime cancer risk is 8.13 × 10-4 for children and 6.27 × 10-4 for adults. Hence, both children and adults in Kerman are potentially exposed to a high carcinogenic risk via ingestion and dermal contact.


Asunto(s)
Contaminantes Atmosféricos/análisis , Polvo/análisis , Exposición a Riesgos Ambientales/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Adulto , Contaminantes Atmosféricos/química , Contaminantes Atmosféricos/toxicidad , Carcinógenos/análisis , Carcinógenos/química , Carcinógenos/toxicidad , Niño , Humanos , Irán , Hidrocarburos Policíclicos Aromáticos/química , Hidrocarburos Policíclicos Aromáticos/toxicidad , Medición de Riesgo , Salud Urbana
12.
Environ Geochem Health ; 41(6): 2803-2820, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31177477

RESUMEN

High bioavailability of man-made pollutants in marine environments raises serious concern regarding the safety of seafood. In the present study, the presence, trophic transfer, and risks of polycyclic aromatic hydrocarbons (PAHs), and potentially toxic elements (PTEs) in 170 benthic marine organisms (87 prawn; 28 crab; 55 fish) from the Persian Gulf were investigated. Among investigated species, E. coioides displayed the lowest level of metal pollution index (MPI), while P. armatus and P. semisulcatus showed the highest level of MPI and total PAHs, respectively. Principal component biplot exhibited a significant association of PTEs (except Hg) and PAHs in less motile benthic species. The results of trophic transfer investigation revealed that PTEs (except Hg) and PAHs were not biomagnified in the studied organisms through diet. However, Hg biomagnification factors greater than 1 indicated trophic transfer of mercury. In order to gain nutritional benefits of seafood, consumption of two fish/prawn meals/week for adults (except vulnerable groups such as pregnant women) and one fish/prawn meals/week for children is recommended. However, lifelong consumption of crabs (P. armatus) may threaten human health. In addition, the maximum allowable fish consumption rate (CRlim) for studied fish is 120 g fish/day for adults and 30 g fish/day for children. In the case of prawns, the safe dose is 30 and 10 g prawns/day for adults and children, respectively.


Asunto(s)
Exposición Dietética/efectos adversos , Contaminación de Alimentos/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Alimentos Marinos/análisis , Contaminantes Químicos del Agua/análisis , Adulto , Animales , Niño , Exposición Dietética/análisis , Exposición Dietética/prevención & control , Femenino , Peces , Humanos , Océano Índico , Mercurio/análisis , Metales/análisis , Hidrocarburos Policíclicos Aromáticos/toxicidad , Embarazo , Medición de Riesgo , Mariscos/análisis , Contaminantes Químicos del Agua/toxicidad
13.
Environ Monit Assess ; 191(4): 233, 2019 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-30900011

RESUMEN

The concentration, source, and ecological risk of 16 polycyclic aromatic hydrocarbons (PAHs) in water and sediment samples in Hoor Al-Azim wetland, a significant freshwater wetland in Lower Mesopotamia, were evaluated. Total PAHs concentrations varied from 15.3 to 160.15 ng/L, and 15.78 to 410.2 µg/Kg in water and sediment, respectively. PAHs pollution levels in sediments compared with sediment quality guidelines (SQG) were found to be moderate in two stations and low in water and the rest of sediment stations. Based on the diagnostic ratio analysis, cluster analysis (CA), and principal component analysis-multiple linear regression (PCA-MLR), the mean percentage contributions were 62.62% for mixed pyrogenic and petrogenic sources (e.g., unburned and combusted fossil fuels from fishing boats and vehicle engines, incomplete combustion, oil leakage), 20.68% for auto emission, and 16.7% for pyrogenic sources (fossil fuels and biomass combustion). According to the sediment risk assessment indices such as mean effects range-median quotient (M-ERM-Q), the ecological risk of multiple PAHs was low. Risk quotient (RQ) calculation of water samples suggested high ecological risk level for Benzo[a]anthracene (BaA), and low to moderate for other individual PAHs and ΣPAHs. The result of PAHs partitioning between sediment and water phases revealed that most PAHs prefer to accumulate in sediment. Sediments probably act as a secondary source for some PAHs in the oil collection and pumping station.


Asunto(s)
Monitoreo del Ambiente , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes Químicos del Agua/análisis , Humedales , Biomasa , Análisis por Conglomerados , Ecología , Sedimentos Geológicos , Irán , Mesopotamia , Análisis de Componente Principal , Medición de Riesgo
14.
Environ Manage ; 62(4): 803-818, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30014346

RESUMEN

The geochemical nature and health hazards of potentially toxic elements (PTEs) and polycyclic aromatic hydrocarbons (PAHs) in the street dust of Bandar Abbas, Iran, are investigated in this study based on 27 street dust samples. Mean concentrations of Cu, Pb, Zn, As, Sb, and Hg revealed elevated concentrations as compared to the world soil average. Calculated enrichment factors (EFs) indicated that there is very high contamination in dust particles owing to anthropogenic emissions. Two main sources of PTEs are traffic emissions (Cu, Pb, Zn, Co, Mn, Fe, As, Cd, Sb, and Hg) and resuspended soil particles (Al, Ti, Ni, and Cr). Statistical analysis shows that Al, Mn, Ni, Ti, Cr, Fe, and Co are geogenic, whereas PAHs are mainly derived from traffic emissions. Values of incremental lifetime cancer risk (ILCR), as derived from a modified model of the United State Environmental Protection Agency (USEPA), indicate that Bandar Abbas residents are potentially exposed to high cancer risk, especially via dust ingestion and dermal contact, whereas the level of hazard index (HI), hazard quotients (HQ), and cancer risk associated with exposure to the elements in street dust fall lower than threshold values representative of health risks.


Asunto(s)
Polvo/análisis , Monitoreo del Ambiente/métodos , Contaminantes Ambientales/análisis , Metales Pesados/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Emisiones de Vehículos/análisis , Ciudades , Humanos , Irán , Neoplasias/epidemiología , Medición de Riesgo
15.
Environ Geochem Health ; 40(2): 721-735, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28856501

RESUMEN

Surface sediment samples were collected from intertidal zone of Asaluyeh, Persian Gulf, to investigate distribution, sources and health risk of sixteen polycyclic aromatic hydrocarbons (PAHs). Total PAH concentrations ranged from 1.8 to 81.2 µg kg-1 dry weight, which can be categorized as low level of pollution. Qualitative and quantitative assessments showed that PAHs originated from both petrogenic and pyrogenic sources with slight pyrogenic dominance. Source apportionment using principal component analysis indicated that the main sources of PAHs were fossil fuel combustion (33.59%), traffic-related PAHs (32.77%), biomass and coal combustion (18.54%) and petrogenic PAHs (9.31%). According to the results from the sediment quality guidelines, mean effects range-median quotient (M-ERM-Q) and benzo[a]pyrene toxic equivalents (BaPeq), low negative ecological risks related to PAH compounds would occur in the intertidal zone of Asaluyeh. The total benzo[a]pyrene (BaP) toxic equivalent quotient (TEQcarc) for carcinogenic compounds ranged from 0.01 to 7 µg kg-1-BaPeq, indicating low carcinogenic risk. The human health risk assessment of PAH compounds via ingestion and dermal pathways suggests low and moderate potential risk to human health, respectively.


Asunto(s)
Sedimentos Geológicos/química , Hidrocarburos Policíclicos Aromáticos/análisis , Salud Poblacional , Contaminantes Químicos del Agua/análisis , Biomasa , Humanos , Océano Índico , Hidrocarburos Policíclicos Aromáticos/toxicidad , Análisis de Componente Principal , Medición de Riesgo
16.
Environ Geochem Health ; 40(4): 1187-1208, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29081009

RESUMEN

This study investigates the occurrence and spatial distribution of potentially toxic elements (PTEs) (Hg, Cd, Cu, Mo, Pb, Zn, Ni, Co, Cr, Al, Fe, Mn, V and Sb) in 67 road dust samples collected from urban industrial areas in Ahvaz megacity, southwest of Iran. Geochemical methods, multivariate statistics, geostatistics and health risk assessment model were adopted to study the spatial pollution pattern and to identify the priority pollutants, regions of concern and sources of the studied PTEs. Also, receptor positive matrix factorization model was employed to assess pollution sources. Compared to the local background, the median enrichment factor values revealed the following order: Sb > Pb > Hg > Zn > Cu > V > Fe > Mo > Cd > Mn > Cr ≈ Co ≈ Al ≈ Ni. Statistical results show that a significant difference exists between concentrations of Mo, Cu, Pb, Zn, Fe, Sb, V and Hg in different regions (univariate analysis, Kruskal-Wallis test p < 0.05), indicating the existence of highly contaminated spots. Integrated source identification coupled with positive matrix factorization model revealed that traffic-related emissions (43.5%) and steel industries (26.4%) were first two sources of PTEs in road dust, followed by natural sources (22.6%) and pipe and oil processing companies (7.5%). The arithmetic mean of pollution load index (PLI) values for high traffic sector (1.92) is greater than industrial (1.80) and residential areas (1.25). Also, the results show that ecological risk values for Hg and Pb in 41.8 and 9% of total dust samples are higher than 80, indicating their considerable or higher potential ecological risk. The health risk assessment model showed that ingestion of dust particles contributed more than 83% of the overall non-carcinogenic risk. For both residential and industrial scenarios, Hg and Pb had the highest risk values, whereas Mo has the lowest value.


Asunto(s)
Polvo/análisis , Sustancias Peligrosas/toxicidad , Metales Pesados/análisis , Medición de Riesgo , Transportes , Contaminantes Ambientales/análisis , Humanos , Residuos Industriales , Irán , Emisiones de Vehículos/análisis
17.
Environ Geochem Health ; 40(3): 1155-1174, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28600726

RESUMEN

When the hazard quotient for ingestion (HQI) of a trace element in soil and dust particles is adjusted for the element's bioaccessibility, the HQI is typically reduced as compared to its calculation using pseudo-total element concentration. However, those studies have mostly used bulk particles (<2 mm or <250 µm), and the reduction in HQI when expressed as bioaccessible metal may not be similar among particle size fractions, the possibility probed by the present study of street dusts and soils collected in Tehran. The highest Cu, Pb and Zn near-total concentrations occurred in the finest particles of dusts and soils. Bioaccessible concentrations of Cu, Pb and Zn in the particles (mg kg-1) were obtained using simple bioaccessibility extraction test (SBET). The bioaccessibility (%) did not vary much among near-total concentrations. In the bulk (<250 µm) sample, the bioaccessible concentration of Cu and Pb increased as the pH of sample increased, while Zn bioaccessibility (%) in the bulk particles was influenced by organic matter and cation exchange capacity. X-ray diffraction identified sulfide and sulfate minerals in all of the size-fractionated particles, which are insoluble to slightly soluble in acidic conditions and included most of the Cu and Pb in the samples. The only Zn-bearing mineral identified was hemimorphite, which would be highly soluble in the SBET conditions. The calculated HQI suggested potential non-carcinogenic health risk to children and adults from ingestions of soils and dusts regardless of particle size consideration, in the order of Zn > Pb ≥ Cu. The HQI calculated from near-total metal was not much different for particle size classes relative to bulk particles; however, the bioaccessibility percent-adjusted HQI for Pb was higher for the smaller particles than the bulk. This work is novel in its approach to compare HQI for a bulk sample of particles with its composite particle size fractions.


Asunto(s)
Cobre/análisis , Polvo/análisis , Plomo/análisis , Contaminantes del Suelo/análisis , Suelo/química , Salud Urbana , Zinc/análisis , Adulto , Disponibilidad Biológica , Niño , Exposición a Riesgos Ambientales , Humanos , Irán , Difracción de Polvo , Lluvia , Medición de Riesgo , Temperatura
18.
Environ Geochem Health ; 40(5): 1785-1802, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28281141

RESUMEN

Concentrations of total suspended particulate matter, particulate matter with aerodynamic diameter <2.5 µm (PM2.5), particulate matter <10 µm (PM10), and fallout dust were measured at the Iranian Gol-E-Gohar Mining and Industrial Facility. Samples were characterized in terms of mineralogy, morphology, and oxidative potential. Results show that indoor samples exceeded the 24-h PM2.5 and PM10 mass concentration limits (35 and 150 µg m-3, respectively) set by the US National Ambient Air Quality Standards. Calcite, magnetite, tremolite, pyrite, talc, and clay minerals such as kaolinite, vermiculite, and illite are the major phases of the iron ore PM. Accessory minerals are quartz, dolomite, hematite, actinolite, biotite, albite, nimite, laumontite, diopside, and muscovite. The scanning electron microscope structure of fibrous-elongated minerals revealed individual fibers in the range of 1.5 nm to 71.65 µm in length and 0.2 nm to 3.7 µm in diameter. The presence of minerals related to respiratory diseases, such as talc, crystalline silica, and needle-shaped minerals like amphibole asbestos (tremolite and actinolite), strongly suggests the need for detailed health-based studies in the region. The particulate samples show low to medium oxidative potential per unit of mass, in relation to an urban road side control, being more reactive with ascorbate than with glutathione or urate. However, the PM oxidative potential per volume of air is exceptionally high, confirming that the workers are exposed to a considerable oxidative environment. PM released by iron ore mining and processing activities should be considered a potential health risk to the mine workers and nearby employees, and strategies to combat the issue are suggested.


Asunto(s)
Hierro/química , Minerales/análisis , Minería , Material Particulado/química , Contaminación del Aire , Polvo/análisis , Monitoreo del Ambiente/métodos , Humanos , Exposición por Inhalación , Irán , Compuestos de Hierro , Pulmón/efectos de los fármacos , Instalaciones Industriales y de Fabricación , Minerales/toxicidad , Exposición Profesional , Oxidación-Reducción , Material Particulado/toxicidad
19.
Ecotoxicol Environ Saf ; 136: 92-103, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27825051

RESUMEN

In this study a total of 30 street dusts and 10 surface soils were collected in the central district of Tehran and analyzed for major potentially toxic metals. Street dust was found to be greatly enriched in Sb, Pb, Cu and Zn and moderately enriched in Cr, Mn, Mo and Ni. Contamination of Cu, Sb, Pb and Zn was clearly related to anthropogenic sources such as brake wear, tire dust, road abrasion and fossil fuel combustion. Spatial distribution of pollution load index in street dust suggested that industries located south-west of the city intensify street dust pollution. Microscopic studies revealed six dominant group of morphological structures in calculation of the exposurethe street dusts and surface soils, with respect to different geogenic and anthropogenic sources. The BCR (the European Community Bureau of Reference) sequential extraction results showed that Sb, Ni, Mo, As and Cr bonded to silicates and sulfide minerals were highly resistant to dissolution. In contrast, Zn, Cd, and Mn were mostly associated with the exchangeable phase and thus would be easily mobilized in the environment. Cu was the most abundant metal in the reducible fraction, indicating its adsorption to iron and manganese oxy-hydroxides. Pb was equally extracted from exchangeable and reducible fractions. Anthropogenic sources related to traffic apparently play a small role in Cr, Ni and Mo contamination and dispersed them as bioavailable forms but with reduced mobility and bioavailablity due to high potential of complexation and adsorption to organic matter and iron and manganese oxy-hydroxides. Calculated Hazard Index (HI) suggests ingestion as the most important pathway for the majority of PTMs in children and dermal contact as the main exposure route for Cr, Cd and Sb for adults. The HIs and fractionation pattern of elements revealed Pb as the sole element that bears potential health risk in street dust and surface soil.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Polvo/análisis , Exposición a Riesgos Ambientales , Metales/toxicidad , Contaminantes del Suelo/toxicidad , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Ciudades , Monitoreo del Ambiente , Humanos , Lactante , Irán , Persona de Mediana Edad , Medición de Riesgo , Adulto Joven
20.
J Environ Manage ; 170: 136-44, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26820974

RESUMEN

Arsenic (As) and antimony (Sb) concentrations in water and sediments were determined along flow paths in the Sarouq River, Zarshuran and Agh Darreh streams. The results indicate high As and Sb concentrations in water and sediment samples. Raman spectroscopy shows hematite (α-Fe2O3), goethite [α-FeO(OH)] and lepidocrocite [γ-FeO(OH)] in sediment samples. Calculated saturation indices (SI) indicate oversaturation with respect to amorphous Fe(OH)3 for all samples, but undersaturation with respect to Al and Mn mineral and amorphous phases. Therefore, ferric oxides and hydroxides are assumed to be principal mineral phases for arsenic and antimony attenuation by adsorption/co-precipitation processes. The considerable difference between As and Sb concentration in sediment is due to strong adsorption of As(V) into the solid phase. Also, lower affinity of Sb(V) for mineral surfaces suggests a greater potential for aqueous transport. The adsorption of arsenic and antimony was examined using the Freundlich adsorption isotherm to determine their distribution model in water-sediment system and its compatibility with the existing theoretical model. The results showed that the adsorption behavior of both elements complies with the Freundlich adsorption isotherm.


Asunto(s)
Antimonio/química , Arsénico/química , Sedimentos Geológicos/química , Contaminantes Químicos del Agua/química , Adsorción , Compuestos Férricos/química , Humanos , Irán , Compuestos de Hierro , Minerales , Ríos/química , Contaminación del Agua/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA