Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
PLoS Comput Biol ; 17(10): e1009463, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34710081

RESUMEN

Experimental data about gene functions curated from the primary literature have enormous value for research scientists in understanding biology. Using the Gene Ontology (GO), manual curation by experts has provided an important resource for studying gene function, especially within model organisms. Unprecedented expansion of the scientific literature and validation of the predicted proteins have increased both data value and the challenges of keeping pace. Capturing literature-based functional annotations is limited by the ability of biocurators to handle the massive and rapidly growing scientific literature. Within the community-oriented wiki framework for GO annotation called the Gene Ontology Normal Usage Tracking System (GONUTS), we describe an approach to expand biocuration through crowdsourcing with undergraduates. This multiplies the number of high-quality annotations in international databases, enriches our coverage of the literature on normal gene function, and pushes the field in new directions. From an intercollegiate competition judged by experienced biocurators, Community Assessment of Community Annotation with Ontologies (CACAO), we have contributed nearly 5,000 literature-based annotations. Many of those annotations are to organisms not currently well-represented within GO. Over a 10-year history, our community contributors have spurred changes to the ontology not traditionally covered by professional biocurators. The CACAO principle of relying on community members to participate in and shape the future of biocuration in GO is a powerful and scalable model used to promote the scientific enterprise. It also provides undergraduate students with a unique and enriching introduction to critical reading of primary literature and acquisition of marketable skills.


Asunto(s)
Colaboración de las Masas/métodos , Ontología de Genes , Anotación de Secuencia Molecular/métodos , Biología Computacional , Bases de Datos Genéticas , Humanos , Proteínas/genética , Proteínas/fisiología
2.
Proc Natl Acad Sci U S A ; 116(43): 21769-21779, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31591196

RESUMEN

Translational frameshifting involves the repositioning of ribosomes on their messages into decoding frames that differ from those dictated during initiation. Some messenger RNAs (mRNAs) contain motifs that promote deliberate frameshifting to regulate production of the encoded proteins. The mechanisms of frameshifting have been investigated in many systems, and the resulting models generally involve single ribosomes responding to stimulator sequences in their engaged mRNAs. We discovered that the abundance of ribosomes on messages containing the IS3, dnaX, and prfB frameshift motifs significantly influences the levels of frameshifting. We show that this phenomenon results from ribosome collisions that occur during translational stalling, which can alter frameshifting in both the stalled and trailing ribosomes. Bacteria missing ribosomal protein bL9 are known to exhibit a reduction in reading frame maintenance and to have a strong dependence on elongation factor P (EFP). We discovered that ribosomes lacking bL9 become compacted closer together during collisions and that the E-sites of the stalled ribosomes appear to become blocked, which suggests subsequent transpeptidation in transiently stalled ribosomes may become compromised in the absence of bL9. In addition, we determined that bL9 can suppress frameshifting of its host ribosome, likely by regulating E-site dynamics. These findings provide mechanistic insight into the behavior of colliding ribosomes during translation and suggest naturally occurring frameshift elements may be regulated by the abundance of ribosomes relative to an mRNA pool.


Asunto(s)
Escherichia coli/genética , Sistema de Lectura Ribosómico/genética , ARN Mensajero/genética , Sistemas de Lectura/genética , Ribosomas/metabolismo , Escherichia coli/metabolismo , Mutación del Sistema de Lectura/genética , Conformación de Ácido Nucleico , Factores de Elongación de Péptidos/metabolismo , Biosíntesis de Proteínas/genética , Proteínas Ribosómicas/metabolismo
3.
J Bacteriol ; 203(11)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33753470

RESUMEN

By evolving strains of E. coli that hyper-resist sedimentation, we discovered an uncharacterized mechanism that bacteria can use to remain in suspension indefinitely without expending energy. This unusual phenotype was traced to the anchoring of long colanic acid polymers (CAP) that project from the cell surface. Although each characterized mutant activated this same mechanism, the genes responsible and the strengths of the phenotypes varied. Mutations in rcsC, lpp, igaA, or the yjbEFGH operon were sufficient to stimulate sedimentation resistance, while mutations altering the cps promoter, cdgI, or yjbF provided phenotypic enhancements. The sedimentation resistances changed in response to temperature, growth phase, and carbon source and each mutant exhibited significantly reduced biofilm formation. We discovered that the degree of colony mucoidy exhibited by these mutants was not related to the degree of Rcs pathways activation or to the amount of CAP that was produced; rather, it was related to the fraction of CAP that was shed as a true exopolysaccharide. Therefore, these and other mutations that activate this phenotype are likely to be absent from genetic screens that relied on centrifugation to harvest bacteria. We also found that this anchored CAP form is not linked to LPS cores and may not be attached to the outer membrane.IMPORTANCEBacteria can partition in aqueous environments between surface-dwelling, planktonic, sedimentary, and biofilm forms. Residence in each location provides an advantage depending on nutritional and environmental stresses and a community of a single species is often observed to be distributed throughout two or more of these niches. Another adaptive strategy is to produce an extracellular capsule, which provides an environmental shield for the microbe and can allow escape from predators and immune systems. We discovered that bacteria can either shed or stably anchor capsules to dramatically alter their propensity to sediment. The degree to which the bacteria anchor their capsule is controlled by a stress sensing system, suggesting that anchoring may be used as an adaptive response to severe environmental challenges.

4.
Chemphyschem ; 22(10): 1008-1017, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-33604988

RESUMEN

The ability to theoretically predict accurate NMR chemical shifts in solids is increasingly important due to the role such shifts play in selecting among proposed model structures. Herein, two theoretical methods are evaluated for their ability to assign 15 N shifts from guanosine dihydrate to one of the two independent molecules present in the lattice. The NMR data consist of 15 N shift tensors from 10 resonances. Analysis using periodic boundary or fragment methods consider a benchmark dataset to estimate errors and predict uncertainties of 5.6 and 6.2 ppm, respectively. Despite this high accuracy, only one of the five sites were confidently assigned to a specific molecule of the asymmetric unit. This limitation is not due to negligible differences in experimental data, as most sites exhibit differences of >6.0 ppm between pairs of resonances representing a given position. Instead, the theoretical methods are insufficiently accurate to make assignments at most positions.

5.
Appl Environ Microbiol ; 85(17)2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31227557

RESUMEN

Cydia pomonella granulovirus (CpGV) is a cornerstone of codling moth (Cydia pomonella) control in integrated and organic pome fruit production, though different types of resistance to CpGV products have been recorded in codling moth field populations in Europe for several years. Recently, a novel baculovirus named Cryptophlebia peltastica nucleopolyhedrovirus (CrpeNPV) was isolated from a laboratory culture of the litchi moth, Cryptophlebia peltastica, in South Africa. Along with CpGV, it is the third known baculovirus that is infectious to codling moth. In the present study, parameters of infectiveness of CrpeNPV, such as the median lethal concentration and median survival time, were determined for codling moth larvae susceptible or resistant to CpGV. In addition, the permissiveness of a codling moth cell line with respect to infection by CrpeNPV budded virus was demonstrated by infection and gene expression studies designed to investigate the complete replication cycle. Investigations of the high degree of virulence of CrpeNPV for codling moth larvae and cells are of high significant scientific and economic value and may offer new strategies for the biological control of susceptible and resistant populations of codling moth.IMPORTANCE The emergence of codling moth populations resistant to commercially applied isolates of CpGV is posing an imminent threat to organic pome fruit production. Very few CpGV isolates are left that are able to overcome the reported types of resistance, emphasizing the demand for new and highly virulent baculoviruses. Here we report the recently discovered CrpeNPV as highly infectious to all types of resistant codling moth populations with a high speed of killing, making it a promising candidate baculovirus in fighting the spread of resistant codling moth populations.


Asunto(s)
Mariposas Nocturnas/virología , Nucleopoliedrovirus/fisiología , Animales , Línea Celular , Larva/crecimiento & desarrollo , Larva/virología , Mariposas Nocturnas/crecimiento & desarrollo
6.
J Invertebr Pathol ; 165: 54-66, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-29427636

RESUMEN

Invertebrate pests pose a significant threat to food security on the African continent. In response, South Africa has become one of the largest importers of chemical pesticides in sub-Saharan Africa, with several hundred active ingredients registered. To address the over-reliance on such chemicals, the South African Department of Agriculture, Forestry and Fisheries (DAFF) has eliminated or restricted several pesticides since the late 1970s. The recent launch of the South African National Bio-Economy Strategy and establishment of the South African Bioproducts Organisation (SABO), together with new guidelines for registration of biopesticides in 2015, also support this endeavour. Concurrently, entomopathogen-related research and bioproduct development has increased over the past decade. Currently, 31 products (seven manufactured locally) are registered under the Fertilizers, Farm Feeds, Agricultural Remedies and Stock Remedies Act 36 of 1947. Commercially important microbes include Beauveria bassiana (Cordycipitaceae), Metarhizium anisopliae (Clavicipitaceae), Cydia pomonella granulovirus, Cryptophlebia leucotreta granulovirus, Helicoverpa armigera nucleopolyhedrovirus (Baculoviridae) and Bacillus thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai (Bacillaceae). Both parasitic and entomopathogenic nematodes (EPNs) show potential for development as bioinsecticides with one commercial EPN product, based on Heterorhabditis bacteriophora (Heterorhabditidae), registered under the Act. Rapid scientific progression, supported by a favourable legislative environment, should facilitate further advances in microbial control of phytophagous invertebrate pests in South Africa.


Asunto(s)
Agentes de Control Biológico , Control de Insectos , Control Biológico de Vectores , Animales , Bacillus thuringiensis , Baculoviridae , Beauveria , Productos Agrícolas , Granulovirus , Control de Insectos/métodos , Control de Insectos/tendencias , Metarhizium , Nematodos , Control Biológico de Vectores/métodos , Control Biológico de Vectores/tendencias , Sudáfrica
7.
J Invertebr Pathol ; 157: 90-99, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30102885

RESUMEN

Cryptophlebia peltastica is an agricultural pest of litchis and macadamias in South Africa with phytosanitary status for certain markets. Current control methods rely on chemical, cultural and classical biological control. However, a microbial control option has not been developed. An Alphabaculovirus from C. peltastica was recovered from a laboratory reared colony and morphologically characterised by transmission electron microscopy (TEM). Analysis of occlusion bodies indicated a single NPV (SNPV) varying in size from 421 to 1263 nm. PCR amplification and sequencing of the polh gene region using universal primers followed by BLAST analysis revealed a 93% similarity to a partial polh gene sequence from Epinotia granitalis NPV. Further genetic characterisation involving single restriction endonuclease (REN) digestion of genomic DNA was carried out to generate profiles for comparison against other baculovirus species and potential new isolates of the same virus. The complete genome of the virus was sequenced, assembled and analysed for a more comprehensive genetic analysis. The genome was 115728 base pairs (bp) in length with a GC content of 37.2%. A total of 126 open reading frames (ORFs) were identified with minimal overlap and no preference in orientation. Bioassays were used to determine the virulence of the NPV against C. peltastica. The NPV was virulent against C. peltastica with an LC50 value of 6.46 × 103 OBs/ml and an LC90 value of 2.46 × 105 OBs/ml, and time mortality ranging between 76.32 h and 93.49 h. This is the first study to describe the isolation and genetic characterisation of a novel SNPV from C. peltastica, which has potential for development into a biopesticide for the control of this pest in South Africa.


Asunto(s)
Baculoviridae/patogenicidad , Mariposas Nocturnas/virología , Control Biológico de Vectores/métodos , Animales , ADN Viral/genética , Genes Virales , Virulencia/genética
8.
Int J Mol Sci ; 19(1)2017 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-29283392

RESUMEN

Baculoviruses have been used as biopesticides for decades. Recently, due to the excessive use of chemical pesticides there is a need for finding new agents that may be useful in biological protection. Sometimes few isolates or species are discovered in one host. In the past few years, many new baculovirus species have been isolated from environmental samples, thoroughly characterized and thanks to next generation sequencing methods their genomes are being deposited in the GenBank database. Next generation sequencing (NGS) methodology is the most certain way of detection, but it has many disadvantages. During our studies, we have developed a method based on Polymerase chain reaction (PCR) followed by Multitemperature Single Stranded Conformational Polymorphism (MSSCP) which allows for distinguishing new granulovirus isolates in only a few hours and at low-cost. On the basis of phylogenetic analysis of betabaculoviruses, representative species have been chosen. The alignment of highly conserved genes-granulin and late expression factor-9, was performed and the degenerate primers were designed to amplify the most variable, short DNA fragments flanked with the most conserved sequences. Afterwards, products of PCR reaction were analysed by MSSCP technique. In our opinion, the proposed method may be used for screening of new isolates derived from environmental samples.


Asunto(s)
Baculoviridae/genética , Bioensayo , ADN Viral/genética , Genoma Viral , Péptidos y Proteínas de Señalización Intercelular/genética , Proteínas Virales/genética , Animales , Baculoviridae/clasificación , Baculoviridae/aislamiento & purificación , Secuencia de Bases , ADN Viral/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Lepidópteros/virología , Filogenia , Polimorfismo Conformacional Retorcido-Simple , Progranulinas , Alineación de Secuencia , Homología de Secuencia de Ácido Nucleico , Proteínas Virales/metabolismo
9.
Int J Mol Sci ; 18(11)2017 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-29099796

RESUMEN

Thaumatotibia leucotreta Meyrick (Lepidoptera: Tortricidae) is an indigenous pest in southern Africa which attacks citrus fruits and other crops. To control T. leucotreta in South Africa, an integrated pest management (IPM) programme incorporating the baculovirus Cryptophlebialeucotreta granulovirus (CrleGV-SA) as a biopesticide has been implemented. This study investigated the genetic stability of a commercially produced CrleGV-SA product that has been applied in the field since 2000. Seven representative full-genome sequences of the CrleGV-SA isolate spanning a 15-year period were generated and compared with one another. Several open reading frames (ORFs) were identified to have acquired single nucleotide polymorphisms (SNPs) during the 15-year period, with three patterns observed and referred to as "stable", "reversion", and "unstable switching". Three insertion events were also identified, two of which occurred within ORFs. Pairwise multiple alignments of these sequences showed an identity ranging from 99.98% to 99.99%. Concentration-response bioassays comparing samples of CrleGV-SA from 2000 and 2015 showed an increase in virulence toward neonate T. leucotreta larvae. The CrleGV-SA genome sequence generated from the 2015 sample was compared to the Cape Verde reference genome, CrleGV-CV3. Several fusion events were identified between ORFs within these genomes. These sequences shared 96.7% pairwise identity, confirming that CrleGV-SA is a genetically distinct isolate. The results of this study indicate that the genome of CrleGV-SA has remained stable over many years, with implications for its continued use as a biopesticide in the field. Furthermore, the study describes the first complete baculovirus genome to be sequenced with the MinION (Oxford Nanopore, Oxford, UK) platform and the first complete genome sequence of the South African CrleGV isolate.


Asunto(s)
Genoma Viral , Granulovirus/genética , Lepidópteros/fisiología , Lepidópteros/virología , Control Biológico de Vectores/métodos , Animales , Secuencia de Bases , Agentes de Control Biológico/metabolismo , ADN Viral/genética , Granulovirus/fisiología , Larva/fisiología , Larva/virología , Sistemas de Lectura Abierta , Filogenia , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , Sudáfrica
10.
Nature ; 457(7225): 71-5, 2009 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19122638

RESUMEN

The ability to manipulate nanoscopic matter precisely is critical for the development of active nanosystems. Optical tweezers are excellent tools for transporting particles ranging in size from several micrometres to a few hundred nanometres. Manipulation of dielectric objects with much smaller diameters, however, requires stronger optical confinement and higher intensities than can be provided by these diffraction-limited systems. Here we present an approach to optofluidic transport that overcomes these limitations, using sub-wavelength liquid-core slot waveguides. The technique simultaneously makes use of near-field optical forces to confine matter inside the waveguide and scattering/adsorption forces to transport it. The ability of the slot waveguide to condense the accessible electromagnetic energy to scales as small as 60 nm allows us also to overcome the fundamental diffraction problem. We apply the approach here to the trapping and transport of 75-nm dielectric nanoparticles and lambda-DNA molecules. Because trapping occurs along a line, rather than at a point as with traditional point traps, the method provides the ability to handle extended biomolecules directly. We also carry out a detailed numerical analysis that relates the near-field optical forces to release kinetics. We believe that the architecture demonstrated here will help to bridge the gap between optical manipulation and nanofluidics.


Asunto(s)
ADN Viral/análisis , Micromanipulación/métodos , Nanopartículas/análisis , Pinzas Ópticas , Óptica y Fotónica/instrumentación , Óptica y Fotónica/métodos , Bacteriófago lambda/genética , Electrones , Cinética , Micromanipulación/instrumentación
11.
J Bacteriol ; 195(16): 3682-91, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23772068

RESUMEN

Ribosomal protein L9 is a component of all eubacterial ribosomes, yet deletion strains display only subtle growth defects. Although L9 has been implicated in helping ribosomes maintain translation reading frame and in regulating translation bypass, no portion of the ribosome-bound protein seems capable of contacting either the peptidyltransferase center or the decoding center, so it is a mystery how L9 can influence these important processes. To reveal the physiological roles of L9 that have maintained it in evolution, we identified mutants of Escherichia coli that depend on L9 for fitness. In this report, we describe a class of L9-dependent mutants in the ribosome biogenesis GTPase Der (EngA/YphC). Purified mutant proteins were severely compromised in their GTPase activities, despite the fact that the mutations are not present in GTP hydrolysis sites. Moreover, although L9 and YihI complemented the slow-growth der phenotypes, neither factor could rescue the GTPase activities in vitro. Complementation studies revealed that the N-terminal domain of L9 is necessary and sufficient to improve the fitness of these Der mutants, suggesting that this domain may help stabilize compromised ribosomes that accumulate when Der is defective. Finally, we employed a targeted degradation system to rapidly deplete L9 from a highly compromised der mutant strain and show that the L9-dependent phenotype coincides with a cell division defect.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Unión al GTP/metabolismo , Proteínas Ribosómicas/metabolismo , Escherichia coli/citología , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Unión al GTP/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Modelos Moleculares , Mutación , Conformación Proteica , Proteínas Ribosómicas/genética
12.
J Invertebr Pathol ; 112(3): 219-28, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23277142

RESUMEN

False codling moth, Thaumatotibia leucotreta (Meyrick) is a serious pest of economic importance to the South African fruit industry. As part of sustainable efforts to control this pest, biological control options that involve the application of baculovirus-based biopesticides such as Cryptogran and Cryptex (both formulated with a South African isolate of Cryptophlebia leucotreta granulovirus, CrleGV-SA) are popularly used by farmers. In order to safeguard the integrity of these biopesticides as well as protect against any future development of resistance in the host, we conducted a study to bioprospect for additional CrleGV isolates as alternatives to existing ones. Using overcrowding as an induction method for latent infection, we recovered five new CrleGV isolates (CrleGV-SA Ado, CrleGV-SA Mbl, CrleGV-SA Cit, CrleGV-SA MixC and CrleGV-SA Nels). Single restriction endonuclease (REN) analysis of viral genomic DNA extracted from purified occlusion bodies showed that isolates differed in their DNA profiles. Partial sequencing of granulin and egt genes from the different isolates and multiple alignments of nucleotide sequences revealed the presence of single nucleotide polymorphisms (SNPs), some of which resulted in amino acid substitutions in the protein sequence. Based on these findings as well as comparisons with other documented CrleGV isolates, we propose two phylogenetic groups for CrleGV-SA isolates recovered in this study.


Asunto(s)
Granulovirus/fisiología , Mariposas Nocturnas/virología , Animales , ADN Viral/química , Resistencia a la Enfermedad , Granulovirus/genética , Granulovirus/aislamiento & purificación , Mariposas Nocturnas/fisiología , Control Biológico de Vectores , Filogenia , Densidad de Población , Análisis de Secuencia de ADN
13.
Microbiol Spectr ; 11(3): e0125223, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37212673

RESUMEN

16S rRNA gene sequences are commonly analyzed for taxonomic and phylogenetic studies because they contain variable regions that can help distinguish different genera. However, intra-genus distinction using variable region homology is often impossible due to the high overall sequence identities among closely related species, even though some residues may be conserved within respective species. Using a computational method that included the allelic diversity within individual genomes, we discovered that certain Escherichia and Shigella species can be distinguished by a multi-allelic 16S rRNA variable region single nucleotide polymorphism (SNP). To evaluate the performance of 16S rRNAs with altered variable regions, we developed an in vivo system that measures the acceptance and distribution of variant 16S rRNAs into a large pool of natural versions supporting normal translation and growth. We found that 16S rRNAs containing evolutionarily disparate variable regions were underpopulated both in ribosomes and in active translation pools, even for an SNP. Overall, this study revealed that variable region sequences can substantially influence the performance of 16S rRNAs and that this biological constraint can be leveraged to justify refining taxonomic assignments of variable region sequence data. IMPORTANCE This study reevaluates the notion that 16S rRNA gene variable region sequences are uninformative for intra-genus classification and that single nucleotide variations within them have no consequence to strains that bear them. We demonstrated that the performance of 16S rRNAs in Escherichia coli can be negatively impacted by sequence changes in variable regions, even for single nucleotide changes that are native to closely related Escherichia and Shigella species; thus, biological performance is likely constraining the evolution of variable regions in bacteria. Further, the native nucleotide variations we tested occur in all strains of their respective species and across their multiple 16S rRNA gene copies, suggesting that these species evolved beyond what would be discerned from a consensus sequence comparison. Therefore, this work also reveals that the multiple 16S rRNA gene alleles found in most bacteria can provide more informative phylogenetic and taxonomic detail than a single reference allele.


Asunto(s)
Bacterias , Shigella , Filogenia , ARN Ribosómico 16S/genética , Bacterias/genética , Shigella/genética , Nucleótidos
14.
Pathogens ; 12(10)2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37887753

RESUMEN

Yeasts associated with lepidopteran pests have been shown to play a role in their survival, development, and oviposition preference. It has been demonstrated that combining these yeasts with existing biological control agents can enhance their efficacy. The tortricid Thaumatotibia leucotreta is a phytosanitary pest in the South African citrus industry, with the baculovirus Cryptophlebia leucotreta granulovirus (CrleGV) being one of the components that can control this pest. Several yeast species were shown to be associated with T. leucotreta larvae, which affected their behaviour and development. A series of detached fruit bioassays were performed to determine whether the combination of yeast with CrleGV enhances its efficacy. These assays included determining the optimal yeast/virus ratio, testing all isolated yeast species in combination with CrleGV, and further improving yeast/virus formulation by adding an adjuvant. The optimal yeast concentration to use alongside CrleGV was determined to be 106 cells·mL-1. Pichia kluyveri, P. kudriavzevii, Kluyveromyces marxianus, and Saccharomyces cerevisiae in combination with CrleGV reduced larval survival compared to CrleGV alone. The addition of molasses and BREAK-THRU® S 240 to P. kudriavzevii and S. cerevisiae in combination with CrleGV did not notably improve their effectiveness; however, there was an observed decrease in larval survival. In future studies, field trials will be conducted with combinations of CrleGV and P. kudriavzevii or S. cerevisiae to investigate whether these laboratory findings can be replicated in orchard conditions.

15.
J Bacteriol ; 194(21): 5932-40, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22942249

RESUMEN

Targeted protein degradation is a powerful tool that can be used to create unique physiologies depleted of important factors. Current strategies involve modifying a gene of interest such that a degradation peptide is added to an expressed target protein and then conditionally activating proteolysis, either by expressing adapters, unmasking cryptic recognition determinants, or regulating protease affinities using small molecules. For each target, substantial optimization may be required to achieve a practical depletion, in that the target remains present at a normal level prior to induction and is then rapidly depleted to levels low enough to manifest a physiological response. Here, we describe a simplified targeted degradation system that rapidly depletes targets and that can be applied to a wide variety of proteins without optimizing target protease affinities. The depletion of the target is rapid enough that a primary physiological response manifests that is related to the function of the target. Using ribosomal protein S1 as an example, we show that the rapid depletion of this essential translation factor invokes concomitant changes to the levels of several mRNAs, even before appreciable cell division has occurred.


Asunto(s)
Bioquímica/métodos , Biología Molecular/métodos , Proteínas/metabolismo , Proteolisis , Regulación de la Expresión Génica , Estrés Fisiológico
16.
Insects ; 13(3)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35323541

RESUMEN

Thaumatotibia leucotreta is endemic to southern Africa and is highly significant for various fruit industries, including the South African citrus industry, due to its classification as a phytosanitary pest. Mutualistic associations between C. pomonella, closely related to T. leucotreta, and yeasts have previously been described and reported to reduce larval mortality and enhance larval development. Here, we determined which yeast species occur naturally in the gut of T. leucotreta larvae and investigated whether any of the isolated yeast species affect their behaviour and development. Navel oranges infested with T. leucotreta larvae were collected from geographically distinct provinces in South Africa, and the larvae were processed for analysis of naturally occurring associated yeasts. Six yeast species were isolated and identified from the guts of these T. leucotreta larvae via PCR amplification and sequencing of the ITS region of rDNA and D1/D2 domain of large ribosomal subunit. Larval development and attraction assays were conducted, and T. leucotreta larvae that fed on Navel oranges inoculated with yeast had accelerated developmental periods and reduced mortality rates. Neonate T. leucotreta were also attracted to YPD broth cultures inoculated with yeast for feeding. Oviposition preference assays were conducted with adult T. leucotreta females. Navel oranges inoculated with yeast were shown to influence the oviposition preference of adult females. Yeasts harbour the potential for use in biocontrol, especially when combined with other well-established control methods. This study provides a platform for future research into incorporating yeast with current biological control agents as a novel option for controlling T. leucotreta in the field.

17.
Microbiol Spectr ; 10(2): e0242121, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35377225

RESUMEN

E-cigarettes (e-cigs) have drastically increased in popularity during the last decade, especially among teenagers. While recent studies have started to explore the effect of e-cigs in the oral cavity, little is known about their effects on the oral microbiota and how they could affect oral health and potentially lead to disease, including periodontitis and head and neck cancers. To explore the impact of e-cigs on oral bacteria, we selected members of the genus Streptococcus, which are abundant in the oral cavity. We exposed the commensals Streptococcus sanguinis and Streptococcus gordonii and the opportunistic pathogen Streptococcus mutans, best known for causing dental caries, to e-liquids and e-cig aerosols with and without nicotine and with and without menthol flavoring and measured changes in growth patterns and biofilm formation. Our results demonstrate that e-cig aerosols hindered the growth of S. sanguinis and S. gordonii, while they did not affect the growth of S. mutans. We also show that e-cig aerosols significantly increased biofilm formation by S. mutans but did not affect the biofilm formation of the two commensals. We found that S. mutans exhibits higher hydrophobicity and coaggregation abilities along with higher attachment to OKF6 cells than S. sanguinis and S. gordonii. Therefore, our data suggest that e-cig aerosols have the potential to dysregulate oral bacterial homeostasis by suppressing the growth of commensals while enhancing the biofilm formation of the opportunistic pathogen S. mutans. This study highlights the importance of understanding the consequences of e-cig aerosol exposure on selected commensals and pathogenic species. Future studies modeling more complex communities will provide more insight into how e-cig aerosols and vaping affect the oral microbiota. IMPORTANCE Our study shows that e-cigarette aerosol exposure of selected bacteria known to be residents of the oral cavity hinders the growth of two streptococcal commensals while enhancing biofilm formation, hydrophobicity, and attachment for the pathogen S. mutans. These results indicate that e-cigarette vaping could open a niche for opportunistic bacteria such as S. mutans to colonize the oral cavity and affect oral health.


Asunto(s)
Caries Dental , Sistemas Electrónicos de Liberación de Nicotina , Adolescente , Aerosoles , Biopelículas , Humanos , Streptococcus gordonii/fisiología , Streptococcus mutans/fisiología
18.
Cells ; 11(5)2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35269394

RESUMEN

E-cigarette (e-cig) vapor has been shown to play a pathological role in oral health and alter the oral microbiota, providing growth advantages for opportunistic pathogens. Enrichment of Staphylococcus aureus, a commensal resident in the oral cavity, correlates with the progression of periodontal disease, suggesting a role as an opportunistic pathogen. Environmental conditions, such as cigarette smoke, are known to increase S. aureus virulence, yet the role of S. aureus in periodontitis and oral preneoplasia is unknown. We exposed oral epithelial cells to e-cig aerosols and showed a dose-dependent cell viability reduction, regardless of nicotine content, in a possible attempt to repair DNA damage, as measured by pH2AX. S. aureus attachment to oral epithelial cells and bacterial biofilm formation were enhanced upon e-cig exposure, indicating an increased capacity for oral colonization. Mechanistically, e-cig aerosol exposure resulted in an immunosuppression, as determined by a reduction in IL8, IL6, and IL1ß secretion by oral epithelial cells during co-culture with S. aureus. Consistent with this, e-cig vape reduced the oral epithelial cell clearance of S. aureus. Furthermore, we observed an increased expression of the inflammatory regulator COX2. This work suggests that e-cigs promote S. aureus colonization and modulate the oral inflammatory response, possibly promoting oral periodontitis and preneoplasia.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Staphylococcus aureus Resistente a Meticilina , Periodontitis , Aerosoles , Humanos , Inmunidad , Pulmón/patología , Periodontitis/metabolismo , Staphylococcus aureus
19.
J Econ Entomol ; 115(4): 1115-1128, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35536661

RESUMEN

A systems approach was developed as an alternative to a standalone quarantine disinfestation treatment for Thaumatotibia leucotreta in citrus fruit exported from South Africa. The systems approach consists of three measures: pre and postharvest controls and measurements, postpacking inspection, and postharvest exposure to low temperatures. Different cold treatment conditions with a range of efficacy levels can be used for this last measure. A series of trials reported here evaluated the efficacy of seven temperatures ranging from 0 to 5°C for durations from 14 d to 26 d. Mortality of the most cold-tolerant larval stages of T. leucotreta was determined. Temperatures of 0, 1, 2, and 3°C for 16, 19, 20, and 24 d respectively, induced 100% mortality of the tested populations. Probit 9 level treatment efficacy was achieved at 0 and 1°C for 16 and 19 d respectively. Mortalities higher than 90% were obtained with temperatures of 4, 4.5, and 5°C, after exposure for the longer durations. We demonstrated a significant difference in cold-induced insecticidal efficacy between 1, 2, 3, and 4°C. There was no significant difference in insecticidal efficacy between 4 and 4.5°C, but both of these temperatures were more efficacious than 5°C. The results of this study are valuable to support the use of cold treatment conditions with lower risk of fruit chilling injury in an effective systems approach, where the cold treatment efficacy can be augmented with other components of the systems approach.


Asunto(s)
Citrus , Mariposas Nocturnas , Animales , Frío , Larva , Temperatura
20.
J Invertebr Pathol ; 108(2): 115-25, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21839086

RESUMEN

A survey was conducted to determine the diversity and frequency of endemic entomopathogenic nematodes (EPN) in citrus orchards in the Western Cape, Eastern Cape and Mpumalanga provinces of South Africa. The main aim of the survey was to obtain nematodes as biological control agents against false codling moth (FCM), Thaumatotibia leucotreta, a key pest of citrus in South Africa. From a total of 202 samples, 35 (17%) tested positive for the presence of EPN. Of these, four isolates (11%) were found to be steinernematids, while 31 (89%) were heterorhabditids. Sequencing and characterisation of the internal transcribed spacer (ITS) region was used to identify all nematode isolates to species level. Morphometrics, morphology and biology of the infective juvenile (IJ) and the first-generation male were used to support molecular identification and characterisation. The Steinernema spp. identified were Steinernema khoisanae, Steinernema yirgalemense and Steinernema citrae. This is the first report of S. yirgalemense in South Africa, while for S. citrae it is the second new steinernematid to be identified from South Africa. Heterorhabditis species identified include Heterorhabditis bacteriophora, Heterorhabditis zealandica and an unknown species of Heterorhabditis. Laboratory bioassays, using 24-well bioassay disks, have shown isolates of all six species found during the survey, to be highly virulent against the last instar of FCM larvae. S. yirgalemense, at a concentration of 50IJs/FCM larva caused 100% mortality and 74% at a concentration of 200IJs/pupa. Using a sand bioassay, S. yirgalemense gave 93% control of cocooned pupae and emerging moths at a concentration of 20IJs/cm(2). This is the first report on the potential use of EPN to control the soil-borne life stages of FCM, which includes larvae, pupae and emerging moths. It was shown that emerging moths were infected with nematodes, which may aid in control and dispersal.


Asunto(s)
Citrus/parasitología , Control de Insectos/métodos , Mariposas Nocturnas/parasitología , Control Biológico de Vectores/métodos , Rabdítidos/aislamiento & purificación , Animales , Productos Agrícolas , Frutas , Interacciones Huésped-Parásitos , Larva/parasitología , Enfermedades Parasitarias en Animales/etiología , Pupa/parasitología , Rabdítidos/genética , Rabdítidos/patogenicidad , Sudáfrica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA