Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Conserv Biol ; 34(4): 1017-1028, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32362060

RESUMEN

Accurately quantifying species' area requirements is a prerequisite for effective area-based conservation. This typically involves collecting tracking data on species of interest and then conducting home-range analyses. Problematically, autocorrelation in tracking data can result in space needs being severely underestimated. Based on the previous work, we hypothesized the magnitude of underestimation varies with body mass, a relationship that could have serious conservation implications. To evaluate this hypothesis for terrestrial mammals, we estimated home-range areas with global positioning system (GPS) locations from 757 individuals across 61 globally distributed mammalian species with body masses ranging from 0.4 to 4000 kg. We then applied block cross-validation to quantify bias in empirical home-range estimates. Area requirements of mammals <10 kg were underestimated by a mean approximately15%, and species weighing approximately100 kg were underestimated by approximately50% on average. Thus, we found area estimation was subject to autocorrelation-induced bias that was worse for large species. Combined with the fact that extinction risk increases as body mass increases, the allometric scaling of bias we observed suggests the most threatened species are also likely to be those with the least accurate home-range estimates. As a correction, we tested whether data thinning or autocorrelation-informed home-range estimation minimized the scaling effect of autocorrelation on area estimates. Data thinning required an approximately93% data loss to achieve statistical independence with 95% confidence and was, therefore, not a viable solution. In contrast, autocorrelation-informed home-range estimation resulted in consistently accurate estimates irrespective of mass. When relating body mass to home range size, we detected that correcting for autocorrelation resulted in a scaling exponent significantly >1, meaning the scaling of the relationship changed substantially at the upper end of the mass spectrum.


Efectos del Tamaño Corporal sobre la Estimación de los Requerimientos de Área de Mamíferos Resumen La cuantificación precisa de los requerimientos de área de una especie es un prerrequisito para que la conservación basada en áreas sea efectiva. Esto comúnmente implica la recolección de datos de rastreo de la especie de interés para después realizar análisis de la distribución local. De manera problemática, la autocorrelación en los datos de rastreo puede resultar en una subestimación grave de las necesidades de espacio. Con base en trabajos previos, formulamos una hipótesis en la que supusimos que la magnitud de la subestimación varía con la masa corporal, una relación que podría tener implicaciones serias para la conservación. Para probar esta hipótesis en mamíferos terrestres, estimamos las áreas de distribución local con las ubicaciones en GPS de 757 individuos de 61 especies de mamíferos distribuidas mundialmente con una masa corporal entre 0.4 y 4,000 kg. Después aplicamos una validación cruzada en bloque para cuantificar el sesgo en estimaciones empíricas de la distribución local. Los requerimientos de área de los mamíferos <10 kg fueron subestimados por una media ∼15% y las especies con una masa ∼100 kg fueron subestimadas en ∼50% en promedio. Por lo tanto, encontramos que la estimación del área estaba sujeta al sesgo inducido por la autocorrelación, el cual era peor para las especies de talla grande. En combinación con el hecho de que el riesgo de extinción incrementa conforme aumenta la masa corporal, el escalamiento alométrico del sesgo que observamos sugiere que la mayoría de las especies amenazadas también tienen la probabilidad de ser aquellas especies con las estimaciones de distribución local menos acertadas. Como corrección, probamos si la reducción de datos o la estimación de la distribución local informada por la autocorrelación minimizan el efecto de escalamiento que tiene la autocorrelación sobre las estimaciones de área. La reducción de datos requirió una pérdida de datos del ∼93% para lograr la independencia estadística con un 95% de confianza y por lo tanto no fue una solución viable. Al contrario, la estimación de la distribución local informada por la autocorrelación resultó en estimaciones constantemente precisas sin importar la masa corporal. Cuando relacionamos la masa corporal con el tamaño de la distribución local, detectamos que la corrección de la autocorrelación resultó en un exponente de escalamiento significativamente >1, lo que significa que el escalamiento de la relación cambió sustancialmente en el extremo superior del espectro de la masa corporal.


Asunto(s)
Conservación de los Recursos Naturales , Mamíferos , Animales , Tamaño Corporal , Especies en Peligro de Extinción , Fenómenos de Retorno al Lugar Habitual , Humanos
2.
Ecol Appl ; 28(1): 135-148, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28949046

RESUMEN

Increased market viability of harvest residues as forest bioenergy feedstock may escalate removal of coarse woody debris in managed forests. Meanwhile, many forest invertebrates use coarse woody debris for cover, food, and reproduction. Few studies have explicitly addressed effects of operational-scale woody biomass harvesting on invertebrates following clearcutting. Therefore, we measured invertebrate community response to large-scale harvest residue removal and micro-site manipulations of harvest residue availability in recently clearcut, intensively managed loblolly pine (Pinus taeda) forests in North Carolina (NC; n = 4) and Georgia (GA; n = 4), USA. We captured 39,794 surface-active invertebrates representing 171 taxonomic groups using pitfall traps situated among micro-site locations (i.e., purposefully retained piles of hardwood stems and piles of conifer stems and areas without coarse woody debris in NC; windrows and no windrows in GA). Micro-site locations were located within six, large-scale treatments (7.16-14.3 ha) in clearcuts. Large-scale treatments represented intensive harvest residue removal, 15% and 30% harvest residue retention, and no harvest residue removal. In NC, ground beetles (Coleoptera: Carabidae) and crickets (Orthoptera: Gryllidae) were three times more abundant in treatments with no harvest residue removal than those with the most intensive harvest residue removal and were reduced in treatments that retained 15% or 30% of harvest residues, although not significantly. Invertebrate taxa richness was greater at micro-site locations with retained hardwood and pine (Pinus spp.) harvest residues than those with minimal amounts of coarse woody debris. In both states, relative abundances of several invertebrate taxa, including cave crickets (Orthoptera: Rhaphidophoridae), fungus gnats (Diptera: Mycetophilidae and Sciaridae), millipedes (Diplopoda), and wood roaches (Blattodea: Ectobiidae), were greater at micro-site locations with retained harvest residues than those with minimal coarse woody debris. Intensified woody biomass harvesting without retention of ≥15% of harvest residue volume may reduce invertebrate taxa richness and abundances of some key invertebrate taxa in regenerating stands. Further, harvest residue management during and after woody biomass harvesting may be an important consideration for maintaining invertebrate diversity and conserving invertebrates that are influential in the maintenance of ecosystem function and integrity in young forests.


Asunto(s)
Bosques , Invertebrados , Animales , Biocombustibles , Agricultura Forestal , Georgia , North Carolina , Pinus taeda
3.
J Avian Med Surg ; 28(1): 16-23, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24881149

RESUMEN

Large flocks of wild, nonmigratory Canada geese (Branta canadensis) have established permanent residence throughout the eastern United States and have become a public concern. Few studies have assessed the hematologic parameters for these populations, which could provide useful information for monitoring individual and population health of Canada geese. This study measured the hematologic parameters and detected the presence of hemoparasites from 146 wild, nonmigratory Canada geese in central North Carolina, USA, during their annual molt. The age class, sex, and weight of each bird were recorded at capture. Values for packed cell volume (PCV), estimated white blood cell count, white blood cell differentials, and heterophil: lymphocyte ratios were calculated for each bird. Adults and female geese had higher estimated white blood cell counts compared with juveniles and males, respectively. The PCV increased with weight and age class. Adult geese had higher percentages of heterophils and heterophil: lymphocyte ratios, whereas juvenile geese had higher percentages of lymphocytes. Relative eosinophil counts in adults increased with decreasing bird weight, and relative monocyte counts in juveniles increased with increasing weight. Three percent of geese were infected with species of Hemoproteus blood parasites. Atypical lymphocyte morphology, including pseudopods, split nuclei, and cytoplasmic granules, was observed in 5% of the birds. The hematologic values reported for adult and juvenile nonmigratory Canada geese in this study may serve as reference intervals for ecological studies and veterinary care of wild and captive Canada geese.


Asunto(s)
Anseriformes/sangre , Enfermedades de las Aves/parasitología , Enfermedades Parasitarias en Animales/parasitología , Animales , Enfermedades de las Aves/epidemiología , Femenino , Masculino , North Carolina/epidemiología , Enfermedades Parasitarias en Animales/sangre , Enfermedades Parasitarias en Animales/epidemiología
4.
PLoS One ; 18(10): e0293328, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37874835

RESUMEN

Ungulate neonates-individuals less than four weeks old-typically experience the greatest predation rates, and variation in their survival can influence ungulate population dynamics. Typical methods to measure neonate survival involve capture and radio-tracking of adults and neonates to discover mortality events. This type of fieldwork is invasive and expensive, can bias results if it leads to neonate abandonment, and may still have high uncertainty about the predator species involved. Here we explore the potential for a non-invasive approach to estimate an index for neonate survival using camera traps paired with decoys that mimic white-tailed deer (Odocoileus virginianus) neonates in the first month of life. We monitored sites with camera traps for two weeks before and after the placement of the neonate decoy and urine scent lure. Predator response to the decoy was classified into three categories: did not approach, approached within 2.5 m but did not touch the decoy, or physically touched the decoy; when conducting survival analyses, we considered these second two categories as dead neonates. The majority (76.3%) of the predators approached the decoy, with 51.1% initiating physical contact. Decoy probability of survival was 0.31 (95% CI = 0.22, 0.35) for a 30-day period. Decoys within the geographic range of American black bear (Ursus americanus) were primarily (75%) attacked by bears. Overall, neonate survival probability decreased as predator abundance increased. The camera-decoy protocol required about ½ the effort and 1/3 the budget of traditional capture-track approaches. We conclude that the camera-decoy approach is a cost-effective method to estimate a neonate survival probability index based on depredation probability and identify which predators are most important.


Asunto(s)
Ciervos , Ursidae , Humanos , Animales , Recién Nacido , Ciervos/fisiología , Ursidae/fisiología , Odorantes , Conducta Predatoria
5.
Ecology ; 90(6): 1586-94, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19569373

RESUMEN

Few attempts have been made to experimentally address the extent to which temporal or spatial variation in food availability influences avian habitat use. We used an experimental approach to investigate whether bird use differed between treated (arthropods reduced through insecticide application) and control (untreated) forest canopy gaps within a bottomland hardwood forest in the Upper Coastal Plain of South Carolina, USA. Gaps were two- to three-year-old group selection timber harvest openings of three sizes (0.13, 0.26, and 0.50 ha). Our study was conducted during four bird use periods (spring migration, breeding, post-breeding, and fall migration) in 2002 and 2003. Arthropods were reduced in treated gaps by 68% in 2002 and 73% in 2003. We used mist-netting captures and foraging attack rates to assess the influence of arthropod abundance on avian habitat use. Evidence that birds responded to arthropod abundance was limited and inconsistent. In 2002, we generally captured more birds in treated gaps of the smallest size (0.13 ha) and fewer birds in treated gaps of the larger sizes. In 2003, we recorded few differences in the number of captures in treated and control gaps. Foraging attack rates generally were lower in treated than in control gaps, indicating that birds were able to adapt to the reduced food availability and remain in treated gaps. We conclude that arthropod abundance was not a proximate factor controlling whether forest birds used our gaps. The abundance of food resources may not be as important in determining avian habitat selection as previous research has indicated, at least for passerines in temperate subtropical regions.


Asunto(s)
Artrópodos/fisiología , Aves/fisiología , Ecosistema , Conducta Alimentaria/fisiología , Animales , Demografía
6.
PLoS One ; 14(5): e0216540, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31071148

RESUMEN

Rising sea levels dramatically alter the vegetation composition and structure of coastal ecosystems. However, the implications of these changes for coastal wildlife are poorly understood. We aimed to quantify responses of avian communities to forest change (i.e., ghost forests) in a low-lying coastal region highly vulnerable to rising sea level. We conducted point counts to sample avian communities at 156 forested points in eastern North Carolina, USA in 2013-2015. We modelled avian community composition using a multi-species hierarchical occupancy model and used metrics of vegetation structure derived from Light Detection and Ranging (LiDAR) data as covariates related to variation in bird responses. We used this model to predict occupancy for each bird species in 2001 (using an analogous 2001 LiDAR dataset) and 2014 and used the change in occupancy probability to estimate habitat losses and gains at 3 spatial extents: 1) the entire study area, 2) burned forests only, and 3) unburned, low-lying coastal forests only. Of the 56 bird species we investigated, we observed parameter estimates corresponding to a higher likelihood of occurring in ghost forest for 34 species, but only 9 of those had 95% posterior intervals that did not overlap 0, thus having strong support. Despite the high vulnerability of forests in the region to sea level rise, habitat losses and gains associated with rising sea level were small relative to those resulting from wildfire. Though the extent of habitat changes associated with the development of ghost forest was limited, these changes likely are more permanent and may compound over time as sea level rises at an increasing rate. As such, the proliferation of ghost forests from rising sea level has potential to become an important driver of forest bird habitat change in coastal regions.


Asunto(s)
Migración Animal/fisiología , Aves/fisiología , Cambio Climático , Salinidad , Elevación del Nivel del Mar , Agua de Mar/análisis , Animales , Ecosistema , Dinámica Poblacional
7.
J Ethol ; 36(2): 215, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-31305605

RESUMEN

[This corrects the article DOI: 10.1007/s10164-017-0514-z.].

8.
J Ethol ; 35(3): 251-257, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29225404

RESUMEN

An evolutionary trap occurs when an organism makes a formerly adaptive decision that now results in a maladaptive outcome. Such traps can be induced by anthropogenic environmental changes, with nonnative species introductions being a leading cause. The recent establishment of coyotes (Canis latrans) into the southeastern USA has the potential to change white-tailed deer (Odocoileus virginianus) population dynamics through direct predation and behavioral adaptation. We used movement rate and bedsite characteristics of radiocollared neonates to evaluate their antipredator strategies in the context of novel predation risk in a structurally homogeneous, fire-maintained ecosystem. Neonate bedsites had greater plant cover values compared with random sites (t = 30.136; p < 0.001), indicating bedsite selection was consistent with the hider strategy used to avoid predation. We determined selection gradients of coyote predation on neonate movement rate and plant cover and diversity at bedsites during the first 10 days of life. Interestingly, neonates that moved less and bedded in denser cover were more likely to be depredated by coyotes, meaning that greater neonate movement rate and bedsites located in less dense cover were favored by natural selection. These results are counter to expected antipredator strategies in white-tailed deer and exemplify how an adaptive response could be maladaptive in novel contexts.

9.
Behav Processes ; 136: 36-42, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28069490

RESUMEN

Nearly all species of sexually dimorphic ungulates sexually segregate. Several hypotheses have been proposed to explain this phenomenon, including the social-factors hypothesis (SFH) and the predation hypothesis (PH). Interestingly, previous studies have accepted and rejected each hypothesis within and across species but few studies have simultaneously tested both hypotheses in the same population. In August 2011 and 2012 using 7680 photographs taken with camera traps in standardized forage patches, we tested two predictions of the SFH: 1) foraging efficiency of both sexes would decrease when foraging rate in mixed-sex groups relative to single-sex groups, and 2) activity patterns (i.e., the pattern of temporal use of forage patches on a diel scale) of the sexes would decrease in temporal overlap at the forage patch level (i.e., social segregation) compared to the overall temporal overlap of activity patterns of the population. Also, we tested two predictions of the +PH : 1) the relationship between feeding rates of each sex, and 2) temporal activity overlap would change with changing risk level of forage patches as a result of differing risk perception between sexes. In support of the SFH for temporal segregation, when in mixed-sex groups, mature males and all females decreased feeding rate 30% and 10%, respectively; further, the sexes had similar activity patterns overall (94-95% overlap), though temporal overlap was lower in individual forage patches (68-74% overlap). In multi-male mixed sex groups, at least one male exhibited aggressive posture toward females during all foraging bouts suggesting intersex aggression was the cause of the observed decrease in foraging rates. In support of the PH , the sexes adjusted feeding rate differently in response to changing risk level of a forage patch, encouraging spatial segregation; however, the PH was not supported for temporal segregation because temporal activity pattern overlap did not vary as a function of predation risk. Coupling our results with previous reports indicates that the SFH is supported for only temporal segregation of forage patch use, and the PH may only be supported for spatial segregation in forage patch use. Thus, both social factors and predation risk may interact to encourage sexual segregation.


Asunto(s)
Conducta Animal/fisiología , Ciervos/fisiología , Conducta Alimentaria/fisiología , Animales , Femenino , Masculino , North Carolina , Factores Sexuales
10.
Evol Appl ; 9(6): 791-804, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27330555

RESUMEN

When hybridizing species come into contact, understanding the processes that regulate their interactions can help predict the future outcome of the system. This is especially relevant in conservation situations where human activities can influence hybridization dynamics. We investigated a developing hybrid zone between red wolves and coyotes in North Carolina, USA to elucidate patterns of hybridization in a system heavily managed for preservation of the red wolf genome. Using noninvasive genetic sampling of scat, we surveyed a 2880 km(2) region adjacent to the Red Wolf Experimental Population Area (RWEPA). We combined microsatellite genotypes collected from this survey with those from companion studies conducted both within and outside the RWEPA to describe the gradient of red wolf ancestry. A total of 311 individuals were genotyped at 17 loci and red wolf ancestry decreased along an east-west gradient across the RWEPA. No red wolves were found outside the RWEPA, yet half of individuals found within this area were coyotes. Hybrids composed only 4% of individuals within this landscape despite co-occurrence of the two species throughout the RWEPA. The low proportion of hybrids suggests that a combination of active management and natural isolating mechanisms may be limiting intermixing within this hybrid system.

11.
PLoS One ; 11(10): e0165070, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27780221

RESUMEN

Forest regeneration following timber harvest is a principal source of habitat for early-successional birds and characterized by influxes of early-successional vegetation and residual downed woody material. Early-successional birds may use harvest residues for communication, cover, foraging, and nesting. Yet, increased market viability of woody biomass as bioenergy feedstock may intensify harvest residue removal. Our objectives were to: 1) evaluate effects of varying intensities of woody biomass harvest on the early-successional bird community; and (2) document early-successional bird use of harvest residues in regenerating stands. We spot-mapped birds from 15 April- 15 July, 2012-2014, in six woody biomass removal treatments within regenerating stands in North Carolina (n = 4) and Georgia (n = 4), USA. Treatments included clearcut harvest followed by: (1) traditional woody biomass harvest with no specific retention target; (2) 15% retention with harvest residues dispersed; (3) 15% retention with harvest residues clustered; (4) 30% retention with harvest residues dispersed; (5) 30% retention with harvest residues clustered; and (6) no woody biomass harvest (i.e., reference site). We tested for treatment-level effects on breeding bird species diversity and richness, early-successional focal species territory density (combined and individual species), counts of breeding birds detected near, in, or on branches of harvest piles/windrows, counts of breeding bird behaviors, and vegetation composition and structure. Pooled across three breeding seasons, we delineated 536 and 654 territories and detected 2,489 and 4,204 birds in the North Carolina and Georgia treatments, respectively. Woody biomass harvest had limited or short-lived effects on the early-successional, breeding bird community. The successional trajectory of vegetation structure, rather than availability of harvest residues, primarily drove avian use of regenerating stands. However, many breeding bird species used downed wood in addition to vegetation, indicating that harvest residues initially may provide food and cover resources for early-successional birds in regenerating stands prior to vegetation regrowth.


Asunto(s)
Aves/fisiología , Cruzamiento , Madera/crecimiento & desarrollo , Animales , Biomasa , Conservación de los Recursos Naturales , Ecosistema , Georgia , North Carolina , Dinámica Poblacional
12.
J Wildl Dis ; 51(3): 664-9, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25984773

RESUMEN

Coyotes (Canis latrans) have expanded recently into the eastern US and can serve as a source of pathogens to domestic dogs (Canis lupus familiaris), livestock, and humans. We examined free-ranging coyotes from central North Carolina, US, for selected parasites and prevalence of antibodies against viral and bacterial agents. We detected ticks on most (81%) coyotes, with Amblyomma americanum detected on 83% of those with ticks. Fifteen (47%) coyotes were positive for heartworms (Dirofilaria immitis), with a greater detection rate in adults (75%) than juveniles (22%). Serology revealed antibodies against canine adenovirus (71%), canine coronavirus (32%), canine distemper virus (17%), canine parvovirus (96%), and Leptospira spp. (7%). We did not detect antibodies against Brucella abortus/suis or Brucella canis. Our results showed that coyotes harbor many common pathogens that present health risks to humans and domestic animals and suggest that continued monitoring of the coyote's role in pathogen transmission is warranted.


Asunto(s)
Coyotes/parasitología , Infecciones por Adenoviridae/inmunología , Infecciones por Adenoviridae/veterinaria , Adenovirus Caninos/inmunología , Factores de Edad , Animales , Animales Salvajes/sangre , Animales Salvajes/parasitología , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/veterinaria , Coronavirus Canino/inmunología , Coyotes/sangre , Coyotes/microbiología , Coyotes/virología , Dirofilaria , Dirofilariasis/parasitología , Moquillo/inmunología , Virus del Moquillo Canino/inmunología , Femenino , Leptospira/inmunología , Leptospirosis/inmunología , Leptospirosis/veterinaria , Masculino , North Carolina , Infecciones por Parvoviridae/inmunología , Infecciones por Parvoviridae/veterinaria , Parvovirus Canino/inmunología , Pruebas Serológicas/veterinaria , Infestaciones por Garrapatas/parasitología , Infestaciones por Garrapatas/veterinaria , Garrapatas
13.
PLoS One ; 10(3): e0119070, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25734333

RESUMEN

Coyotes recently expanded into the eastern U.S. and potentially have caused localized white-tailed deer population declines. Research has focused on quantifying coyote predation on neonates, but little research has addressed the potential influence of bedsite characteristics on survival. In 2011 and 2012, we radiocollared 65 neonates, monitored them intensively for 16 weeks, and assigned mortality causes. We used Program MARK to estimate survival to 16 weeks and included biological covariates (i.e., sex, sibling status [whether or not it had a sibling], birth weight, and Julian date of birth). Survival to 16 weeks was 0.141 (95% CI = 0.075-0.249) and the top model included only sibling status, which indicated survival was lower for neonates that had a sibling. Predation was the leading cause of mortality (35 of 55; 64%) and coyotes were responsible for the majority of depredations (30 of 35; 86%). Additionally, we relocated neonates for the first 10 days of life and measured distance to firebreak, visual obstruction, and plant diversity at bedsites. Survival of predation to 10 days (0.726; 95% CI = 0.586-0.833) was weakly associated with plant diversity at bedsites but not related to visual obstruction. Our results indicate that neonate survival was low and coyote predation was an important source of mortality, which corroborates several recent studies from the region. Additionally, we detected only weak support for bedsite cover as a covariate to neonate survival, which indicates that mitigating effects of coyote predation on neonates may be more complicated than simply managing for increased hiding cover.


Asunto(s)
Coyotes/fisiología , Ciervos/fisiología , Lynx/fisiología , Conducta Predatoria/fisiología , Reproducción/fisiología , Animales , Peso al Nacer , Conservación de los Recursos Naturales , Ecosistema , Femenino , Tamaño de la Camada , Masculino , North Carolina , Dinámica Poblacional/estadística & datos numéricos
14.
PLoS One ; 9(5): e96898, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24819253

RESUMEN

Fleshy fruit is consumed by many wildlife species and is a critical component of forest ecosystems. Because fruit production may change quickly during forest succession, frequent monitoring of fruit biomass may be needed to better understand shifts in wildlife habitat quality. Yet, designing a fruit sampling protocol that is executable on a frequent basis may be difficult, and knowledge of accuracy within monitoring protocols is lacking. We evaluated the accuracy and efficiency of 3 methods to estimate understory fruit biomass (Fruit Count, Stem Density, and Plant Coverage). The Fruit Count method requires visual counts of fruit to estimate fruit biomass. The Stem Density method uses counts of all stems of fruit producing species to estimate fruit biomass. The Plant Coverage method uses land coverage of fruit producing species to estimate fruit biomass. Using linear regression models under a censored-normal distribution, we determined the Fruit Count and Stem Density methods could accurately estimate fruit biomass; however, when comparing AIC values between models, the Fruit Count method was the superior method for estimating fruit biomass. After determining that Fruit Count was the superior method to accurately estimate fruit biomass, we conducted additional analyses to determine the sampling intensity (i.e., percentage of area) necessary to accurately estimate fruit biomass. The Fruit Count method accurately estimated fruit biomass at a 0.8% sampling intensity. In some cases, sampling 0.8% of an area may not be feasible. In these cases, we suggest sampling understory fruit production with the Fruit Count method at the greatest feasible sampling intensity, which could be valuable to assess annual fluctuations in fruit production.


Asunto(s)
Biomasa , Frutas , Ecosistema , Modelos Lineales , Modelos Teóricos
15.
PLoS One ; 9(3): e90652, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24599090

RESUMEN

Vigilance behavior may directly affect fitness of prey animals, and understanding factors influencing vigilance may provide important insight into predator-prey interactions. We used 40,540 pictures taken withcamera traps in August 2011 and 2012to evaluate factors influencing individual vigilance behavior of white-tailed deer (Odocoileus virginianus) while foraging at baited sites. We used binary logistic regression to determine if individual vigilance was affected by age, sex, and group size. Additionally, we evaluated whether the time of the day,moon phase,and presence of other non-predatorwildlife species impacted individual vigilance. Juveniles were 11% less vigilant at baited sites than adults. Females were 46% more vigilant when fawns were present. Males and females spent more time feeding as group size increased, but with each addition of 1 individual to a group, males increased feeding time by nearly double that of females. Individual vigilance fluctuated with time of day andwith moon phase but generally was least during diurnal and moonlit nocturnal hours, indicating deer have the ability to adjust vigilance behavior to changing predation risk associated with varyinglight intensity.White-tailed deer increased individual vigilance when other non-predator wildlife were present. Our data indicate that differential effects of environmental and social constraints on vigilance behavior between sexes may encourage sexual segregation in white-tailed deer.


Asunto(s)
Ciervos/fisiología , Ambiente , Conducta Predatoria/fisiología , Conducta Social , Animales , Femenino , Modelos Logísticos , Masculino , Luna , North Carolina , Factores de Tiempo
16.
PLoS One ; 8(12): e83815, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24376759

RESUMEN

Strips of fallow vegetation along cropland borders are an effective strategy for providing brood habitat for declining populations of upland game birds (Order: Galliformes), including northern bobwhite (Colinus virginianus), but fallow borders lack nectar-producing vegetation needed to sustain many beneficial insect populations (e.g., crop pest predators, parasitoids, and pollinator species). Planted borders that contain mixes of prairie flowers and grasses are designed to harbor more diverse arthropod communities, but the relative value of these borders as brood habitat is unknown. We used groups of six human-imprinted northern bobwhite chicks as a bioassay for comparing four different border treatments (planted native grass and prairie flowers, planted prairie flowers only, fallow vegetation, or mowed vegetation) as northern bobwhite brood habitat from June-August 2009 and 2010. All field border treatments were established around nine organic crop fields. Groups of chicks were led through borders for 30-min foraging trials and immediately euthanized, and eaten arthropods in crops and gizzards were measured to calculate a foraging rate for each border treatment. We estimated arthropod prey availability within each border treatment using a modified blower-vac to sample arthropods at the vegetation strata where chicks foraged. Foraging rate did not differ among border treatments in 2009 or 2010. Total arthropod prey densities calculated from blower-vac samples did not differ among border treatments in 2009 or 2010. Our results showed plant communities established to attract beneficial insects should maximize the biodiversity potential of field border establishment by providing habitat for beneficial insects and young upland game birds.


Asunto(s)
Colinus , Ecosistema , Insectos , Animales , Biodiversidad , Productos Agrícolas , Humanos
17.
J Wildl Dis ; 49(1): 1-9, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23307366

RESUMEN

Waterfowl are natural reservoirs for zoonotic pathogens, and abundant resident (nonmigratory) Canada Geese (Branta canadensis) in urban and suburban environments pose the potential for transmission of Campylobacter through human contact with fecal deposits and contaminated water. In June 2008 and July 2009, we collected 318 fecal samples from resident Canada Geese at 21 locations in and around Greensboro, North Carolina, to test for Campylobacter. All campylobacter species detected were C. jejuni isolates, and prevalences in 2008 and 2009 were 5.0% and 16.0%, respectively. Prevalence of C. jejuni-positive sampling sites was 21% (3/14) and 40% (6/15) in 2008 and 2009, respectively. All C. jejuni isolates were susceptible to a panel of six antimicrobial agents (tetracycline, streptomycin, erythromycin, kanamycin, nalidixic acid, and ciprofloxacin). We used pulsed-field gel electrophoresis and fla-typing to identify several strain types among these isolates. Multilocus sequence typing of representative isolates revealed six sequence types, of which two (ST-3708 and ST-4368) were new, two (ST-702 and ST-4080) had been detected previously among C. jejuni from geese, and two (ST-991 and ST-4071) were first reported in C. jejuni from an environmental water source and a human illness, respectively. These results indicate a diverse population of antibiotic-susceptible C. jejuni in resident Canada Geese in and around Greensboro, North Carolina, and suggest a need for additional assessment of the public health risk associated with resident Canada Geese in urban and suburban areas.


Asunto(s)
Enfermedades de las Aves/microbiología , Infecciones por Campylobacter/veterinaria , Campylobacter jejuni/aislamiento & purificación , Heces/microbiología , Gansos/microbiología , Animales , Técnicas de Tipificación Bacteriana/veterinaria , Enfermedades de las Aves/epidemiología , Enfermedades de las Aves/transmisión , Infecciones por Campylobacter/epidemiología , Infecciones por Campylobacter/microbiología , Infecciones por Campylobacter/transmisión , Canadá/epidemiología , Reservorios de Enfermedades/microbiología , Reservorios de Enfermedades/veterinaria , Farmacorresistencia Bacteriana , Humanos , Pruebas de Sensibilidad Microbiana/veterinaria , Prevalencia , Salud Pública , Factores de Riesgo , Microbiología del Agua , Zoonosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA