Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
PLoS Pathog ; 20(7): e1012320, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39012849

RESUMEN

Apoptosis, a major form of programmed cell death, is an essential component of host defense against invading intracellular pathogens. Viruses encode inhibitors of apoptosis to evade host responses during infection, and to support their own replication and survival. Therefore, hosts and their viruses are entangled in a constant evolutionary arms race to control apoptosis. Until now, apoptosis in the context of the antiviral immune system has been almost exclusively studied in vertebrates. This limited phyletic sampling makes it impossible to determine whether a similar mechanism existed in the last common ancestor of animals. Here, we established assays to probe apoptosis in the sea anemone Nematostella vectensis, a model species of Cnidaria, a phylum that diverged approximately 600 million years ago from the rest of animals. We show that polyinosinic:polycytidylic acid (poly I:C), a synthetic long double-stranded RNA mimicking viral RNA and a primary ligand for the vertebrate RLR melanoma differentiation-associated protein 5 (MDA5), is sufficient to induce apoptosis in N. vectensis. Furthermore, at the transcriptomic level, apoptosis related genes are significantly enriched upon poly(I:C) exposure in N. vectensis as well as bilaterian invertebrates. Our phylogenetic analysis of caspase family genes in N. vectensis reveals conservation of all four caspase genes involved in apoptosis in mammals and revealed a cnidarian-specific caspase gene which was strongly upregulated. Altogether, our findings suggest that apoptosis in response to a viral challenge is a functionally conserved mechanism that can be traced back to the last common ancestor of Bilateria and Cnidaria.


Asunto(s)
Apoptosis , ARN Bicatenario , Anémonas de Mar , Animales , Anémonas de Mar/genética , ARN Bicatenario/metabolismo , ARN Bicatenario/genética , Filogenia , Poli I-C/farmacología , Cnidarios/genética , Evolución Biológica
2.
Mol Biol Evol ; 41(5)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38676945

RESUMEN

Gene duplication is a major force driving evolutionary innovation. A classic example is generating new animal toxins via duplication of physiological protein-encoding genes and recruitment into venom. While this process drives the innovation of many animal venoms, reverse recruitment of toxins into nonvenomous cells remains unresolved. Using comparative genomics, we find members of the Membrane Attack Complex and Perforin Family (MAC) have been recruited into venom-injecting cells (cnidocytes), in soft and stony corals and sea anemones, suggesting that the ancestral MAC was a cnidocyte expressed toxin. Further investigation into the model sea anemone Nematostella vectensis reveals that three members have undergone Nematostella-specific duplications leading to their reverse recruitment into endomesodermal cells. Furthermore, simultaneous knockdown of all three endomesodermally expressed MACs leads to mis-development, supporting that these paralogs have nonvenomous function. By resolving the evolutionary history and function of MACs in Nematostella, we provide the first proof for reverse recruitment from venom to organismal development.


Asunto(s)
Evolución Molecular , Perforina , Anémonas de Mar , Animales , Anémonas de Mar/genética , Perforina/metabolismo , Perforina/genética , Duplicación de Gen , Venenos de Cnidarios/genética , Venenos de Cnidarios/metabolismo , Filogenia , Familia de Multigenes
3.
Sci Adv ; 10(11): eadk3870, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38478603

RESUMEN

The ability of an animal to effectively capture prey and defend against predators is pivotal for survival. Venom is often a mixture of many components including toxin proteins that shape predator-prey interactions. Here, we used the sea anemone Nematostella vectensis to test the impact of toxin genotypes on predator-prey interactions. We developed a genetic manipulation technique to demonstrate that both transgenically deficient and a native Nematostella strain lacking a major neurotoxin (Nv1) have a reduced ability to defend themselves against grass shrimp, a native predator. In addition, secreted Nv1 can act indirectly in defense by attracting mummichog fish, which prey on grass shrimp. Here, we provide evidence at the molecular level of an animal-specific tritrophic interaction between a prey, its antagonist, and a predator. Last, this study reveals an evolutionary trade-off, as the reduction of Nv1 levels allows for faster growth and increased reproductive rates.


Asunto(s)
Anémonas de Mar , Ponzoñas , Animales , Reproducción , Evolución Biológica , Neurotoxinas/genética , Anémonas de Mar/genética , Conducta Predatoria/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA