Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Lipids ; 57(6): 313-325, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36098349

RESUMEN

Although it is well established that glucocorticoids inactivate thermogenesis and promote lipid accumulation in interscapular brown adipose tissue (IBAT), the underlying mechanisms remain unknown. We found that dexamethasone treatment (1 mg/kg) for 7 days in rats decreased the IBAT thermogenic activity, evidenced by its lower responsiveness to noradrenaline injection associated with reduced content of mitochondrial proteins, respiratory chain protein complexes, noradrenaline, and the ß3 -adrenergic receptor. In parallel, to understand better how dexamethasone increases IBAT lipid content, we also investigated the activity of the ATP citrate lyase (ACL), a key enzyme of de novo fatty acid synthesis, glucose-6-phosphate dehydrogenase (G6PD), a rate-limiting enzyme of the pentose phosphate pathway, and the three glycerol-3-P generating pathways: (1) glycolysis, estimated by 2-deoxyglucose uptake, (2) glyceroneogenesis, evaluated by phosphoenolpyruvate carboxykinase activity and pyruvate incorporation into triacylglycerol-glycerol, and (3) direct phosphorylation of glycerol, investigated by the content and activity of glycerokinase. Dexamethasone increased the mass and the lipid content of IBAT as well as plasma levels of glucose, insulin, non-esterified fatty acid, and glycerol. Furthermore, dexamethasone increased ACL and G6PD activities (79% and 48%, respectively). Despite promoting a decrease in the incorporation of U-[14 C]-glycerol into triacylglycerol (~54%), dexamethasone increased the content (~55%) and activity (~41%) of glycerokinase without affecting glucose uptake or glyceroneogenesis. Our data suggest that glucocorticoid administration reduces IBAT thermogenesis through sympathetic inactivation and stimulates glycerokinase activity and content, contributing to increased generation of glycerol-3-P, which is mostly used to esterify fatty acid and increase triacylglycerol content promoting IBAT whitening.


Asunto(s)
Tejido Adiposo Pardo , Glicerol Quinasa , Animales , Ratas , Tejido Adiposo Pardo/metabolismo , Glicerol Quinasa/metabolismo , Glucocorticoides , Glicerol , Ratas Wistar , Termogénesis , Triglicéridos/metabolismo , Ácidos Grasos/metabolismo , Dexametasona/metabolismo , Norepinefrina , Tejido Adiposo/metabolismo
2.
Peptides ; 146: 170677, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34695513

RESUMEN

Calcitonin Gene-Related Peptide (CGRP) is a potent vasodilator peptide widely distributed in the central nervous system and various peripheral tissues, including cardiac muscle. However, its role in heart protein metabolism remains unknown. We examined the acute effects of CGRP on autophagy and the related signaling pathways in the heart mice and cultured neonatal cardiomyocytes. CGRP (100 µg kg-1; s.c.) or 0.9 % saline was injected in awake male C57B16 mice, and the metabolic profile was determined up to 60 min. In fed mice, CGRP drastically increased glycemia and reduced insulinemia, an effect that was accompanied by reduced cardiac phosphorylation levels of Akt at Ser473 without affecting FoxO. Despite these catabolic effects, CGRP acutely inhibited autophagy as estimated by the decrease in LC3II:LC3I and autophagic flux. In addition, the fasting-induced autophagic flux in mice hearts was entirely abrogated by one single injection of CGRP. In parallel, CGRP stimulated PKA/CREB and mTORC1 signaling and increased the phosphorylation of Unc51-like kinase-1 (ULK1), an essential protein in autophagy initiation. Similar effects were observed in cardiomyocytes, in which CGRP also inhibited autophagic flux and stimulated Akt and FoxO phosphorylation. These findings suggest that CGRP in vivo acutely suppresses autophagy in the heart of fed and fasted mice, most likely through the activation of PKA/mTORC1 signaling but independent of Akt.


Asunto(s)
Autofagia/efectos de los fármacos , Péptido Relacionado con Gen de Calcitonina/fisiología , Corazón/efectos de los fármacos , Animales , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Ratones , Miocitos Cardíacos/efectos de los fármacos , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos
3.
BMC Complement Med Ther ; 21(1): 20, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33413302

RESUMEN

BACKGROUND: Cancer is a multifactorial disease caused by uncontrolled proliferation of cells. About 50-80% of cancer patients develop cachexia, a complex metabolic syndrome associated with an increase of mortality and morbidity. However, there are no effective therapies in medical clinic for cancer cachexia. Vochysia tucanorum Mart. is a common three of the Brazilian "Cerrado". The butanolic fraction of V. tucanorum (Fr-BuVt), very rich in triterpenes with various biological activities, might be interesting in being tested in cancer cachexia syndrome. Hence, the present study was undertaken to investigate the antitumoral activity of Fr-BuVt and its potential against cachexia development. METHODS: Ehrlich tumor was used as model of cancer cachexia. Ascitic Ehrlich tumor cells were collected, processed and inoculated subcutaneously in saline solution (1 × 107/100 µl; ≥95% viability) for the obtention of solid Ehrlich carcinoma. After inoculation, solid Ehrlich carcinoma-bearing mice were treated by 14 consecutive days by gavage with Fr-BuVt (200 mg/kg). Body weight and tumor volume were measure during the treatment period. Tumors were removed, weighed and properly processed to measure the content and phosphorylation levels of key-proteins involved to apoptotic and proliferation process by Western Blot. Muscles and adipose tissues were removed for weighed. Serum was collected to cytokines levels and energetic blood markers measurements. RESULTS: The treatment with the Fr-BuVt (200 mg/kg, 14 days) decreased the solid Ehrlich tumor volume and weight besides increased the expression of the pro-apoptotic proteins caspase-3 and BAX, but also decreased the expression of the proteins involved in proliferation NFκB, mTOR and ERK. In addition, our data shows that the administration of Fr-BuVt was able to prevent the installation of cancer cachexia in Ehrlich carcinoma-bearing mice, since prevented the loss of body weight, as well as the loss of muscle and adipose tissue. Moreover, an improvement in some blood parameters such as decrease in cytokines TNF-α and IL-6 levels is observed. CONCLUSIONS: The study revealed that Fr-BuVt has antitumoral activity and prevent installation of cancer cachexia in Ehrlich model. Therefore, Fr-BuVt may represent an alternative treatment for cancer cachexia.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Caquexia/prevención & control , Carcinoma de Ehrlich/tratamiento farmacológico , Myrtales/química , Extractos Vegetales/farmacología , Animales , Antineoplásicos Fitogénicos/aislamiento & purificación , Apoptosis/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Brasil , Butanoles , Caquexia/etiología , Carcinoma de Ehrlich/complicaciones , Proliferación Celular/efectos de los fármacos , Citocinas/sangre , Masculino , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA