Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Neurobiol Dis ; 179: 106050, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36809847

RESUMEN

Effective therapies are urgently needed to safely target TDP-43 pathology as it is closely associated with the onset and development of devastating diseases such as frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP) and amyotrophic lateral sclerosis (ALS). In addition, TDP-43 pathology is present as a co-pathology in other neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Our approach is to develop a TDP-43-specific immunotherapy that exploits Fc gamma-mediated removal mechanisms to limit neuronal damage while maintaining physiological TDP-43 function. Thus, using both in vitro mechanistic studies in conjunction with the rNLS8 and CamKIIa inoculation mouse models of TDP-43 proteinopathy, we identified the key targeting domain in TDP-43 to accomplish these therapeutic objectives. Targeting the C-terminal domain of TDP-43 but not the RNA recognition motifs (RRM) reduces TDP-43 pathology and avoids neuronal loss in vivo. We demonstrate that this rescue is dependent on Fc receptor-mediated immune complex uptake by microglia. Furthermore, monoclonal antibody (mAb) treatment enhances phagocytic capacity of ALS patient-derived microglia, providing a mechanism to restore the compromised phagocytic function in ALS and FTD patients. Importantly, these beneficial effects are achieved while preserving physiological TDP-43 activity. Our findings demonstrate that a mAb targeting the C-terminal domain of TDP-43 limits pathology and neurotoxicity, enabling clearance of misfolded TDP-43 through microglia engagement, and supporting the clinical strategy to target TDP-43 by immunotherapy. SIGNIFICANCE STATEMENT: TDP-43 pathology is associated with various devastating neurodegenerative disorders with high unmet medical needs such as frontotemporal dementia (FTD), amyotrophic lateral sclerosis (ALS) and Alzheimer's disease. Thus, safely and effectively targeting pathological TDP-43 represents a key paradigm for biotechnical research as currently there is little in clinical development. After years of research, we have determined that targeting the C-terminal domain of TDP-43 rescues multiple patho-mechanisms involved in disease progression in two animal models of FTD/ALS. In parallel, importantly, our studies establish that this approach does not alter the physiological functions of this ubiquitously expressed and indispensable protein. Together, our findings substantially contribute to the understanding of TDP-43 pathobiology and support the prioritization for clinical testing of immunotherapy approaches targeting TDP-43.


Asunto(s)
Enfermedad de Alzheimer , Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Enfermedad de Pick , Ratones , Animales , Esclerosis Amiotrófica Lateral/genética , Demencia Frontotemporal/genética , Enfermedad de Alzheimer/genética , Neuroprotección , Proteínas de Unión al ADN/metabolismo , Inmunoterapia
2.
Nat Immunol ; 9(3): 272-81, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18264101

RESUMEN

The paracaspase MALT1 is pivotal in antigen receptor-mediated lymphocyte activation and lymphomagenesis. MALT1 contains a caspase-like domain, but it is unknown whether this domain is proteolytically active. Here we report that MALT1 had arginine-directed proteolytic activity that was activated after T cell stimulation, and we identify the signaling protein Bcl-10 as a MALT1 substrate. Processing of Bcl-10 after Arg228 was required for T cell receptor-induced cell adhesion to fibronectin. In contrast, MALT1 activity but not Bcl-10 cleavage was essential for optimal activation of transcription factor NF-kappaB and production of interleukin 2. Thus, the proteolytic activity of MALT1 is central to T cell activation, which suggests a possible target for the development of immunomodulatory or anticancer drugs.


Asunto(s)
Caspasas/fisiología , Activación de Linfocitos/inmunología , FN-kappa B/metabolismo , Proteínas de Neoplasias/fisiología , Linfocitos T/inmunología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteína 10 de la LLC-Linfoma de Células B , Línea Celular , Electroforesis en Gel Bidimensional , Humanos , Células Jurkat , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas , Péptido Hidrolasas/metabolismo , Isoformas de Proteínas/metabolismo
3.
Hum Mol Genet ; 23(8): 2055-77, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24282027

RESUMEN

Mutations in LRRK2 cause autosomal dominant Parkinson's disease (PD). LRRK2 encodes a multi-domain protein containing GTPase and kinase domains, and putative protein-protein interaction domains. Familial PD mutations alter the GTPase and kinase activity of LRRK2 in vitro. LRRK2 is suggested to regulate a number of cellular pathways although the underlying mechanisms are poorly understood. To explore such mechanisms, it has proved informative to identify LRRK2-interacting proteins, some of which serve as LRRK2 kinase substrates. Here, we identify common interactions of LRRK2 with members of the dynamin GTPase superfamily. LRRK2 interacts with dynamin 1-3 that mediate membrane scission in clathrin-mediated endocytosis and with dynamin-related proteins that mediate mitochondrial fission (Drp1) and fusion (mitofusins and OPA1). LRRK2 partially co-localizes with endosomal dynamin-1 or with mitofusins and OPA1 at mitochondrial membranes. The subcellular distribution and oligomeric complexes of dynamin GTPases are not altered by modulating LRRK2 in mouse brain, whereas mature OPA1 levels are reduced in G2019S PD brains. LRRK2 enhances mitofusin-1 GTP binding, whereas dynamin-1 and OPA1 serve as modest substrates of LRRK2-mediated phosphorylation in vitro. While dynamin GTPase orthologs are not required for LRRK2-induced toxicity in yeast, LRRK2 functionally interacts with dynamin-1 and mitofusin-1 in cultured neurons. LRRK2 attenuates neurite shortening induced by dynamin-1 by reducing its levels, whereas LRRK2 rescues impaired neurite outgrowth induced by mitofusin-1 potentially by reversing excessive mitochondrial fusion. Our study elucidates novel functional interactions of LRRK2 with dynamin-superfamily GTPases that implicate LRRK2 in the regulation of membrane dynamics important for endocytosis and mitochondrial morphology.


Asunto(s)
Dinamina III/metabolismo , Dinamina II/metabolismo , Dinamina I/metabolismo , Neuroblastoma/metabolismo , Enfermedad de Parkinson/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Western Blotting , Estudios de Casos y Controles , Células Cultivadas , Endocitosis , Femenino , GTP Fosfohidrolasas/metabolismo , Células HEK293 , Humanos , Técnicas para Inmunoenzimas , Inmunoprecipitación , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Ratones , Ratones Noqueados , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismo , Mutación , Neuritas/metabolismo , Neuroblastoma/patología , Neuronas/citología , Neuronas/metabolismo , Enfermedad de Parkinson/patología , Fosforilación , Dominios y Motivos de Interacción de Proteínas , Ratas , Ratas Sprague-Dawley , Saccharomyces cerevisiae , Técnicas del Sistema de Dos Híbridos
4.
Hum Mol Genet ; 23(17): 4621-38, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-24740878

RESUMEN

Mutations in the vacuolar protein sorting 35 homolog (VPS35) gene at the PARK17 locus, encoding a key component of the retromer complex, were recently identified as a new cause of late-onset, autosomal dominant Parkinson's disease (PD). Here we explore the pathogenic consequences of PD-associated mutations in VPS35 using a number of model systems. VPS35 exhibits a broad neuronal distribution throughout the rodent brain, including within the nigrostriatal dopaminergic pathway. In the human brain, VPS35 protein levels and distribution are similar in tissues from control and PD subjects, and VPS35 is not associated with Lewy body pathology. The common D620N missense mutation in VPS35 does not compromise its protein stability or localization to endosomal and lysosomal vesicles, or the vesicular sorting of the retromer cargo, sortilin, SorLA and cation-independent mannose 6-phosphate receptor, in rodent primary neurons or patient-derived human fibroblasts. In yeast we show that PD-linked VPS35 mutations are functional and can normally complement VPS35 null phenotypes suggesting that they do not result in a loss-of-function. In rat primary cortical cultures the overexpression of human VPS35 induces neuronal cell death and increases neuronal vulnerability to PD-relevant cellular stress. In a novel viral-mediated gene transfer rat model, the expression of D620N VPS35 induces the marked degeneration of substantia nigra dopaminergic neurons and axonal pathology, a cardinal pathological hallmark of PD. Collectively, these studies establish that dominant VPS35 mutations lead to neurodegeneration in PD consistent with a gain-of-function mechanism, and support a key role for VPS35 in the development of PD.


Asunto(s)
Neuronas Dopaminérgicas/patología , Mutación/genética , Degeneración Nerviosa/genética , Degeneración Nerviosa/patología , Enfermedad de Parkinson/genética , Proteínas de Transporte Vesicular/genética , Anciano , Anciano de 80 o más Años , Animales , Encéfalo/metabolismo , Encéfalo/patología , Muerte Celular , Células Cultivadas , Dependovirus/metabolismo , Neuronas Dopaminérgicas/metabolismo , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Persona de Mediana Edad , Enfermedad de Parkinson/patología , Estabilidad Proteica , Transporte de Proteínas , Ratas Sprague-Dawley , Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico , Vesículas Transportadoras/metabolismo
5.
Brain ; 137(Pt 3): 819-33, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24459107

RESUMEN

Huntington's disease is an inherited neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene. The peripheral innate immune system contributes to Huntington's disease pathogenesis and has been targeted successfully to modulate disease progression, but mechanistic understanding relating this to mutant huntingtin expression in immune cells has been lacking. Here we demonstrate that human Huntington's disease myeloid cells produce excessive inflammatory cytokines as a result of the cell-intrinsic effects of mutant huntingtin expression. A direct effect of mutant huntingtin on the NFκB pathway, whereby it interacts with IKKγ, leads to increased degradation of IκB and subsequent nuclear translocation of RelA. Transcriptional alterations in intracellular immune signalling pathways are also observed. Using a novel method of small interfering RNA delivery to lower huntingtin expression, we show reversal of disease-associated alterations in cellular function-the first time this has been demonstrated in primary human cells. Glucan-encapsulated small interfering RNA particles were used to lower huntingtin levels in human Huntington's disease monocytes/macrophages, resulting in a reversal of huntingtin-induced elevated cytokine production and transcriptional changes. These findings improve our understanding of the role of innate immunity in neurodegeneration, introduce glucan-encapsulated small interfering RNA particles as tool for studying cellular pathogenesis ex vivo in human cells and raise the prospect of immune cell-directed HTT-lowering as a therapeutic in Huntington's disease.


Asunto(s)
Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Células Mieloides/patología , FN-kappa B/antagonistas & inhibidores , FN-kappa B/fisiología , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Transducción de Señal/genética , Regulación de la Expresión Génica/inmunología , Humanos , Proteína Huntingtina , Enfermedad de Huntington/metabolismo , Inmunidad Innata/genética , Células Mieloides/inmunología , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , ARN Interferente Pequeño/uso terapéutico , Transducción de Señal/inmunología , Células U937
6.
J Neurosci ; 33(12): 5127-37, 2013 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-23516279

RESUMEN

MicroRNAs (miRNAs) have been shown to play important roles in both brain development and the regulation of adult neural cell functions. However, a systematic analysis of brain miRNA functions has been hindered by a lack of comprehensive information regarding the distribution of miRNAs in neuronal versus glial cells. To address this issue, we performed microarray analyses of miRNA expression in the four principal cell types of the CNS (neurons, astrocytes, oligodendrocytes, and microglia) using primary cultures from postnatal d 1 rat cortex. These analyses revealed that neural miRNA expression is highly cell-type specific, with 116 of the 351 miRNAs examined being differentially expressed fivefold or more across the four cell types. We also demonstrate that individual neuron-enriched or neuron-diminished RNAs had a significant impact on the specification of neuronal phenotype: overexpression of the neuron-enriched miRNAs miR-376a and miR-434 increased the differentiation of neural stem cells into neurons, whereas the opposite effect was observed for the glia-enriched miRNAs miR-223, miR-146a, miR-19, and miR-32. In addition, glia-enriched miRNAs were shown to inhibit aberrant glial expression of neuronal proteins and phenotypes, as exemplified by miR-146a, which inhibited neuroligin 1-dependent synaptogenesis. This study identifies new nervous system functions of specific miRNAs, reveals the global extent to which the brain may use differential miRNA expression to regulate neural cell-type-specific phenotypes, and provides an important data resource that defines the compartmentalization of brain miRNAs across different cell types.


Asunto(s)
MicroARNs/fisiología , Células-Madre Neurales/fisiología , Neuroglía/fisiología , Neuronas/fisiología , Transcriptoma , Animales , Animales Recién Nacidos , Astrocitos/citología , Astrocitos/fisiología , Diferenciación Celular/fisiología , Corteza Cerebral/citología , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/fisiología , Femenino , Masculino , MicroARNs/genética , Microglía/citología , Microglía/fisiología , Células-Madre Neurales/citología , Neuroglía/citología , Neuronas/citología , Oligodendroglía/citología , Oligodendroglía/fisiología , Fenotipo , Cultivo Primario de Células , Ratas , Sinapsis/fisiología
7.
J Neurosci ; 33(6): 2313-25, 2013 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-23392662

RESUMEN

We previously demonstrated that sodium butyrate is neuroprotective in Huntington's disease (HD) mice and that this therapeutic effect is associated with increased expression of mitogen-activated protein kinase/dual-specificity phosphatase 1 (MKP-1/DUSP1). Here we show that enhancing MKP-1 expression is sufficient to achieve neuroprotection in lentiviral models of HD. Wild-type MKP-1 overexpression inhibited apoptosis in primary striatal neurons exposed to an N-terminal fragment of polyglutamine-expanded huntingtin (Htt171-82Q), blocking caspase-3 activation and significantly reducing neuronal cell death. This neuroprotective effect of MKP-1 was demonstrated to be dependent on its enzymatic activity, being ablated by mutation of its phosphatase domain and being attributed to inhibition of specific MAP kinases (MAPKs). Overexpression of MKP-1 prevented the polyglutamine-expanded huntingtin-induced activation of c-Jun N-terminal kinases (JNKs) and p38 MAPKs, whereas extracellular signal-regulated kinase (ERK) 1/2 activation was not altered by either polyglutamine-expanded Htt or MKP-1. Moreover, mutants of MKP-1 that selectively prevented p38 or JNK binding confirmed the important dual contributions of p38 and JNK regulation to MKP-1-mediated neuroprotection. These results demonstrate additive effects of p38 and JNK MAPK inhibition by MKP-1 without consequence to ERK activation in this striatal neuron-based paradigm. MKP-1 also provided neuroprotection in vivo in a lentiviral model of HD neuropathology in rat striatum. Together, these data extend previous evidence that JNK- and p38-mediated pathways contribute to HD pathogenesis and, importantly, show that therapies simultaneously inhibiting both JNK and p38 signaling pathways may lead to improved neuroprotective outcomes.


Asunto(s)
Fosfatasa 1 de Especificidad Dual/biosíntesis , Enfermedad de Huntington/enzimología , Enfermedad de Huntington/prevención & control , MAP Quinasa Quinasa 4/antagonistas & inhibidores , Fármacos Neuroprotectores/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Animales , Células Cultivadas , Femenino , MAP Quinasa Quinasa 4/metabolismo , Ratones , Ratas , Ratas Wistar , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
8.
Inf Syst Front ; 24(4): 1107-1123, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34876876

RESUMEN

In supply chains where stakeholders belong to the economically disadvantaged segment and form an important part of the supply chain distribution, the complexities grow manifold. Fisheries in developing nations are one such sector where the complexity is not only due to the produce being perishable but also due to the livelihood dependence of others in the coastal regions that belong to the section of economically disadvantaged. This paper explains the contextual challenges of fish supply chain in a developing country and describes how integrating disruptive technologies can address those challenges. Through a positive deviance approach, we show how firms can help unorganized supply chains with economically disadvantaged suppliers by carefully redesigning the supply chain through the integration of satellite imagery and blockchain technology. With COVID-19 in the backdrop, we highlight how such technologies significantly improves the supply chain resilience and at the same time contributes to the income generating opportunities of poor fisherfolks in developing nations. Our study has important implications to both developing markets and food supply chain practitioners as this paper tackles issues such as perishability, demand-supply mismatch, unfair prices, and quality related data transparency in the entire value chain.

9.
J Serv Res ; 21(4): 421-437, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30333688

RESUMEN

One key challenge for consumers at the base of the pyramid (BoP) is access to products that could transform their livelihood, leading to nonconsumption as the dominant pattern. Previous studies have claimed that nonconsumption could be addressed with services offering access to goods without ownership. Drawing on expected utility theory, we conduct two experimental studies in rural India that provide the first empirical support for the idea that the availability of access-based services reduces nonconsumption at the BoP. Additionally, we show that this effect is explained by BoP consumers' expected utility assessment as reflected in their perception of access being more affordable and entailing less financial risk than ownership. We also demonstrate that access temporality, an important configurational variable for access-based service providers, affects the degree to which nonconsumption can be decreased. Compared to short-term access, BoP consumers perceive long-term access to be too similar to ownership in terms of affordability and financial risk, which causes them to refrain from purchasing. Overall, the results suggest that access-based services represent a viable alternative for addressing nonconsumption at the BoP. However, service providers should be aware that short-term access is required to gain acceptance among BoP consumers.

10.
PLoS One ; 8(1): e54222, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23349832

RESUMEN

BACKGROUND: Whereas many causes and mechanisms of neurodegenerative diseases have been identified, very few therapeutic strategies have emerged in parallel. One possible explanation is that successful treatment strategy may require simultaneous targeting of more than one molecule of pathway. A new therapeutic approach to have emerged recently is the engagement of microRNAs (miRNAs), which affords the opportunity to target multiple cellular pathways simultaneously using a single sequence. METHODOLOGY/PRINCIPAL FINDINGS: We identified miR-22 as a potentially neuroprotective miRNA based on its predicted regulation of several targets implicated in Huntington's disease (histone deacetylase 4 (HDAC4), REST corepresor 1 (Rcor1) and regulator of G-protein signaling 2 (Rgs2)) and its diminished expression in Huntington's and Alzheimer's disease brains. We then tested the hypothesis that increasing cellular levels of miRNA-22 would achieve neuroprotection in in vitro models of neurodegeneration. As predicted, overexpression of miR-22 inhibited neurodegeneration in primary striatal and cortical cultures exposed to a mutated human huntingtin fragment (Htt171-82Q). Overexpression of miR-22 also decreased neurodegeneration in primary neuronal cultures exposed to 3-nitropropionic acid (3-NP), a mitochondrial complex II/III inhibitor. In addition, miR-22 improved neuronal viability in an in vitro model of brain aging. The mechanisms underlying the effects of miR-22 included a reduction in caspase activation, consistent with miR-22's targeting the pro-apoptotic activities of mitogen-activated protein kinase 14/p38 (MAPK14/p38) and tumor protein p53-inducible nuclear protein 1 (Tp53inp1). Moreover, HD-specific effects comprised not only targeting HDAC4, Rcor1 and Rgs2 mRNAs, but also decreasing focal accumulation of mutant Htt-positive foci, which occurred via an unknown mechanism. CONCLUSIONS: These data show that miR-22 has multipartite anti-neurodegenerative activities including the inhibition of apoptosis and the targeting of mRNAs implicated in the etiology of HD. These results motivate additional studies to evaluate the feasibility and therapeutic efficacy of manipulating miR-22 in vivo.


Asunto(s)
Apoptosis/genética , Predisposición Genética a la Enfermedad/genética , Enfermedad de Huntington/genética , MicroARNs/genética , Regiones no Traducidas 3'/genética , Animales , Western Blotting , Encéfalo/metabolismo , Encéfalo/patología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Células Cultivadas , Proteínas Co-Represoras , Regulación de la Expresión Génica , Células HEK293 , Histona Desacetilasas/genética , Humanos , Proteína Huntingtina , Enfermedad de Huntington/metabolismo , Luciferasas/genética , Luciferasas/metabolismo , Mutación , Proteínas del Tejido Nervioso/genética , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Nitrocompuestos/farmacología , Propionatos/farmacología , Proteínas RGS/genética , ARN Mensajero/genética , Ratas , Proteínas Represoras/genética
11.
PLoS One ; 7(6): e39942, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22768177

RESUMEN

Mutations in the ATP13A2 gene (PARK9) cause autosomal recessive, juvenile-onset Kufor-Rakeb syndrome (KRS), a neurodegenerative disease characterized by parkinsonism. KRS mutations produce truncated forms of ATP13A2 with impaired protein stability resulting in a loss-of-function. Recently, homozygous and heterozygous missense mutations in ATP13A2 have been identified in subjects with early-onset parkinsonism. The mechanism(s) by which missense mutations potentially cause parkinsonism are not understood at present. Here, we demonstrate that homozygous F182L, G504R and G877R missense mutations commonly impair the protein stability of ATP13A2 leading to its enhanced degradation by the proteasome. ATP13A2 normally localizes to endosomal and lysosomal membranes in neurons and the F182L and G504R mutations disrupt this vesicular localization and promote the mislocalization of ATP13A2 to the endoplasmic reticulum. Heterozygous T12M, G533R and A746T mutations do not obviously alter protein stability or subcellular localization but instead impair the ATPase activity of microsomal ATP13A2 whereas homozygous missense mutations disrupt the microsomal localization of ATP13A2. The overexpression of ATP13A2 missense mutants in SH-SY5Y neural cells does not compromise cellular viability suggesting that these mutant proteins lack intrinsic toxicity. However, the overexpression of wild-type ATP13A2 may impair neuronal integrity as it causes a trend of reduced neurite outgrowth of primary cortical neurons, whereas the majority of disease-associated missense mutations lack this ability. Finally, ATP13A2 overexpression sensitizes cortical neurons to neurite shortening induced by exposure to cadmium or nickel ions, supporting a functional interaction between ATP13A2 and heavy metals in post-mitotic neurons, whereas missense mutations influence this sensitizing effect. Collectively, our study provides support for common loss-of-function effects of homozygous and heterozygous missense mutations in ATP13A2 associated with early-onset forms of parkinsonism.


Asunto(s)
Mutación Missense/genética , Trastornos Parkinsonianos/enzimología , Trastornos Parkinsonianos/genética , ATPasas de Translocación de Protón/genética , Edad de Inicio , Animales , Línea Celular Tumoral , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/patología , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/enzimología , Endosomas/efectos de los fármacos , Endosomas/metabolismo , Femenino , Células HEK293 , Homocigoto , Humanos , Membranas Intracelulares/efectos de los fármacos , Membranas Intracelulares/enzimología , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Metales Pesados/toxicidad , Neuritas/efectos de los fármacos , Neuritas/metabolismo , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/metabolismo , Estabilidad Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Proteolisis/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA