RESUMEN
Proteus mirabilis is a leading cause of urinary tract infections and a common commensal of the gastrointestinal tract. Our recent study (JB) showed that P. mirabilis strain BL95 employs a novel contact-dependent killing system against enteric bacteria in the mouse gut and in vitro. To uncover the genetic determinants of this system, we performed whole-genome sequencing of BL95 and compared it with 98 complete genomes of P. mirabilis. BL95 carries 56 coding sequences (CDSs) not found in other P. mirabilis. Over half of these unique genes are located on a novel integrative conjugative element (ICE) named ICEPm2, inserted in tRNA-Phe and exclusive to BL95. ICEPm2 has integration, conjugation, and DNA replication modules nearly identical to ICEPm1 (common in P. mirabilis), but ICEPm2 of BL95 carries two unique operons for P. mirabilis-a phenazine biosynthesis and a contact-dependent growth inhibition (CDI) system. ICEPm2 is absent in the P. mirabilis (AR_0156) closest to BL95 and it is present in the genomes of several Escherichia coli from mouse intestines, indicating its recent horizontal mobilization. BL95 shares over 100 genes of five different secretion systems with other P. mirabilis, mostly poorly studied, making a large pool of candidate genes for the contact-dependent growth inhibition.
RESUMEN
Cryptic conjugative plasmids lack antibiotic-resistance genes (ARGs). These plasmids can capture ARGs from the vast pool of the environmental metagenome, but the mechanism to recruit ARGs remains to be elucidated. To investigate the recruitment of ARGs by a cryptic plasmid, we sequenced and conducted mating experiments with Escherichia coli SW4848 (collected from a lake) that has a cryptic IncX (IncX4) plasmid and an IncF (IncFII/IncFIIB) plasmid with five genes that confer resistance to aminoglycosides (strA and strB), sulfonamides (sul2), tetracycline [tet(A)], and trimethoprim (dfrA5). In a conjugation experiment, a novel hybrid Tn21/Tn1721 transposon of 22,570 bp (designated Tn7714) carrying the five ARG mobilized spontaneously from the IncF plasmid to the cryptic IncX plasmid. The IncF plasmid was found to be conjugative when it was electroporated into E. coli DH10B (without the IncX plasmid). Two parallel conjugations with the IncF and the new IncX (carrying the novel Tn7714 transposon) plasmids in two separate E. coli DH10B as donors and E. coli J53 as the recipient revealed that the conjugation rate of the new IncX plasmid (with the novel Tn7714 transposon and five ARGs) is more than two orders of magnitude larger than the IncF plasmid. For the first time, this study shows experimental evidence that cryptic environmental plasmids can capture and transfer transposons with ARGs to other bacteria, creating novel multidrug-resistant conjugative plasmids with higher dispersion potential. IMPORTANCE: Cryptic conjugative plasmids are extrachromosomal DNA molecules without antibiotic-resistance genes (ARGs). Environmental bacteria carrying cryptic plasmids with a high conjugation rate threaten public health because they can capture clinically relevant ARGs and rapidly spread them to pathogenic bacteria. However, the mechanism to recruit ARG by cryptic conjugative plasmids in environmental bacteria has not been observed experimentally. Here, we document the first translocation of a transposon with multiple clinically relevant ARGs to a cryptic environmental conjugative plasmid. The new multidrug-resistant conjugative plasmid has a conjugation rate that is two orders of magnitude higher than the original plasmid that carries the ARG (i.e., the new plasmid from the environment can spread ARG more than two orders of magnitude faster). Our work illustrates the importance of studying the mobilization of ARGs in environmental bacteria. It sheds light on how cryptic conjugative plasmids recruit ARGs, a phenomenon at the root of the antibiotic crisis.
Asunto(s)
Antibacterianos , Conjugación Genética , Elementos Transponibles de ADN , Escherichia coli , Plásmidos , Plásmidos/genética , Elementos Transponibles de ADN/genética , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Antibacterianos/farmacología , Lagos/microbiología , Farmacorresistencia Bacteriana Múltiple/genética , Transferencia de Gen Horizontal , Farmacorresistencia Bacteriana/genéticaRESUMEN
Conjugation represents one of the main mechanisms facilitating horizontal gene transfer in Gram-negative bacteria. This work describes methods for the study of the mobilization of naturally occurring conjugative plasmids, using two naturally-occurring plasmids as an example. These protocols rely on the differential presence of selectable markers in donor, recipient, and conjugative plasmid. Specifically, the methods described include 1) the identification of natural conjugative plasmids, 2) the quantification of conjugation rates in solid culture, and 3) the diagnostic detection of the antibiotic resistance genes and plasmid replicon types in transconjugant recipients by polymerase chain reaction (PCR). The protocols described here have been developed in the context of studying the evolutionary ecology of horizontal gene transfer, to screen for the presence of conjugative plasmids carrying antibiotic-resistance genes in bacteria found in the environment. The efficient transfer of conjugative plasmids observed in these experiments in culture highlights the biological relevance of conjugation as a mechanism promoting horizontal gene transfer in general and the spread of antibiotic resistance in particular.
Asunto(s)
Escherichia coli , Transferencia de Gen Horizontal , Escherichia coli/genética , Conjugación Genética , Plásmidos/genética , AntibacterianosRESUMEN
We describe the extended-spectrum ß-lactamase blaVEB-3 gene found in an IncA/C plasmid in Aeromonas veronii strain SW3814, which was collected from a freshwater lake in southern California, United States.
RESUMEN
The fully assembled genome of Escherichia coli strain BR1220 shows a triple tandemly arrayed IS26 composite transposon carrying a qnrB19 quinolone resistance gene in a 100-kb multidrug resistance plasmid (1.6 copies per chromosome [CPC]) and a 2.6-kb Col(pHAD28) plasmid (27.8 CPC) with a nearly identical qnrB19 gene region.