Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Proc Natl Acad Sci U S A ; 115(28): E6585-E6594, 2018 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-29941576

RESUMEN

Hydraulic fracturing is one of the industrial processes behind the surging natural gas output in the United States. This technology inadvertently creates an engineered microbial ecosystem thousands of meters below Earth's surface. Here, we used laboratory reactors to perform manipulations of persisting shale microbial communities that are currently not feasible in field scenarios. Metaproteomic and metabolite findings from the laboratory were then corroborated using regression-based modeling performed on metagenomic and metabolite data from more than 40 produced fluids from five hydraulically fractured shale wells. Collectively, our findings show that Halanaerobium, Geotoga, and Methanohalophilus strain abundances predict a significant fraction of nitrogen and carbon metabolites in the field. Our laboratory findings also exposed cryptic predatory, cooperative, and competitive interactions that impact microorganisms across fractured shales. Scaling these results from the laboratory to the field identified mechanisms underpinning biogeochemical reactions, yielding knowledge that can be harnessed to potentially increase energy yields and inform management practices in hydraulically fractured shales.


Asunto(s)
Bacterias/metabolismo , Fracking Hidráulico , Consorcios Microbianos/fisiología , Gas Natural/microbiología , Bacterias/clasificación , Estados Unidos
2.
Appl Environ Microbiol ; 85(12)2019 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-30979840

RESUMEN

Bacterial Halanaerobium strains become the dominant persisting microbial community member in produced fluids across geographically distinct hydraulically fractured shales. Halanaerobium is believed to be inadvertently introduced into this environment during the drilling and fracturing process and must therefore tolerate large changes in pressure, temperature, and salinity. Here, we used a Halanaerobium strain isolated from a natural gas well in the Utica Point Pleasant formation to investigate metabolic and physiological responses to growth under high-pressure subsurface conditions. Laboratory incubations confirmed the ability of Halanaerobium congolense strain WG8 to grow under pressures representative of deep shale formations (21 to 48 MPa). Under these conditions, broad metabolic and physiological shifts were identified, including higher abundances of proteins associated with the production of extracellular polymeric substances. Confocal laser scanning microscopy indicated that extracellular polymeric substance (EPS) production was associated with greater cell aggregation when biomass was cultured at high pressure. Changes in Halanaerobium central carbon metabolism under the same conditions were inferred from nuclear magnetic resonance (NMR) and gas chromatography measurements, revealing large per-cell increases in production of ethanol, acetate, and propanol and cessation of hydrogen production. These metabolic shifts were associated with carbon flux through 1,2-propanediol in response to slower fluxes of carbon through stage 3 of glycolysis. Together, these results reveal the potential for bioclogging and corrosion (via organic acid fermentation products) associated with persistent Halanaerobium growth in deep, hydraulically fractured shale ecosystems, and offer new insights into cellular mechanisms that enable these strains to dominate deep-shale microbiomes.IMPORTANCE The hydraulic fracturing of deep-shale formations for hydrocarbon recovery accounts for approximately 60% of U.S. natural gas production. Microbial activity associated with this process is generally considered deleterious due to issues associated with sulfide production, microbially induced corrosion, and bioclogging in the subsurface. Here we demonstrate that a representative Halanaerobium species, frequently the dominant microbial taxon in hydraulically fractured shales, responds to pressures characteristic of the deep subsurface by shifting its metabolism to generate more corrosive organic acids and produce more polymeric substances that cause "clumping" of biomass. While the potential for increased corrosion of steel infrastructure and clogging of pores and fractures in the subsurface may significantly impact hydrocarbon recovery, these data also offer new insights for microbial control in these ecosystems.


Asunto(s)
Matriz Extracelular de Sustancias Poliméricas/metabolismo , Firmicutes/metabolismo , Fracking Hidráulico , Presión
3.
Environ Sci Technol ; 51(10): 5377-5385, 2017 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-28403606

RESUMEN

Large volumes of water return to the surface following hydraulic fracturing of deep shale formations to retrieve oil and natural gas. Current understanding of the specific organic constituents in these hydraulic fracturing wastewaters is limited to hydrocarbons and a fraction of known chemical additives. In this study, we analyzed hydraulic fracturing wastewater samples using ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) as a nontargeted technique to assign unambiguous molecular formulas to singly charged molecular ions. Halogenated molecular formulas were identified and confirmed using isotopic simulation and MS-MS fragmentation spectra. The abundance of halogenated organic compounds in flowback fluids rather than older wastewaters suggested that the observed molecular ions might have been related to hydraulic fracturing additives and related subsurface reactions, such as through the reaction of shale-extracted chloride, bromide, and iodide with strong oxidant additives (e.g., hypochlorite, persulfate, hydrogen peroxide) and subsequently with diverse dissolved organic matter. Some molecular ions matched the exact masses of known disinfection byproducts including diiodoacetic acid, dibromobenzoic acid, and diiodobenzoic acid. The identified halogenated organic compounds, particularly iodinated organic molecules, are absent from inland natural systems and these compounds could therefore play an important role as environmental tracers.


Asunto(s)
Fracking Hidráulico , Espectrometría de Masas , Compuestos Orgánicos/análisis , Aguas Residuales/química , Gas Natural , Contaminantes Químicos del Agua
4.
Environ Sci Technol ; 51(23): 13985-13994, 2017 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-29110455

RESUMEN

Hydraulic fracturing fluids are injected into shales to extend fracture networks that enhance oil and natural gas production from unconventional reservoirs. Here we evaluated the biodegradability of three widely used nonionic polyglycol ether surfactants (alkyl ethoxylates (AEOs), nonylphenol ethoxylates (NPEOs), and polypropylene glycols (PPGs)) that function as weatherizers, emulsifiers, wetting agents, and corrosion inhibitors in injected fluids. Under anaerobic conditions, we observed complete removal of AEOs and NPEOs from solution within 3 weeks regardless of whether surfactants were part of a chemical mixture or amended as individual additives. Microbial enzymatic chain shortening was responsible for a shift in ethoxymer molecular weight distributions and the accumulation of the metabolite acetate. PPGs bioattenuated the slowest, producing sizable concentrations of acetone, an isomer of propionaldehyde. Surfactant chain shortening was coupled to an increased abundance of the diol dehydratase gene cluster (pduCDE) in Firmicutes metagenomes predicted from the 16S rRNA gene. The pduCDE enzymes are responsible for cleaving ethoxylate chain units into aldehydes before their fermentation into alcohols and carboxylic acids. These data provide new mechanistic insight into the environmental fate of hydraulic fracturing surfactants after accidental release through chain shortening and biotransformation, emphasizing the importance of compound structure disclosure for predicting biodegradation products.


Asunto(s)
Fracking Hidráulico , Tensoactivos , Biodegradación Ambiental , Biotransformación , ARN Ribosómico 16S , Microbiología del Suelo
5.
Biodegradation ; 26(4): 271-87, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26037076

RESUMEN

Little is known of the attenuation of chemical mixtures created for hydraulic fracturing within the natural environment. A synthetic hydraulic fracturing fluid was developed from disclosed industry formulas and produced for laboratory experiments using commercial additives in use by Marcellus shale field crews. The experiments employed an internationally accepted standard method (OECD 301A) to evaluate aerobic biodegradation potential of the fluid mixture by monitoring the removal of dissolved organic carbon (DOC) from an aqueous solution by activated sludge and lake water microbial consortia for two substrate concentrations and four salinities. Microbial degradation removed from 57 % to more than 90 % of added DOC within 6.5 days, with higher removal efficiency at more dilute concentrations and little difference in overall removal extent between sludge and lake microbe treatments. The alcohols isopropanol and octanol were degraded to levels below detection limits while the solvent acetone accumulated in biological treatments through time. Salinity concentrations of 40 g/L or more completely inhibited degradation during the first 6.5 days of incubation with the synthetic hydraulic fracturing fluid even though communities were pre-acclimated to salt. Initially diverse microbial communities became dominated by 16S rRNA sequences affiliated with Pseudomonas and other Pseudomonadaceae after incubation with the synthetic fracturing fluid, taxa which may be involved in acetone production. These data expand our understanding of constraints on the biodegradation potential of organic compounds in hydraulic fracturing fluids under aerobic conditions in the event that they are accidentally released to surface waters and shallow soils.


Asunto(s)
Agua Dulce/química , Fracking Hidráulico , Consorcios Microbianos , Compuestos Orgánicos/química , Alcoholes/química , Biodegradación Ambiental , Carbono/química , ADN Bacteriano/genética , Agua Dulce/microbiología , Lagos , ARN Ribosómico 16S/genética , Salinidad , Aguas del Alcantarillado/química , Aguas del Alcantarillado/microbiología , Compuestos Orgánicos Volátiles/química , Microbiología del Agua
6.
Environ Sci Technol ; 48(11): 6508-17, 2014 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-24803059

RESUMEN

Microorganisms play several important roles in unconventional gas recovery, from biodegradation of hydrocarbons to souring of wells and corrosion of equipment. During and after the hydraulic fracturing process, microorganisms are subjected to harsh physicochemical conditions within the kilometer-deep hydrocarbon-bearing shale, including high pressures, elevated temperatures, exposure to chemical additives and biocides, and brine-level salinities. A portion of the injected fluid returns to the surface and may be reused in other fracturing operations, a process that can enrich for certain taxa. This study tracked microbial community dynamics using pyrotag sequencing of 16S rRNA genes in water samples from three hydraulically fractured Marcellus shale wells in Pennsylvania, USA over a 328-day period. There was a reduction in microbial richness and diversity after fracturing, with the lowest diversity at 49 days. Thirty-one taxa dominated injected, flowback, and produced water communities, which took on distinct signatures as injected carbon and electron acceptors were attenuated within the shale. The majority (>90%) of the community in flowback and produced fluids was related to halotolerant bacteria associated with fermentation, hydrocarbon oxidation, and sulfur-cycling metabolisms, including heterotrophic genera Halolactibacillus, Vibrio, Marinobacter, Halanaerobium, and Halomonas, and autotrophs belonging to Arcobacter. Sequences related to halotolerant methanogenic genera Methanohalophilus and Methanolobus were detected at low abundance (<2%) in produced waters several months after hydraulic fracturing. Five taxa were strong indicators of later produced fluids. These results provide insight into the temporal trajectory of subsurface microbial communities after "fracking" and have important implications for the enrichment of microbes potentially detrimental to well infrastructure and natural gas fouling during this process.


Asunto(s)
Yacimiento de Petróleo y Gas/microbiología , Aguas Residuales/microbiología , Microbiología del Agua , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , ADN Bacteriano/análisis , ADN Bacteriano/genética , Industria Procesadora y de Extracción , Consorcios Microbianos , Pennsylvania , ARN Ribosómico 16S/genética
7.
Microbiol Spectr ; 12(1): e0233423, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38059585

RESUMEN

IMPORTANCE: Microorganisms inadvertently introduced into the shale reservoir during fracturing face multiple stressors including brine-level salinities and starvation. However, some anaerobic halotolerant bacteria adapt and persist for long periods of time. They produce hydrogen sulfide, which sours the reservoir and corrodes engineering infrastructure. In addition, they form biofilms on rock matrices, which decrease shale permeability and clog fracture networks. These reduce well productivity and increase extraction costs. Under stress, microbes remodel their plasma membrane to optimize its roles in protection and mediating cellular processes such as signaling, transport, and energy metabolism. Hence, by observing changes in the membrane lipidome of model shale bacteria, Halanaerobium congolense WG10, and mixed consortia enriched from produced fluids under varying subsurface conditions and growth modes, we provide insight that advances our knowledge of the fractured shale biosystem. We also offer data-driven recommendations for improving biocontrol efficacy and the efficiency of energy recovery from unconventional formations.


Asunto(s)
Fracking Hidráulico , Lipidómica , Bacterias/genética , Bacterias Anaerobias , Membrana Celular
8.
Front Microbiol ; 13: 1023575, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36439785

RESUMEN

Bacteria remodel their plasma membrane lipidome to maintain key biophysical attributes in response to ecological disturbances. For Halanaerobium and other anaerobic halotolerant taxa that persist in hydraulically fractured deep subsurface shale reservoirs, salinity, and hydraulic retention time (HRT) are important perturbants of cell membrane structure, yet their effects remain poorly understood. Membrane-linked activities underlie in situ microbial growth kinetics and physiologies which drive biogeochemical reactions in engineered subsurface systems. Hence, we used gas chromatography-mass spectrometry (GC-MS) to investigate the effects of salinity and HRT on the phospholipid fatty acid composition of H. congolense WG10 and mixed enrichment cultures from hydraulically fractured shale wells. We also coupled acyl chain remodeling to membrane mechanics by measuring bilayer elasticity using atomic force microscopy (AFM). For these experiments, cultures were grown in a chemostat vessel operated in continuous flow mode under strict anoxia and constant stirring. Our findings show that salinity and HRT induce significant changes in membrane fatty acid chemistry of H. congolense WG10 in distinct and complementary ways. Notably, under nonoptimal salt concentrations (7% and 20% NaCl), H. congolense WG10 elevates the portion of polyunsaturated fatty acids (PUFAs) in its membrane, and this results in an apparent increase in fluidity (homeoviscous adaptation principle) and thickness. Double bond index (DBI) and mean chain length (MCL) were used as proxies for membrane fluidity and thickness, respectively. These results provide new insight into our understanding of how environmental and engineered factors might disrupt the physical and biogeochemical equilibria of fractured shale by inducing physiologically relevant changes in the membrane fatty acid chemistry of persistent microbial taxa. GRAPHICAL ABSTRACTSalinity significantly alters membrane bilayer fluidity and thickness in Halanaerobium congolense WG10.

9.
Environ Sci Process Impacts ; 23(4): 621-632, 2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33908986

RESUMEN

Hydraulic fracturing of deep shale formations generates large volumes of wastewater that must be managed through treatment, reuse, or disposal. Produced wastewater liberates formation-derived radionuclides and contains previously uncharacterized organohalides thought to be generated within the shale well, both posing unknown toxicity to human and ecological health. Here, we assess the toxicity of 42 input media and produced fluid samples collected from four wells in the Utica formation and Marcellus Shale using two distinct endpoint screening assays. Broad spectrum acute toxicity was assessed using a bioluminescence inhibition assay employing the halotolerant bacterium Aliivibrio fischeri, while predictive mammalian cytotoxicity was evaluated using a N-acetylcysteine (NAC) thiol reactivity assay. The acute toxicity and thiol reactivity of early-stage flowback was higher than later produced fluids, with levels diminishing through time as the natural gas wells matured. Acute toxicity of early stage flowback and drilling muds were on par with the positive control, 3,5-dichlorophenol (6.8 mg L-1). Differences in both acute toxicity and thiol reactivity between paired natural gas well samples were associated with specific chemical additives. Samples from wells containing a larger diversity and concentration of organic additives resulted in higher acute toxicity, while samples from a well applying a higher composition of ammonium persulfate, a strong oxidizer, showed greater thiol reactivity, predictive of higher mammalian toxicity. Both acute toxicity and thiol reactivity are consistently detected in produced waters, in some cases present up to nine months after hydraulic fracturing. These results support that specific chemical additives, the reactions generated by the additives, or the constituents liberated from the formation by the additives contribute to the toxicity of hydraulic fracturing produced waters and reinforces the need for careful consideration of early produced fluid management.


Asunto(s)
Fracking Hidráulico , Contaminantes Químicos del Agua , Gas Natural , Yacimiento de Petróleo y Gas , Aguas Residuales , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
10.
Environ Sci Process Impacts ; 23(6): 903-913, 2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-34028475

RESUMEN

Anthropogenic compounds known as per- and polyfluoroalkyl substances (PFAS) represent a major class of contaminants of emerging concern composed of nearly 5000 chemicals. Many PFAS are persistent, bioaccumulative and toxic, and their widespread use makes their environmental distribution a growing concern. Wastewater treatment facilities (WWTFs) are a conduit of PFAS to the environment, integrating common household products from municipal sewage, industrial wastewater sources, septic materials, and firefighting wastewaters in effluent and sludge. This study investigated the distribution and fate of twenty-four PFAS within six New Hampshire municipal WWTFs applying a range of biological and disinfection unit processes. PFAS quantification was conducted using two approaches: (1) liquid chromatography with tandem mass spectrometry (LC-MS/MS) of 24 known compounds and (2) a total oxidizable precursor assay (TOP assay) followed by LC-MS/MS to determine the total oxidizable PFAS concentration. Of the 24 PFAS analyzed, up to 7 and 12 constituents were detected in influent and effluent of WWTFs, respectively, with concentrations ranging from 30 to 128 ng L-1 in March. Effluent ΣPFAS concentration increased during July, with concentrations between 70 and 198 ng L-1 for the same detected constituents. Short-chain PFAS were dominant in both influent and effluent, while long-chain compounds dominated in WWTF sludge. The increase in terminal end-products after oxidation by the TOP assay indicates the presence of unquantified PFAS precursors in both influent and effluent. A significantly lower proportion of oxidizable PFAS precursors were detected in July influent and effluent relative to March, indicating a possible role of season or temperature on microbial transformation of these compounds prior to reaching WWTFs and during treatment. These results provide new insight into PFAS distribution and fate during two seasons in New England municipal WWTFs.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Purificación del Agua , Cromatografía Liquida , Fluorocarburos/análisis , New England , Espectrometría de Masas en Tándem , Aguas Residuales/análisis , Contaminantes Químicos del Agua/análisis
11.
Water Environ Res ; 94(1): e1680, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-35075725

RESUMEN

Pharmaceuticals and personal care products (PPCPs) are contaminants of emerging concern that derive primarily in the water environment from combined sewer overflows and discharges from industrial and municipal wastewater treatment facilities (WWTFs). Due to incomplete removal during wastewater treatment, PPCP impacts to aquatic ecosystems are a major concern. The Great Bay Estuary (New Hampshire, USA) is an important ecological, commercial, and recreational resource where upstream WWTFs have recently been under pressure to reduce nitrogen loading to the estuary and consequently upgrade treatment systems. Therefore, we investigated the distribution and abundance of 18 PPCPs and three flame retardants within the Great Bay Estuary and WWTFs discharging to the estuary to examine how WWTF type influenced PPCP removal. All 21 analytes were frequently detected at µg/L to ng/L concentrations in influent and effluent and ng/kg in sludge. WWTFs with enhanced nutrient removal and longer solids retention times correlated to higher PPCP removal, indicating facility upgrades may have benefits related to PPCP removal. Understanding PPCP fate during treatment and in downstream waters informs our ability to assess the environmental and ecological impacts of PPCPs on estuarine resources and develop mitigation strategies to better protect marine ecosystems from emerging contaminant exposure. PRACTITIONER POINTS: PPCP removal positively correlated with solids retention time and varied by treatment facility and compound. Upgrade of WWTFs for biological nitrogen removal may also increase PPCP removal. Surface water fluoxetine concentrations may present an ecological risk to the Great Bay Estuary.

12.
mSystems ; 6(3): e0105820, 2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34061574

RESUMEN

Metabolites have essential roles in microbial communities, including as mediators of nutrient and energy exchange, cell-to-cell communication, and antibiosis. However, detecting and quantifying metabolites and other chemicals in samples having extremes in salt or mineral content using liquid chromatography-mass spectrometry (LC-MS)-based methods remains a significant challenge. Here, we report a facile method based on in situ chemical derivatization followed by extraction for analysis of metabolites and other chemicals in hypersaline samples, enabling for the first time direct LC-MS-based exometabolomics analysis in sample matrices containing up to 2 M total dissolved salts. The method, MetFish, is applicable to molecules containing amine, carboxylic acid, carbonyl, or hydroxyl functional groups, and it can be integrated into either targeted or untargeted analysis pipelines. In targeted analyses, MetFish provided limits of quantification as low as 1 nM, broad linear dynamic ranges (up to 5 to 6 orders of magnitude) with excellent linearity, and low median interday reproducibility (e.g., 2.6%). MetFish was successfully applied in targeted and untargeted exometabolomics analyses of microbial consortia, quantifying amino acid dynamics in the exometabolome during community succession; in situ in a native prairie soil, whose exometabolome was isolated using a hypersaline extraction; and in input and produced fluids from a hydraulically fractured well, identifying dramatic changes in the exometabolome over time in the well. IMPORTANCE The identification and accurate quantification of metabolites using electrospray ionization-mass spectrometry (ESI-MS) in hypersaline samples is a challenge due to matrix effects. Clean-up and desalting strategies that typically work well for samples with lower salt concentrations are often ineffective in hypersaline samples. To address this gap, we developed and demonstrated a simple yet sensitive and accurate method-MetFish-using chemical derivatization to enable mass spectrometry-based metabolomics in a variety of hypersaline samples from varied ecosystems and containing up to 2 M dissolved salts.

13.
Artículo en Inglés | MEDLINE | ID: mdl-33922263

RESUMEN

Wastewater surveillance for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emerging approach to help identify the risk of a coronavirus disease (COVID-19) outbreak. This tool can contribute to public health surveillance at both community (wastewater treatment system) and institutional (e.g., colleges, prisons, and nursing homes) scales. This paper explores the successes, challenges, and lessons learned from initial wastewater surveillance efforts at colleges and university systems to inform future research, development and implementation. We present the experiences of 25 college and university systems in the United States that monitored campus wastewater for SARS-CoV-2 during the fall 2020 academic period. We describe the broad range of approaches, findings, resources, and impacts from these initial efforts. These institutions range in size, social and political geographies, and include both public and private institutions. Our analysis suggests that wastewater monitoring at colleges requires consideration of local information needs, sewage infrastructure, resources for sampling and analysis, college and community dynamics, approaches to interpretation and communication of results, and follow-up actions. Most colleges reported that a learning process of experimentation, evaluation, and adaptation was key to progress. This process requires ongoing collaboration among diverse stakeholders including decision-makers, researchers, faculty, facilities staff, students, and community members.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Vigilancia en Salud Pública , Universidades , Aguas Residuales
14.
Environ Sci Technol ; 44(23): 8897-903, 2010 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-21058662

RESUMEN

Stimulated by an acetate-amendment field experiment conducted in 2007, anaerobic microbial populations in the aquifer at the Rifle Integrated Field Research Challenge site in Colorado reduced mobile U(VI) to insoluble U(IV). During this experiment, planktonic biomass was sampled at various time points to quantitatively evaluate proteomes. In 2008, an acetate-amended field experiment was again conducted in a similar manner to the 2007 experiment. As there was no comprehensive metagenome sequence available for use in proteomics analysis, we systematically evaluated 12 different organism genome sequences to generate sets of aggregate genomes, or "pseudo-metagenomes", for supplying relative quantitative peptide and protein identifications. Proteomics results support previous observations of the dominance of Geobacteraceae during biostimulation using acetate as sole electron donor, and revealed a shift from an early stage of iron reduction to a late stage of iron reduction. Additionally, a shift from iron reduction to sulfate reduction was indicated by changes in the contribution of proteome information contributed by different organism genome sequences within the aggregate set. In addition, the comparison of proteome measurements made between the 2007 field experiment and 2008 field experiment revealed differences in proteome profiles. These differences may be the result of alterations in abundance and population structure within the planktonic biomass samples collected for analysis.


Asunto(s)
Bacterias/metabolismo , Agua Dulce/microbiología , Plancton/metabolismo , Proteoma/metabolismo , Bacterias/clasificación , Bacterias/genética , Biodiversidad , Biomasa , Plancton/clasificación , Plancton/genética , Microbiología del Agua
15.
Appl Environ Microbiol ; 75(20): 6591-9, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19717633

RESUMEN

Implementation of uranium bioremediation requires methods for monitoring the membership and activities of the subsurface microbial communities that are responsible for reduction of soluble U(VI) to insoluble U(IV). Here, we report a proteomics-based approach for simultaneously documenting the strain membership and microbial physiology of the dominant Geobacter community members during in situ acetate amendment of the U-contaminated Rifle, CO, aquifer. Three planktonic Geobacter-dominated samples were obtained from two wells down-gradient of acetate addition. Over 2,500 proteins from each of these samples were identified by matching liquid chromatography-tandem mass spectrometry spectra to peptides predicted from seven isolate Geobacter genomes. Genome-specific peptides indicate early proliferation of multiple M21 and Geobacter bemidjiensis-like strains and later possible emergence of M21 and G. bemidjiensis-like strains more closely related to Geobacter lovleyi. Throughout biostimulation, the proteome is dominated by enzymes that convert acetate to acetyl-coenzyme A and pyruvate for central metabolism, while abundant peptides matching tricarboxylic acid cycle proteins and ATP synthase subunits were also detected, indicating the importance of energy generation during the period of rapid growth following the start of biostimulation. Evolving Geobacter strain composition may be linked to changes in protein abundance over the course of biostimulation and may reflect changes in metabolic functioning. Thus, metagenomics-independent community proteogenomics can be used to diagnose the status of the subsurface consortia upon which remediation biotechnology relies.


Asunto(s)
Geobacter/genética , Geobacter/fisiología , Uranio/metabolismo , Contaminantes Radiactivos del Agua/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biodegradación Ambiental , Genómica , Geobacter/clasificación , Geobacter/aislamiento & purificación , Datos de Secuencia Molecular , Oxidación-Reducción , Mapeo Peptídico , Plancton/clasificación , Plancton/genética , Plancton/aislamiento & purificación , Plancton/fisiología , Proteómica , Microbiología del Agua
16.
Environ Sci Process Impacts ; 21(2): 291-307, 2019 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-30688342

RESUMEN

Evidence for microbes has been detected in extreme subsurface environments as deep as 2.5 km with temperatures as high as 90 °C, demonstrating that microbes can adapt and survive extreme environmental conditions. Deep subsurface shales are increasingly exploited for their energy applications, thus characterizing the prevalence and role of microbes in these ecosystems essential for understanding biogeochemical cycles and maximizing production from hydrocarbon-bearing formations. Here, we describe the distribution of bacterial ester-linked phospholipid fatty acids (PLFA) and diglyceride fatty acids (DGFA) in sidewall cores retrieved from three distinct geologic horizons collected to 2275 m below ground surface in a Marcellus Shale well, West Virginia, USA. We examined the abundance and variety of PLFA and DGFA prior to energy development within and above the Marcellus Shale Formation into the overlying Mahantango Formation of the Appalachian Basin. Lipid biomarkers in the cores suggest the presence of microbial communities comprising Gram (+), Gram (-) as well as stress indicative biomarkers. Microbial PLFA and DGFA degradation in the subsurface can be influenced by stressful environmental conditions associated with the subsurface. The PLFA concentration and variety were higher in the transition zone between the extremely low permeability Marcellus Shale Formation and the more permeable Mahantango Formation. In contrast to this distribution, more abundant and diverse DGFA membrane profiles were associated with the Mahantango Formation. The stress indicative biomarkers like the trans-membrane fatty acids, oxiranes, keto-, and dimethyl lipid fatty acids were present in all cores, potentially indicating that the bacterial communities had experienced physiological stress or nutrient deprivation during or after deposition. The DGFA profiles expressed more stress indicative biomarkers as opposed to the PLFA membrane profiles. These findings suggest the probable presence of indigenous microbial communities in the deep subsurface shale and also improves our understanding of microbial survival mechanisms in ancient deep subsurface environments.


Asunto(s)
Bacterias/metabolismo , Biomarcadores/metabolismo , Ácidos Grasos/metabolismo , Minerales/metabolismo , Fosfolípidos/metabolismo , Microbiota , West Virginia
17.
Environ Sci Process Impacts ; 21(2): 206-213, 2019 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-30303509

RESUMEN

Hydraulic fracturing requires the injection of large volumes of fluid to extract oil and gas from low permeability unconventional resources (e.g., shale, coalbed methane), resulting in the production of large volumes of highly complex and variable waste fluids. Shale gas fluid samples were collected from two hydraulically fractured wells in Morgantown, WV, USA at the Marcellus Shale Energy and Environment Laboratory (MSEEL) and analyzed using ultrahigh resolution mass spectrometry to investigate the dissolved organic sulfur (DOS) pool. Using a non-targeted approach, ions assigned DOS formulas were analyzed to identify dominant DOS classes, describe their temporal trends and their implications, and describe the molecular characteristics of the larger DOS pool. The average molecular weight of organic sulfur compounds in flowback decreased and was lowest in produced waters. The dominant DOS classes were putatively assigned to alcohol sulfate and alcohol ethoxysulfate surfactants, likely injected as fracturing fluid additives, on the basis of exact mass and homolog distribution matching. This DOS signature was identifiable 10 months after the initial injection of hydraulic fracturing fluid, and an absence of genes that code for alcohol ethoxysulfate degrading proteins (e.g., sulfatases) in the shale well genomes and metagenomes support that these additives are not readily degraded biologically and may continue to act as a chemical signature of the injected fluid. Understanding the diversity, lability, and fate of organic sulfur compounds in shale wells is important for engineering productive wells and preventing gas souring as well as understanding the consequences of unintended fluid release to the environment. The diversity of DOS, particularly more polar compounds, needs further investigation to determine if the identified characteristics and temporal patterns are unique to the analyzed wells or represent broader patterns found in other formations and under other operating conditions.


Asunto(s)
Fracking Hidráulico , Azufre/química , Espectrometría de Masas , Metano , Gas Natural , Yacimiento de Petróleo y Gas , Aguas Residuales/química
18.
Sci Total Environ ; 668: 1094-1103, 2019 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-31018450

RESUMEN

Hydraulic fracturing fluids are injected into unconventional oil and gas systems to stimulate hydrocarbon production, returning to the surface in flowback and produced waters containing a complex mixture of xenobiotic additives and geogenic compounds. Nonionic polyethoxylates are commonly added surfactants that act as weatherizers, emulsifiers, wetting agents, and corrosion inhibitors in hydraulic fracturing fluid formulations. Understanding the biodegradability of these ubiquitous additives is critical for produced water pre-treatment prior to reuse and for improving treatment trains for external beneficial reuse. The objective of this study was to determine the effect of produced water total dissolved solids (TDS) from an unconventional natural gas well on the aerobic biodegradation of alkyl ethoxylate and nonylphenol ethoxylate surfactants. Changes in surfactant concentrations, speciation and metabolites, as well as microbial community composition and activity were quantified over a 75-day aerobic incubation period. Alkyl ethoxylates (AEOs) were degraded faster than nonylphenol ethoxylates (NPEOs), and both compound classes and bulk organic carbon biodegraded slower in TDS treatments (10 g L-1, 40 g L-1) as compared to controls. Short-chain ethoxylates were more rapidly biodegraded than longer-chain ethoxylates, and changes in the relative abundance of metabolites including acetone, alcohols, and carboxylate and aldehyde intermediates of alkyl units indicated metabolic pathways may shift in the presence of higher produced water TDS. Our key finding that polyethoxylated alcohol surfactant additives are less labile at high TDS has important implications for produced water management, as these fluids are increasingly recycled for beneficial reuse in hydraulic fracturing fluids and other purposes.


Asunto(s)
Contaminantes Ambientales/química , Glicoles de Etileno/química , Fracking Hidráulico , Gas Natural , Pseudomonas/metabolismo , Tensoactivos/química , Aguas Residuales/química , Biodegradación Ambiental , Contaminantes Ambientales/análisis , Contaminantes Ambientales/metabolismo , Glicoles de Etileno/análisis , Glicoles de Etileno/metabolismo , Microbiota , Tensoactivos/análisis , Tensoactivos/metabolismo
19.
Environ Sci Process Impacts ; 21(2): 256-268, 2019 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-30318550

RESUMEN

Polyethylene glycols (PEGs) and polypropylene glycols (PPGs) are frequently used in hydraulic fracturing fluids and have been detected in water returning to the surface from hydraulically fractured oil and gas wells in multiple basins. We identified degradation pathways and kinetics for PEGs and PPGs under conditions simulating a spill of produced water to shallow groundwater. Sediment-groundwater microcosm experiments were conducted using four produced water samples from two Denver-Julesburg Basin wells at early and late production. High-resolution mass spectrometry was used to identify the formation of mono- and di-carboxylated PEGs and mono-carboxylated PPGs, which are products of PEG and PPG biodegradation, respectively. Under oxic conditions, first-order half-lives were more rapid for PEGs (<0.4-1.1 d) compared to PPGs (2.5-14 d). PEG and PPG degradation corresponded to increased relative abundance of primary alcohol dehydrogenase genes predicted from metagenome analysis of the 16S rRNA gene. Further degradation was not observed under anoxic conditions. Our results provide insight into the differences between the degradation rates and pathways of PEGs and PPGs, which may be utilized to better characterize shallow groundwater contamination following a release of produced water.


Asunto(s)
Biodegradación Ambiental , Agua Subterránea/química , Agua Subterránea/microbiología , Polietilenglicoles/química , Polímeros/química , Glicoles de Propileno/química , Microbiología del Agua , Contaminantes Químicos del Agua/química , Fracking Hidráulico , Metagenoma , Yacimiento de Petróleo y Gas , ARN Ribosómico 16S/genética , Aguas Residuales/química
20.
mSphere ; 4(6)2019 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-31852806

RESUMEN

Bacteria of the phylum Verrucomicrobia are prevalent and are particularly common in soil and freshwater environments. Their cosmopolitan distribution and reported capacity for polysaccharide degradation suggests members of Verrucomicrobia are important contributors to carbon cycling across Earth's ecosystems. Despite their prevalence, the Verrucomicrobia are underrepresented in isolate collections and genome databases; consequently, their ecophysiological roles may not be fully realized. Here, we expand genomic sampling of the Verrucomicrobia phylum by describing a novel genus, "Candidatus Marcellius," belonging to the order Opitutales "Ca. Marcellius" was recovered from a shale-derived produced fluid metagenome collected 313 days after hydraulic fracturing, the deepest environment from which a member of the Verrucomicrobia has been recovered to date. We uncover genomic attributes that may explain the capacity of this organism to inhabit a shale gas well, including the potential for utilization of organic polymers common in hydraulic fracturing fluids, nitrogen fixation, adaptation to high salinities, and adaptive immunity via CRISPR-Cas. To illuminate the phylogenetic and environmental distribution of these metabolic and adaptive traits across the Verrucomicrobia phylum, we performed a comparative genomic analysis of 31 publicly available, nearly complete Verrucomicrobia genomes. Our genomic findings extend the environmental distribution of the Verrucomicrobia 2.3 kilometers into the terrestrial subsurface. Moreover, we reveal traits widely encoded across members of the Verrucomicrobia, including the capacity to degrade hemicellulose and to adapt to physical and biological environmental perturbations, thereby contributing to the expansive habitat range reported for this phylum.IMPORTANCE The Verrucomicrobia phylum of bacteria is widespread in many different ecosystems; however, its role in microbial communities remains poorly understood. Verrucomicrobia are often low-abundance community members, yet previous research suggests they play a major role in organic carbon degradation. While Verrucomicrobia remain poorly represented in culture collections, numerous genomes have been reconstructed from metagenomic data sets in recent years. The study of genomes from across the phylum allows for an extensive assessment of their potential ecosystem roles. The significance of this work is (i) the recovery of a novel genus of Verrucomicrobia from 2.3 km in the subsurface with the ability to withstand the extreme conditions that characterize this environment, and (ii) the most extensive assessment of ecophysiological traits encoded by Verrucomicrobia genomes to date. We show that members of this phylum are specialist organic polymer degraders that can withstand a wider range of environmental conditions than previously thought.


Asunto(s)
Genoma Bacteriano , Metagenómica/métodos , Microbiología del Suelo , Verrucomicrobia/clasificación , Verrucomicrobia/genética , Biología Computacional , Genes Bacterianos , Genómica , Redes y Vías Metabólicas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA