RESUMEN
Studying posttranslational modifications classically relies on experimental strategies that oversimplify the complex biosynthetic machineries of living cells. Protein glycosylation contributes to essential biological processes, but correlating glycan structure, underlying protein, and disease-relevant biosynthetic regulation is currently elusive. Here, we engineer living cells to tag glycans with editable chemical functionalities while providing information on biosynthesis, physiological context, and glycan fine structure. We introduce a non-natural substrate biosynthetic pathway and use engineered glycosyltransferases to incorporate chemically tagged sugars into the cell surface glycome of the living cell. We apply the strategy to a particularly redundant yet disease-relevant human glycosyltransferase family, the polypeptide N-acetylgalactosaminyl transferases. This approach bestows a gain-of-chemical-functionality modification on cells, where the products of individual glycosyltransferases can be selectively characterized or manipulated to understand glycan contribution to major physiological processes.
Asunto(s)
Glicosiltransferasas/metabolismo , Polisacáridos/metabolismo , Ingeniería de Proteínas/métodos , Vías Biosintéticas , Membrana Celular/metabolismo , Glicosilación , Glicosiltransferasas/química , Glicosiltransferasas/fisiología , Células HEK293 , Células Hep G2 , Humanos , Células K562 , N-Acetilgalactosaminiltransferasas/química , N-Acetilgalactosaminiltransferasas/metabolismo , N-Acetilgalactosaminiltransferasas/fisiología , Polisacáridos/química , Proteínas/metabolismo , Polipéptido N-AcetilgalactosaminiltransferasaRESUMEN
Training algorithms to computationally plan multistep organic syntheses has been a challenge for more than 50 years1-7. However, the field has progressed greatly since the development of early programs such as LHASA1,7, for which reaction choices at each step were made by human operators. Multiple software platforms6,8-14 are now capable of completely autonomous planning. But these programs 'think' only one step at a time and have so far been limited to relatively simple targets, the syntheses of which could arguably be designed by human chemists within minutes, without the help of a computer. Furthermore, no algorithm has yet been able to design plausible routes to complex natural products, for which much more far-sighted, multistep planning is necessary15,16 and closely related literature precedents cannot be relied on. Here we demonstrate that such computational synthesis planning is possible, provided that the program's knowledge of organic chemistry and data-based artificial intelligence routines are augmented with causal relationships17,18, allowing it to 'strategize' over multiple synthetic steps. Using a Turing-like test administered to synthesis experts, we show that the routes designed by such a program are largely indistinguishable from those designed by humans. We also successfully validated three computer-designed syntheses of natural products in the laboratory. Taken together, these results indicate that expert-level automated synthetic planning is feasible, pending continued improvements to the reaction knowledge base and further code optimization.
Asunto(s)
Inteligencia Artificial , Productos Biológicos/síntesis química , Técnicas de Química Sintética/métodos , Química Orgánica/métodos , Programas Informáticos , Inteligencia Artificial/normas , Automatización/métodos , Automatización/normas , Bencilisoquinolinas/síntesis química , Bencilisoquinolinas/química , Técnicas de Química Sintética/normas , Química Orgánica/normas , Indanos/síntesis química , Indanos/química , Alcaloides Indólicos/síntesis química , Alcaloides Indólicos/química , Bases del Conocimiento , Lactonas/síntesis química , Lactonas/química , Macrólidos/síntesis química , Macrólidos/química , Reproducibilidad de los Resultados , Sesquiterpenos/síntesis química , Sesquiterpenos/química , Programas Informáticos/normas , Tetrahidroisoquinolinas/síntesis química , Tetrahidroisoquinolinas/químicaRESUMEN
This paper describes the synthesis, characterization, and functional activity of 26 MegaMolecule-based bispecific antibody mimics for T-cell redirection toward HER2+ cancer cells. The work reports functional bispecific MegaMolecules that bind both receptor targets, and recruit and activate T-cells resulting in lysis of the target tumor cells. Changing the orientation of linkage between Fabs against either HER2 or CD3ε results in an approximately 150-fold range in potency. Increasing scaffold valency from Fab dimers up to tetramers improves the potency of the antibody mimics up to 5-fold, but with diminishing returns in effective dose beyond trimeric formats. Antibody mimics that present either one or two Fabs against either receptor target allows for initial engagement of one cell type over the other. Finally, the antibody mimics significantly reduce HER2+ tumor volumes in a humanized xenograft model of breast cancer.
Asunto(s)
Anticuerpos Biespecíficos , Receptor ErbB-2 , Linfocitos T , Humanos , Receptor ErbB-2/metabolismo , Receptor ErbB-2/inmunología , Anticuerpos Biespecíficos/química , Anticuerpos Biespecíficos/inmunología , Anticuerpos Biespecíficos/farmacología , Linfocitos T/inmunología , Linfocitos T/efectos de los fármacos , Animales , Ratones , Complejo CD3/inmunología , Línea Celular Tumoral , Neoplasias de la Mama/patología , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fab de Inmunoglobulinas/inmunologíaRESUMEN
This work describes the use of computational strategies to design megamolecule building blocks for the self-assembly of lattice networks. The megamolecules are prepared by attaching four Cutinase-SnapTag fusion proteins (CS fusions) to a four-armed linker, followed by functionalizing each fusion with a terpyridine linker. This functionality is designed to participate in a metal-mediated self-assembly process to give networks. This article describes a simulation-guided strategy for the design of megamolecules to optimize the peptide linker in the fusion protein to give conformations that are best suited for self-assembly and therefore streamlines the typically time-consuming and labor-intensive experimental process. We designed 11 candidate megamolecules and identified the most promising linker, (EAAAK)2, along with the optimal experimental conditions through a combination of all-atom molecular dynamics, enhanced sampling, and larger-scale coarse-grained molecular dynamics simulations. Our simulation findings were validated and found to be consistent with the experimental results. Significantly, this study offers valuable insight into the self-assembly of megamolecule networks and provides a novel and general strategy for large biomolecular material designs by using systematic bottom-up coarse-grained simulations.
Asunto(s)
Simulación de Dinámica Molecular , Hidrolasas de Éster CarboxílicoRESUMEN
Ferrocene (Fc)-based disulfide molecules of various lengths with amino acid scaffolds and alkane or oligo(phenylene-ethynylene) (OPE) bridges are used in a mixed SAM with a di-(ethylene oxide) terminal mercaptoundecanol diluent (PEG2). The relative height of the Fc redox reporter in the SAM is compared to determine if there are protective effects like antifouling and specific detection. The HaloTag-binding motif is used as a proof-of-concept to investigate the electrochemical response to the HaloTag protein due to its known covalent and fast linkage. When the Fc-SAMs are exposed to the HaloTag protein, there are an antifouling nature and more specific detection for the engulfed Fc-based molecules (C6tBu/Halo). The further out the Fc is from the SAM layer, the more nonspecific adsorption is detected. The double layer capacitance (CDL) has the smallest change for the C6tBu control (ΔCDL = -0.1 µF cm-2) showing antifouling properties and produces a large change (ΔCDL = 0.9 µF cm-2) as well as a shift in oxidation potential when the active C6Halo is exposed to the HaloTag protein (ΔE1/2 = 50 ± 10 mV). The remaining Fc molecules are partially in or outside the PEG2 layer, allowing more ion penetration/mobility even when the HaloTag protein is bound. Generally, a more disordered environment was observed for the Fc-based molecules when adding the HaloTag ligand, which is evident from a larger Efwhm and higher CDL. Desorption of the SAMs with sodium iodide (NaI) showed retention of the HaloTag protein bound with the corresponding ligand, whereas negative controls did not. Self-assembled monolayers for MALDI mass spectrometry (SAMDI-MS) were used as an orthogonal detection technique to show the qualitative binding of the HaloTag protein to the electrode. Together, these results provide insight into the antifouling and detection methods of engulfing the redox molecules in the SAM diluent.
Asunto(s)
Compuestos Ferrosos , Metalocenos , Metalocenos/química , Compuestos Ferrosos/química , Técnicas Electroquímicas/métodos , Oxidación-ReducciónRESUMEN
Modern organic reaction discovery and development relies on the rapid assessment of large arrays of hypothesis-driven experiments. The time-intensive nature of reaction analysis presents the greatest practical barrier for the execution of this iterative process that underpins the development of new bioactive agents. Toward addressing this critical bottleneck, we report herein a high-throughput analysis (HTA) method of reaction mixtures by photocapture on a 384-spot diazirine-terminated self-assembled monolayer, and self-assembled monolayers for matrix-assisted laser desorption/ionization mass spectrometry (SAMDI-MS) analysis. This analytical platform has been applied to the identification of a single-electron-promoted reductive coupling of acyl azolium species.
Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Bencimidazoles/síntesis química , Bencimidazoles/química , Diazometano/química , Oxidación-Reducción , Rayos UltravioletaRESUMEN
This paper describes a method that combines a microfluidic device and self-assembled monolayers for matrix-assisted laser desorption/ionization mass spectrometry (SAMDI) mass spectrometry to calculate the cooperativity in binding of calcium ions to peptidylarginine deiminase type 2 (PAD2). This example uses only 120â µL of enzyme solution and three fluidic inputs. This microfluidic device incorporates a self-assembled monolayer that is functionalized with a peptide substrate for PAD2. The enzyme and different concentrations of calcium ions are flowed through each of eight channels, where the position along the channel corresponds to reaction time and position across the channel corresponds to the concentration of Ca2+ . Imaging SAMDI (iSAMDI) is then used to determine the yield for the enzyme reaction at each 200â µm pixel on the monolayer, providing a time course for the reactions. Analysis of the peptide conversion as a function of position and time gives the degree of cooperativity (n) and the concentration of ligand required for half maximal activity (K0.5 ) for the Ca2+ - dependent activation of PAD2. This work establishes a high-throughput and label-free method for studying enzyme-ligand binding interactions and widens the applicability of microfluidics and matrix-assisted laser desorption/ionization mass spectrometry (MALDI) imaging mass spectrometry.
Asunto(s)
Dispositivos Laboratorio en un Chip , Péptidos , Ligandos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodosRESUMEN
Electron microscopy of soft and biological materials, or "soft electron microscopy", is essential to the characterization of macromolecules. Soft microscopy is governed by enhancing contrast while maintaining low electron doses, and sample preparation and imaging methodologies are driven by the length scale of features of interest. While cryo-electron microscopy offers the highest resolution, larger structures can be characterized efficiently and with high contrast using low-voltage electron microscopy by performing scanning transmission electron microscopy in a scanning electron microscope (STEM-in-SEM). Here, STEM-in-SEM is demonstrated for a four-lobed protein assembly where the arrangement of the proteins in the construct must be examined. STEM image simulations show the theoretical contrast enhancement at SEM-level voltages for unstained structures, and experimental images with multiple STEM modes exhibit the resolution possible for negative-stained proteins. This technique can be extended to complex protein assemblies, larger structures such as cell sections, and hybrid materials, making STEM-in-SEM a valuable high-throughput imaging method.
Asunto(s)
Electrones , Microscopía por Crioelectrón/métodos , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión de Rastreo/métodosRESUMEN
This paper presents a method to synthetically tune atomically precise megamolecule nanobody-enzyme conjugates for prodrug cancer therapy. Previous efforts to create heterobifunctional protein conjugates suffered from heterogeneity in domain stoichiometry, which in part led to the failure of antibody-enzyme conjugates in clinical trials. We used the megamolecule approach to synthesize anti-HER2 nanobody-cytosine deaminase conjugates with tunable numbers of nanobody and enzyme domains in a single, covalent molecule. Linking two nanobody domains to one enzyme domain improved avidity to a human cancer cell line by 4-fold but did not increase cytotoxicity significantly due to lowered enzyme activity. In contrast, a megamolecule composed of one nanobody and two enzyme domains resulted in an 8-fold improvement in the catalytic efficiency and increased the cytotoxic effect by over 5-fold in spheroid culture, indicating that the multimeric structure allowed for an increase in local drug activation. Our work demonstrates that the megamolecule strategy can be used to study structure-function relationships of protein conjugate therapeutics with synthetic control of protein domain stoichiometry.
Asunto(s)
Antineoplásicos/uso terapéutico , Enzimas/química , Profármacos/uso terapéutico , Anticuerpos de Dominio Único/química , Antineoplásicos/administración & dosificación , Línea Celular Tumoral , Humanos , Profármacos/administración & dosificación , Prueba de Estudio Conceptual , Relación Estructura-ActividadRESUMEN
This paper presents an enzyme building block for the assembly of megamolecules. The system is based on the inhibition of the human-derived cellular retinoic acid binding protein II (CRABP2) domain. We synthesized a synthetic retinoid bearing an arylfluorosulfate group, which uses sulfur fluoride exchange click chemistry to covalently inhibit CRABP2. We conjugated both the inhibitor and a fluorescein tag to an oligo(ethylene glycol) backbone and measured a second-order rate constant for the protein inhibition reaction of approximately 3,600â M-1 s-1 . We used this new enzyme-inhibitor pair to assemble multi-protein structures in one-pot reactions using three orthogonal assembly chemistries to demonstrate exact control over the placement of protein domains within a single, homogeneous molecule. This work enables a new dimension of control over specificity, orientation, and stoichiometry of protein domains within atomically precise nanostructures.
Asunto(s)
Inhibidores Enzimáticos , Receptores de Ácido Retinoico , Humanos , Dominios ProteicosRESUMEN
This paper describes the synthesis, characterization, and modeling of a series of molecules having four protein domains attached to a central core. The molecules were assembled with the "megamolecule" strategy, wherein enzymes react with their covalent inhibitors that are substituted on a linker. Three linkers were synthesized, where each had four oligo(ethylene glycol)-based arms terminated in a para-nitrophenyl phosphonate group that is a covalent inhibitor for cutinase. This enzyme is a serine hydrolase and reacts efficiently with the phosphonate to give a new ester linkage at the Ser-120 residue in the active site of the enzyme. Negative-stain transmission electron microscopy (TEM) images confirmed the architecture of the four-armed megamolecules. These cutinase tetramers were also characterized by X-ray crystallography, which confirmed the active-site serine-phosphonate linkage by electron-density maps. Molecular dynamics simulations of the tetracutinase megamolecules using three different force field setups were performed and compared with the TEM observations. Using the Amberff99SB-disp + pH7 force field, the two-dimensional projection distances of the megamolecules were found to agree with the measured dimensions from TEM. The study described here, which combines high-resolution characterization with molecular dynamics simulations, will lead to a comprehensive understanding of the molecular structures and dynamics for this new class of molecules.
Asunto(s)
Organofosfonatos , Dominio Catalítico , Cristalografía por Rayos X , Estructura Molecular , Dominios ProteicosRESUMEN
The successful treatment of chronic dermal wounds, such as diabetic foot ulcers (DFU), depends on the development of safe, effective, and affordable regenerative tools that the surgeon can rely on to promote wound closure. Although promising, strategies that involve cell-based therapies and the local release of exogenous growth factors are costly, require very long development times, and result in modest improvements in patient outcome. We describe the development of an antioxidant shape-conforming regenerative wound dressing that uses the laminin-derived dodecapeptide A5G81 as a potent tethered cell adhesion-, proliferation-, and haptokinesis-inducing ligand to locally promote wound closure. A5G81 immobilized within a thermoresponsive citrate-based hydrogel facilitates integrin-mediated spreading, migration, and proliferation of dermal and epidermal cells, resulting in faster tissue regeneration in diabetic wounds. This peptide-hydrogel system represents a paradigm shift in dermoconductive and dermoinductive strategies for treating DFU without the need for soluble biological or pharmacological factors.
Asunto(s)
Antioxidantes , Vendajes , Diabetes Mellitus Experimental/terapia , Pie Diabético/terapia , Hidrogeles , Laminina , Oligopéptidos , Cicatrización de Heridas , Animales , Antioxidantes/química , Antioxidantes/farmacología , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Pie Diabético/metabolismo , Pie Diabético/patología , Hidrogeles/química , Hidrogeles/farmacología , Laminina/química , Laminina/farmacología , Ratones , Oligopéptidos/química , Oligopéptidos/farmacologíaRESUMEN
This communication describes the design, synthesis, and biological activity of a megamolecule mimic of an anti-HER2 antibody. The antibody mimic was prepared by linking two Fabs from the therapeutic antibody trastuzumab, which are fused through the heavy chain variable domain to either cutinase or SnapTag, with a linker terminated in an irreversible inhibitor for each enzyme. This mimic binds HER2 with comparable avidity to trastuzumab, has similar activity in a cell-based assay, and can arrest tumor growth in a mouse xenograft BT474 tumor model. A panel of 16 bivalent anti-HER2 antibodies were prepared wherein each varied in the orientation of the fusion domain on the Fabs. The analogs displayed a range of cytotoxic activity, and surprisingly, the most active mimic binds to cells with a 10-fold lower avidity than the least active variant suggesting that structure plays a large role in their efficacy. This work suggests that the megamolecule approach can be used to prepare antibody mimics having a broad structural diversity.
Asunto(s)
Antineoplásicos Inmunológicos/farmacología , Diseño de Fármacos , Receptor ErbB-2/antagonistas & inhibidores , Trastuzumab/farmacología , Animales , Antineoplásicos Inmunológicos/síntesis química , Antineoplásicos Inmunológicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones SCID , Estructura Molecular , Trastuzumab/químicaRESUMEN
This paper presents a solid-phase strategy to efficiently assemble multiprotein scaffolds-known as megamolecules-without the need for protecting groups and with precisely defined nanoscale architectures. The megamolecules are assembled through sequential reactions of linkers that present irreversible inhibitors for enzymes and fusion proteins containing the enzyme domains. Here, a fusion protein containing an N-terminal cutinase and a C-terminal SnapTag domain react with an ethyl p-nitrophenyl phosphonate (pNPP) or a chloro-pyrimidine (CP) group, respectively, to give covalent products. By starting with resin beads that are functionalized with benzylguanine, a series of reactions lead to linear, branched, and dendritic structures that are released from the solid support by addition of TEV protease and that have sizes up to approximately 25 nm.
Asunto(s)
Hidrolasas de Éster Carboxílico/química , Sustancias Macromoleculares/síntesis química , Proteínas Recombinantes de Fusión/química , Armina/química , Dominios Proteicos , Técnicas de Síntesis en Fase SólidaRESUMEN
Advances in directed evolution have led to an exploration of new and important chemical transformations; however, many of these efforts still rely on the use of low-throughput chromatography-based screening methods. We present a high-throughput strategy for screening libraries of enzyme variants for improved activity. Unpurified reaction products are immobilized to a self-assembled monolayer and analyzed by mass spectrometry, allowing for direct evaluation of thousands of variants in under an hour. The method was demonstrated with libraries of randomly mutated cytochrome P411 variants to identify improved catalysts for C-H alkylation. The technique may be tailored to evolve enzymatic activity for a variety of transformations where higher throughput is needed.
Asunto(s)
Evolución Molecular Dirigida , Ensayos Analíticos de Alto Rendimiento/métodos , Alquilación , Carbono/química , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Escherichia coli/metabolismo , Hidrógeno/química , Mutagénesis Sitio-Dirigida , Espectrometría de Masa por Láser de Matriz Asistida de Ionización DesorciónRESUMEN
High-throughput quantification of the post-translational modification of many individual protein samples is challenging with current label-based methods. This paper demonstrates an efficient method that addresses this gap by combining Escherichia coli-based cell-free protein synthesis (CFPS) and self-assembled monolayers for matrix-assisted laser desorption/ionization mass spectrometry (SAMDI-MS) to analyze intact proteins. This high-throughput approach begins with polyhistidine-tagged protein substrates expressed from linear DNA templates by CFPS. Here, we synthesized an 87-member library of the E. coli Immunity Protein 7 (Im7) containing an acceptor sequence optimized for glycosylation by the Actinobacillus pleuropneumoniae N-glycosyltransferase (NGT) at every possible position along the protein backbone. These protein substrates were individually treated with NGT and then selectively immobilized to self-assembled monolayers presenting nickel-nitrilotriacetic acid (Ni-NTA) complexes before final analysis by SAMDI-MS to quantify the conversion of substrate to glycoprotein. This method offers new opportunities for rapid synthesis and quantitative evaluation of intact glycoproteins.
Asunto(s)
Proteínas Portadoras/análisis , Proteínas de Escherichia coli/análisis , Glicoproteínas/análisis , Ensayos Analíticos de Alto Rendimiento/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Actinobacillus pleuropneumoniae/enzimología , Proteínas Portadoras/síntesis química , Proteínas Portadoras/genética , Escherichia coli/química , Proteínas de Escherichia coli/síntesis química , Proteínas de Escherichia coli/genética , Glicoproteínas/síntesis química , Glicoproteínas/genética , Glicosilación , Glicosiltransferasas/química , Mutación , Biblioteca de Péptidos , Prueba de Estudio Conceptual , Proteínas Recombinantes/análisis , Proteínas Recombinantes/síntesis química , Proteínas Recombinantes/genéticaRESUMEN
Measuring changes in enzymatic activity over time from small numbers of cells remains a significant technical challenge. In this work, a method for sampling the cytoplasm of cells is introduced to extract enzymes and measure their activity at multiple time points. A microfluidic device, termed the live cell analysis device (LCAD), is designed, where cells are cultured in microwell arrays fabricated on polymer membranes containing nanochannels. Localized electroporation of the cells opens transient pores in the cell membrane at the interface with the nanochannels, enabling extraction of enzymes into nanoliter-volume chambers. In the extraction chambers, the enzymes modify immobilized substrates, and their activity is quantified by self-assembled monolayers for matrix-assisted laser desorption/ionization (SAMDI) mass spectrometry. By employing the LCAD-SAMDI platform, protein delivery into cells is demonstrated. Next, it is shown that enzymes can be extracted, and their activity measured without a loss in viability. Lastly, cells are sampled at multiple time points to study changes in phosphatase activity in response to oxidation by hydrogen peroxide. With this unique sampling device and label-free assay format, the LCAD with SAMDI enables a powerful new method for monitoring the dynamics of cellular activity from small populations of cells.
Asunto(s)
Electroporación , Pruebas de Enzimas , Enzimas , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Línea Celular Tumoral , Células/enzimología , Pruebas de Enzimas/instrumentación , Pruebas de Enzimas/métodos , Enzimas/análisis , Enzimas/metabolismo , Humanos , TiempoRESUMEN
Phosphorylation is an important post-translational modification on proteins involved in many cellular processes; however, understanding of the regulation and mechanisms of global phosphorylation remains limited. Herein, we utilize self-assembled monolayers on gold for matrix-assisted laser desorption/ionization mass spectrometry (SAMDI-MS) with three phosphorylated peptide arrays to profile global phosphatase activity in cell lysates derived from five mammalian cell lines. Our results reveal significant differences in the activities of protein phosphatases on phospho- serine, threonine, and tyrosine substrates and suggest that phosphatases play a much larger role in the regulation of global phosphorylation on proteins than previously understood.
Asunto(s)
Péptidos/química , Monoéster Fosfórico Hidrolasas/metabolismo , Análisis por Matrices de Proteínas/métodos , Animales , Línea Celular , Humanos , Ratones , Péptidos/metabolismo , Monoéster Fosfórico Hidrolasas/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Especificidad por SustratoRESUMEN
Glycosylation is an abundant post-translational modification that is important in disease and biotechnology. Current methods to understand and engineer glycosylation cannot sufficiently explore the vast experimental landscapes required to accurately predict and design glycosylation sites modified by glycosyltransferases. Here we describe a systematic platform for glycosylation sequence characterization and optimization by rapid expression and screening (GlycoSCORES), which combines cell-free protein synthesis and mass spectrometry of self-assembled monolayers. We produced six N- and O-linked polypeptide-modifying glycosyltransferases from bacteria and humans in vitro and rigorously determined their substrate specificities using 3,480 unique peptides and 13,903 unique reaction conditions. We then used GlycoSCORES to optimize and design small glycosylation sequence motifs that directed efficient N-linked glycosylation in vitro and in the Escherichia coli cytoplasm for three heterologous proteins, including the human immunoglobulin Fc domain. We find that GlycoSCORES is a broadly applicable method to facilitate fundamental understanding of glycosyltransferases and engineer synthetic glycoproteins.
Asunto(s)
Glicosiltransferasas/química , Péptidos/química , Proteínas Bacterianas/química , Sitios de Unión , Sistema Libre de Células , Citoplasma/metabolismo , Escherichia coli/enzimología , Escherichia coli/metabolismo , Glicoproteínas/química , Glicosilación , Humanos , Cinética , Espectrometría de Masas , Dominios Proteicos , Ingeniería de Proteínas/métodos , Procesamiento Proteico-Postraduccional , Especificidad por SustratoRESUMEN
Despite decades of accumulated knowledge about proteins and their post-translational modifications (PTMs), numerous questions remain regarding their molecular composition and biological function. One of the most fundamental queries is the extent to which the combinations of DNA-, RNA- and PTM-level variations explode the complexity of the human proteome. Here, we outline what we know from current databases and measurement strategies including mass spectrometry-based proteomics. In doing so, we examine prevailing notions about the number of modifications displayed on human proteins and how they combine to generate the protein diversity underlying health and disease. We frame central issues regarding determination of protein-level variation and PTMs, including some paradoxes present in the field today. We use this framework to assess existing data and to ask the question, "How many distinct primary structures of proteins (proteoforms) are created from the 20,300 human genes?" We also explore prospects for improving measurements to better regularize protein-level biology and efficiently associate PTMs to function and phenotype.