Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Int J Mol Sci ; 23(8)2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35457054

RESUMEN

Metabolic diseases, such as obesity, Type II diabetes and hepatic steatosis, are a significant public health concern affecting more than half a billion people worldwide. The prevalence of these diseases is constantly increasing in developed countries, affecting all age groups. The pathogenesis of metabolic diseases is complex and multifactorial. Inducer factors can either be genetic or linked to a sedentary lifestyle and/or consumption of high-fat and sugar diets. In 2002, a new concept of "environmental obesogens" emerged, suggesting that environmental chemicals could play an active role in the etiology of obesity. Bisphenol A (BPA), a xenoestrogen widely used in the plastic food packaging industry has been shown to affect many physiological functions and has been linked to reproductive, endocrine and metabolic disorders and cancer. Therefore, the widespread use of BPA during the last 30 years could have contributed to the increased incidence of metabolic diseases. BPA was banned in baby bottles in Canada in 2008 and in all food-oriented packaging in France from 1 January 2015. Since the BPA ban, substitutes with a similar structure and properties have been used by industrials even though their toxic potential is unknown. Bisphenol S has mainly replaced BPA in consumer products as reflected by the almost ubiquitous human exposure to this contaminant. This review focuses on the metabolic effects and targets of BPA and recent data, which suggest comparable effects of the structural analogs used as substitutes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Disruptores Endocrinos , Compuestos de Bencidrilo/toxicidad , Disruptores Endocrinos/toxicidad , Humanos , Obesidad/inducido químicamente , Fenoles
2.
Int J Mol Sci ; 20(15)2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31374856

RESUMEN

The pregnane X receptor (PXR) is the main nuclear receptor regulating the expression of xenobiotic-metabolizing enzymes and is highly expressed in the liver and intestine. Recent studies have highlighted its additional role in lipid homeostasis, however, the mechanisms of these regulations are not fully elucidated. We investigated the transcriptomic signature of PXR activation in the liver of adult wild-type vs. Pxr-/- C57Bl6/J male mice treated with the rodent specific ligand pregnenolone 16α-carbonitrile (PCN). PXR activation increased liver triglyceride accumulation and significantly regulated the expression of 1215 genes, mostly xenobiotic-metabolizing enzymes. Among the down-regulated genes, we identified a strong peroxisome proliferator-activated receptor α (PPARα) signature. Comparison of this signature with a list of fasting-induced PPARα target genes confirmed that PXR activation decreased the expression of more than 25 PPARα target genes, among which was the hepatokine fibroblast growth factor 21 (Fgf21). PXR activation abolished plasmatic levels of FGF21. We provide a comprehensive signature of PXR activation in the liver and identify new PXR target genes that might be involved in the steatogenic effect of PXR. Moreover, we show that PXR activation down-regulates hepatic PPARα activity and FGF21 circulation, which could participate in the pleiotropic role of PXR in energy homeostasis.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Hígado/metabolismo , PPAR alfa/metabolismo , Receptor X de Pregnano/metabolismo , Animales , Factores de Crecimiento de Fibroblastos/genética , Eliminación de Gen , Perfilación de la Expresión Génica , Masculino , Ratones Endogámicos C57BL , Receptor X de Pregnano/genética , Activación Transcripcional , Transcriptoma
3.
Gut ; 65(7): 1202-14, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26838599

RESUMEN

OBJECTIVE: Peroxisome proliferator-activated receptor α (PPARα) is a nuclear receptor expressed in tissues with high oxidative activity that plays a central role in metabolism. In this work, we investigated the effect of hepatocyte PPARα on non-alcoholic fatty liver disease (NAFLD). DESIGN: We constructed a novel hepatocyte-specific PPARα knockout (Pparα(hep-/-)) mouse model. Using this novel model, we performed transcriptomic analysis following fenofibrate treatment. Next, we investigated which physiological challenges impact on PPARα. Moreover, we measured the contribution of hepatocytic PPARα activity to whole-body metabolism and fibroblast growth factor 21 production during fasting. Finally, we determined the influence of hepatocyte-specific PPARα deficiency in different models of steatosis and during ageing. RESULTS: Hepatocyte PPARα deletion impaired fatty acid catabolism, resulting in hepatic lipid accumulation during fasting and in two preclinical models of steatosis. Fasting mice showed acute PPARα-dependent hepatocyte activity during early night, with correspondingly increased circulating free fatty acids, which could be further stimulated by adipocyte lipolysis. Fasting led to mild hypoglycaemia and hypothermia in Pparα(hep-/-) mice when compared with Pparα(-/-) mice implying a role of PPARα activity in non-hepatic tissues. In agreement with this observation, Pparα(-/-) mice became overweight during ageing while Pparα(hep-/-) remained lean. However, like Pparα(-/-) mice, Pparα(hep-/-) fed a standard diet developed hepatic steatosis in ageing. CONCLUSIONS: Altogether, these findings underscore the potential of hepatocyte PPARα as a drug target for NAFLD.


Asunto(s)
Envejecimiento , Ácidos Grasos/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Hepatocitos , Enfermedad del Hígado Graso no Alcohólico/genética , PPAR alfa/genética , Adipocitos , Envejecimiento/fisiología , Animales , Sistema Enzimático del Citocromo P-450/genética , Familia 4 del Citocromo P450/genética , Modelos Animales de Enfermedad , Ayuno , Fenofibrato/farmacología , Factores de Crecimiento de Fibroblastos/biosíntesis , Expresión Génica/efectos de los fármacos , Perfilación de la Expresión Génica , Homeostasis/genética , Hipoglucemia/genética , Hipolipemiantes/farmacología , Hipotermia/genética , Metabolismo de los Lípidos/genética , Lipólisis/genética , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Sobrepeso/genética , PPAR alfa/metabolismo , ARN Mensajero/metabolismo , Triglicéridos/metabolismo
4.
Toxicol Appl Pharmacol ; 303: 90-100, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27180240

RESUMEN

The Constitutive Androstane Receptor (CAR, NR1I3) has been newly described as a regulator of energy metabolism. A relevant number of studies using animal models of obesity suggest that CAR activation could be beneficial on the metabolic balance. However, this remains controversial and the underlying mechanisms are still unknown. This work aimed to investigate the effect of CAR activation on hepatic energy metabolism during physiological conditions, i.e. in mouse models not subjected to metabolic/nutritional stress. Gene expression profiling in the liver of CAR knockout and control mice on chow diet and treated with a CAR agonist highlighted CAR-mediated up-regulations of lipogenic genes, concomitant with neutral lipid accumulation. A strong CAR-mediated up-regulation of the patatin-like phospholipase domain-containing protein 3 (Pnpla3) was demonstrated. Pnpla3 is a gene whose polymorphism is associated with the pathogenesis of nonalcoholic fatty liver disease (NAFLD) development. This observation was confirmed in human hepatocytes treated with the antiepileptic drug and CAR activator, phenobarbital and in immortalized human hepatocytes treated with CITCO. Studying the molecular mechanisms controlling Pnpla3 gene expression, we demonstrated that CAR does not act by a direct regulation of Pnpla3 transcription or via the Liver X Receptor but may rather involve the transcription factor Carbohydrate Responsive Element-binding protein. These data provide new insights into the regulation by CAR of glycolytic and lipogenic genes and on pathogenesis of steatosis. This also raises the question concerning the impact of drugs and environmental contaminants in lipid-associated metabolic diseases.


Asunto(s)
Hígado Graso/metabolismo , Lipogénesis , Hígado/metabolismo , Receptores Citoplasmáticos y Nucleares , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Línea Celular , Células Cultivadas , Receptor de Androstano Constitutivo , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Células Hep G2 , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Lipasa/genética , Lipasa/metabolismo , Lipogénesis/efectos de los fármacos , Hígado/efectos de los fármacos , Receptores X del Hígado/genética , Receptores X del Hígado/metabolismo , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenobarbital/farmacología , Piridinas/farmacología , ARN Mensajero/metabolismo , Receptores Citoplasmáticos y Nucleares/agonistas , Receptores Citoplasmáticos y Nucleares/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Int J Mol Sci ; 17(10)2016 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-27669233

RESUMEN

The liver plays a central role in the regulation of fatty acid metabolism, which is highly sensitive to transcriptional responses to nutrients and hormones. Transcription factors involved in this process include nuclear hormone receptors. One such receptor, PPARα, which is highly expressed in the liver and activated by a variety of fatty acids, is a critical regulator of hepatic fatty acid catabolism during fasting. The present study compared the influence of dietary fatty acids and fasting on hepatic PPARα-dependent responses. Pparα(-/-) male mice and their wild-type controls were fed diets containing different fatty acids for 10 weeks prior to being subjected to fasting or normal feeding. In line with the role of PPARα in sensing dietary fatty acids, changes in chronic dietary fat consumption influenced liver damage during fasting. The changes were particularly marked in mice fed diets lacking essential fatty acids. However, fasting, rather than specific dietary fatty acids, induced acute PPARα activity in the liver. Taken together, the data imply that the potent signalling involved in triggering PPARα activity during fasting does not rely on essential fatty acid-derived ligand.


Asunto(s)
Grasas de la Dieta , Hígado/metabolismo , PPAR alfa/genética , Alanina Transaminasa/sangre , Animales , Aspartato Aminotransferasas/sangre , Peso Corporal , Colesterol/sangre , Sistema Enzimático del Citocromo P-450/genética , Familia 4 del Citocromo P450/genética , Ayuno , Hígado Graso/metabolismo , Hígado Graso/patología , Factores de Crecimiento de Fibroblastos/genética , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , PPAR alfa/metabolismo , ARN Mensajero/metabolismo , Triglicéridos/sangre
6.
Cells ; 13(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38891072

RESUMEN

This study explores the impact of environmental pollutants on nuclear receptors (CAR, PXR, PPARα, PPARγ, FXR, and LXR) and their heterodimerization partner, the Retinoid X Receptor (RXR). Such interaction may contribute to the onset of non-alcoholic fatty liver disease (NAFLD), which is initially characterized by steatosis and potentially progresses to steatohepatitis and fibrosis. Epidemiological studies have linked NAFLD occurrence to the exposure to environmental contaminants like PFAS. This study aims to assess the simultaneous activation of nuclear receptors via perfluorooctanoic acid (PFOA) and RXR coactivation via Tributyltin (TBT), examining their combined effects on steatogenic mechanisms. Mice were exposed to PFOA (10 mg/kg/day), TBT (5 mg/kg/day) or a combination of them for three days. Mechanisms underlying hepatic steatosis were explored by measuring nuclear receptor target gene and lipid metabolism key gene expressions, by quantifying plasma lipids and hepatic damage markers. This study elucidated the involvement of the Liver X Receptor (LXR) in the combined effect on steatosis and highlighted the permissive nature of the LXR/RXR heterodimer. Antagonistic effects of TBT on the PFOA-induced activation of the Pregnane X Receptor (PXR) and Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) were also observed. Overall, this study revealed complex interactions between PFOA and TBT, shedding light on their combined impact on liver health.


Asunto(s)
Caprilatos , Fluorocarburos , Compuestos de Trialquiltina , Animales , Compuestos de Trialquiltina/farmacología , Caprilatos/farmacología , Ratones , Fluorocarburos/toxicidad , Fluorocarburos/farmacología , Masculino , Ratones Endogámicos C57BL , Receptores X del Hígado/metabolismo , Hígado/metabolismo , Hígado/efectos de los fármacos , Hígado/patología , Receptores X Retinoide/metabolismo , Hígado Graso/metabolismo , Hígado Graso/inducido químicamente , Hígado Graso/patología , Receptores Citoplasmáticos y Nucleares/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente
7.
J Ovarian Res ; 17(1): 134, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38943138

RESUMEN

BACKGROUND: Industrial progress has led to the omnipresence of chemicals in the environment of the general population, including reproductive-aged and pregnant women. The reproductive function of females is a well-known target of endocrine-disrupting chemicals. This function holds biological processes that are decisive for the fertility of women themselves and for the health of future generations. However, insufficient research has evaluated the risk of combined mixtures on this function. This study aimed to assess the direct impacts of a realistic exposure to eight combined environmental toxicants on the critical process of folliculogenesis. METHODS: Female rabbits were exposed daily and orally to either a mixture of eight environmental toxicants (F group) or the solvent mixture (NE group, control) from 2 to 19 weeks of age. The doses were computed from previous toxicokinetic data to reproduce steady-state serum concentrations in rabbits in the range of those encountered in pregnant women. Ovarian function was evaluated through macroscopic and histological analysis of the ovaries, serum hormonal assays and analysis of the expression of steroidogenic enzymes. Cellular dynamics in the ovary were further investigated with Ki67 staining and TUNEL assays. RESULTS: F rabbits grew similarly as NE rabbits but exhibited higher total and high-density lipoprotein (HDL) cholesterol levels in adulthood. They also presented a significantly elevated serum testosterone concentrations, while estradiol, progesterone, AMH and DHEA levels remained unaffected. The measurement of gonadotropins, androstenedione, pregnenolone and estrone levels yielded values below the limit of quantification. Among the 7 steroidogenic enzymes tested, an isolated higher expression of Cyp19a1 was measured in F rabbits ovaries. Those ovaries presented a significantly greater density/number of antral and atretic follicles and larger antral follicles without any changes in cellular proliferation or DNA fragmentation. No difference was found regarding the count of other follicle stages notably the primordial stage, the corpora lutea or AMH serum levels. CONCLUSION: Folliculogenesis and steroidogenesis seem to be subtly altered by exposure to a human-like mixture of environmental toxicants. The antral follicle growth appears promoted by the mixture of chemicals both in their number and size, potentially explaining the increase in atretic antral follicles. Reassuringly, the ovarian reserve estimated through primordial follicles number/density and AMH is spared from any alteration. The consequences of these changes on fertility and progeny health have yet to be investigated.


Asunto(s)
Folículo Ovárico , Reserva Ovárica , Femenino , Animales , Conejos , Folículo Ovárico/efectos de los fármacos , Folículo Ovárico/metabolismo , Humanos , Reserva Ovárica/efectos de los fármacos , Disruptores Endocrinos/toxicidad , Contaminantes Ambientales/toxicidad , Ovario/efectos de los fármacos , Ovario/metabolismo , Exposición a Riesgos Ambientales/efectos adversos
8.
J Hepatol ; 58(5): 984-92, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23333450

RESUMEN

BACKGROUND & AIMS: Nutrients influence non-alcoholic fatty liver disease. Essential fatty acids deficiency promotes various syndromes, including hepatic steatosis, through increased de novo lipogenesis. The mechanisms underlying such increased lipogenic response remain unidentified. METHODS: We used wild type mice and mice lacking Liver X Receptors to perform a nutrigenomic study that aimed at examining the role of these transcription factors. RESULTS: We showed that, in the absence of Liver X Receptors, essential fatty acids deficiency does not promote steatosis. Consistent with this, Liver X Receptors are required for the elevated expression of genes involved in lipogenesis in response to essential fatty acids deficiency. CONCLUSIONS: This work identifies, for the first time, the central role of Liver X Receptors in steatosis induced by essential fatty acids deficiency.


Asunto(s)
Ácidos Grasos Esenciales/deficiencia , Hígado Graso/fisiopatología , Expresión Génica/fisiología , Lipogénesis/genética , Lipogénesis/fisiología , Receptores Nucleares Huérfanos/fisiología , Animales , Colesterol/metabolismo , Enfermedades Carenciales/fisiopatología , Grasas de la Dieta/farmacología , Modelos Animales de Enfermedad , Femenino , Expresión Génica/efectos de los fármacos , Lipogénesis/efectos de los fármacos , Hígado/metabolismo , Receptores X del Hígado , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Receptores Nucleares Huérfanos/deficiencia , Receptores Nucleares Huérfanos/genética , Factores de Transcripción/fisiología , Triglicéridos/metabolismo , Regulación hacia Arriba/fisiología
9.
Hepatology ; 55(2): 395-407, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21932408

RESUMEN

UNLABELLED: Changes in lifestyle are suspected to have strongly influenced the current obesity epidemic. Based on recent experimental, clinical, and epidemiological work, it has been proposed that some food contaminants may exert damaging effects on endocrine and metabolic functions, thereby promoting obesity and associated metabolic diseases such as nonalcoholic fatty liver disease (NAFLD). In this work, we investigated the effect of one suspicious food contaminant, bisphenol A (BPA), in vivo. We used a transcriptomic approach in male CD1 mice exposed for 28 days to different doses of BPA (0, 5, 50, 500, and 5,000 µg/kg/day) through food contamination. Data analysis revealed a specific impact of low doses of BPA on the hepatic transcriptome, more particularly on genes involved in lipid synthesis. Strikingly, the effect of BPA on the expression of de novo lipogenesis followed a nonmonotonic dose-response curve, with more important effects at lower doses than at the higher dose. In addition to lipogenic enzymes (Acc, Fasn, Scd1), the expression of transcription factors such as liver X Receptor, the sterol regulatory element binding protein-1c, and the carbohydrate responsive element binding protein that govern the expression of lipogenic genes also followed a nonmonotonic dose-response curve in response to BPA. Consistent with an increased fatty acid biosynthesis, determination of fat in the liver showed an accumulation of cholesteryl esters and of triglycerides. CONCLUSION: Our work suggests that exposure to low BPA doses may influence de novo fatty acid synthesis through increased expression of lipogenic genes, thereby contributing to hepatic steatosis. Exposure to such contaminants should be carefully examined in the etiology of metabolic diseases such as NAFLD and nonalcoholic steatohepatitis.


Asunto(s)
Estrógenos no Esteroides/administración & dosificación , Expresión Génica/efectos de los fármacos , Lípidos/biosíntesis , Hígado/efectos de los fármacos , Fenoles/administración & dosificación , Animales , Compuestos de Bencidrilo , Perfilación de la Expresión Génica , Insulina/sangre , Metabolismo de los Lípidos , Hígado/metabolismo , Masculino , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos
10.
Cells ; 12(8)2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37190111

RESUMEN

The nuclear receptor, constitutive androstane receptor (CAR), which forms a heterodimer with the retinoid X receptor (RXR), was initially reported as a transcription factor that regulates hepatic genes involved in detoxication and energy metabolism. Different studies have shown that CAR activation results in metabolic disorders, including non-alcoholic fatty liver disease, by activating lipogenesis in the liver. Our objective was to determine whether synergistic activations of the CAR/RXR heterodimer could occur in vivo as described in vitro by other authors, and to assess the metabolic consequences. For this purpose, six pesticides, ligands of CAR, were selected, and Tri-butyl-tin (TBT) was used as an RXR agonist. In mice, CAR's synergic activation was induced by dieldrin associated with TBT, and combined effects were induced by propiconazole, bifenox, boscalid, and bupirimate. Moreover, a steatosis, characterized by increased triglycerides, was observed when TBT was combined with dieldrin, propiconazole, bifenox, boscalid, and bupirimate. Metabolic disruption appeared in the form of increased cholesterol and lowered free fatty acid plasma levels. An in-depth analysis revealed increased expression of genes involved in lipid synthesis and lipid import. These results contribute to the growing understanding of how environmental contaminants can influence nuclear receptor activity and associated health risks.


Asunto(s)
Enfermedades Metabólicas , Enfermedad del Hígado Graso no Alcohólico , Plaguicidas , Animales , Ratones , Receptor de Androstano Constitutivo , Receptores X Retinoide/metabolismo , Plaguicidas/toxicidad , Dieldrín , Receptores Citoplasmáticos y Nucleares , Lípidos
11.
Cells ; 12(18)2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37759441

RESUMEN

Non-Alcoholic Fatty Liver Disease (NAFLD) is the most common cause of chronic liver disease worldwide, affecting 70-90% of obese individuals. In humans, a lower NAFLD incidence is reported in pre-menopausal women, although the mechanisms affording this protection remain under-investigated. Here, we tested the hypothesis that the constitutive androstane nuclear receptor (CAR) plays a role in the pathogenesis of experimental NAFLD. Male and female wild-type (WT) and CAR knock-out (CAR-/-) mice were subjected to a high-fat diet (HFD) for 16 weeks. We examined the metabolic phenotype of mice through body weight follow-up, glucose tolerance tests, analysis of plasmatic metabolic markers, hepatic lipid accumulation, and hepatic transcriptome. Finally, we examined the potential impact of HFD and CAR deletion on specific brain regions, focusing on glial cells. HFD-induced weight gain and hepatic steatosis are more pronounced in WT males than females. CAR-/- females present a NASH-like hepatic transcriptomic signature suggesting a potential NAFLD to NASH transition. Transcriptomic correlation analysis highlighted a possible cross-talk between CAR and ERα receptors. The peripheral effects of CAR deletion in female mice were associated with astrogliosis in the hypothalamus. These findings prove that nuclear receptor CAR may be a potential mechanism entry-point and a therapeutic target for treating NAFLD/NASH.


Asunto(s)
Enfermedades Metabólicas , Enfermedad del Hígado Graso no Alcohólico , Femenino , Masculino , Humanos , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/etiología , Dieta Alta en Grasa/efectos adversos , Obesidad , Peso Corporal
12.
Microbiome ; 9(1): 93, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33879258

RESUMEN

BACKGROUND: The gut microbiota-intestine-liver relationship is emerging as an important factor in multiple hepatic pathologies, but the hepatic sensors and effectors of microbial signals are not well defined. RESULTS: By comparing publicly available liver transcriptomics data from conventional vs. germ-free mice, we identified pregnane X receptor (PXR, NR1I2) transcriptional activity as strongly affected by the absence of gut microbes. Microbiota depletion using antibiotics in Pxr+/+ vs Pxr-/- C57BL/6J littermate mice followed by hepatic transcriptomics revealed that most microbiota-sensitive genes were PXR-dependent in the liver in males, but not in females. Pathway enrichment analysis suggested that microbiota-PXR interaction controlled fatty acid and xenobiotic metabolism. We confirmed that antibiotic treatment reduced liver triglyceride content and hampered xenobiotic metabolism in the liver from Pxr+/+ but not Pxr-/- male mice. CONCLUSIONS: These findings identify PXR as a hepatic effector of microbiota-derived signals that regulate the host's sexually dimorphic lipid and xenobiotic metabolisms in the liver. Thus, our results reveal a potential new mechanism for unexpected drug-drug or food-drug interactions. Video abstract.


Asunto(s)
Microbioma Gastrointestinal , Animales , Femenino , Microbioma Gastrointestinal/genética , Lípidos , Hígado , Masculino , Ratones , Ratones Endogámicos C57BL , Receptor X de Pregnano/genética , Xenobióticos
13.
Cells ; 9(11)2020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-33171992

RESUMEN

Xenobiotic nuclear receptors (NR) are intracellular players involved in an increasing number of physiological processes. Examined and characterized in peripheral organs where they govern metabolic, transport and detoxification mechanisms, accumulating data suggest a functional expression of specific NR at the neurovascular unit (NVU). Here, we focus on the Constitutive Androstane Receptor (CAR), expressed in detoxifying organs such as the liver, intestines and kidneys. By direct and indirect activation, CAR is implicated in hepatic detoxification of xenobiotics, environmental contaminants, and endogenous molecules (bilirubin, bile acids). Importantly, CAR participates in physiological stress adaptation responses, hormonal and energy homeostasis due to glucose and lipid sensing. We next analyze the emerging evidence supporting a role of CAR in NVU cells including the blood-brain barrier (BBB), a key vascular interface regulating communications between the brain and the periphery. We address the emerging concept of how CAR may regulate specific P450 cytochromes at the NVU and the associated relevance to brain diseases. A clear understanding of how CAR engages during pathological conditions could enable new mechanistic, and perhaps pharmacological, entry-points within a peripheral-brain axis.


Asunto(s)
Ambiente , Sistema Nervioso/irrigación sanguínea , Receptores Citoplasmáticos y Nucleares/metabolismo , Estrés Fisiológico , Animales , Restricción Calórica , Receptor de Androstano Constitutivo , Humanos , Inactivación Metabólica
14.
Neuroscience ; 446: 225-237, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32736067

RESUMEN

Exposure to environmental contaminants is a public health concern. However, pre-clinical studies that examine the impact of pesticides at low-dose and the long-term consequences are uncommon. Here, C57BL6/j male and female mice were daily fed from weaning and up to 12 months, corresponding to early-childhood into middle-age in humans, using chow pellets containing a cocktail of pesticides at tolerable daily intake levels. We found that 12 months of dietary exposure to pesticides was associated with a moderate perenchymal or perivascular astrogliosis in specific hippocampal sub-regions. The expression of platelet-derived growth factor receptor beta was modified at the perivascular level. Examination of Iba1+ microglial cells did not reveal sizeable changes. Concomitantly to astrogliosis, spontaneous spatial memory and sociability were modified in males at 12 months of dietary exposure to pesticides. Telemetry electrocorticograhic explorations ruled out the presence of epileptiform activity or theta-gamma wave modifications in these conditions. Long-term pesticides impacted the periphery where the hepatic P450 metabolic cytochromes Cyp4a14 and Cyp4a10 were significantly upregulated in male and female mice during the 12 months of exposure. The expression of ß-oxidation genes, such as Acox1, Cpt1a and Eci, was also significantly increased in male and female mice in response to pesticides. Collectively, our results indicate that a life-long exposure to a pesticide cocktail elicits sex-dependent, spatio-temporally restricted brain modifications and significant activation of P450 pathways in the periphery. These brain-peripheral adjustments are discussed as time or age-dependent vulnerability elements.


Asunto(s)
Plaguicidas , Animales , Dieta , Femenino , Gliosis , Masculino , Redes y Vías Metabólicas , Ratones , Ratones Endogámicos C57BL , Plaguicidas/toxicidad
15.
Environ Int ; 144: 106010, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32745781

RESUMEN

BACKGROUND: We recently demonstrated that chronic dietary exposure to a mixture of pesticides at low-doses induced sexually dimorphic obesogenic and diabetogenic effects in adult mice. Perinatal pesticide exposure may also be a factor in metabolic disease etiology. However, the long-term consequences of perinatal pesticide exposure remain controversial and largely unexplored. OBJECTIVES: Here we assessed how perinatal exposure to the same low-dose pesticide cocktail impacted metabolic homeostasis in adult mice. METHODS: Six pesticides (boscalid, captan, chlopyrifos, thiachloprid, thiophanate, and ziram) were incorporated in food pellets. During the gestation and lactation periods, female (F0) mice were fed either a pesticide-free or a pesticide-enriched diet at doses exposing them to the tolerable daily intake (TDI) level for each compound, using a 1:1 body weight scaling from humans to mice. All male and female offsprings (F1) were then fed the pesticide-free diet until 18 weeks of age, followed by challenge with a pesticide-free high-fat diet (HFD) for 6 weeks. Metabolic parameters, including body weight, food and water consumption, glucose tolerance, and urinary and fecal metabolomes, were assessed over time. At the end of the experiment, we evaluated energetic metabolism and microbiota activity using biochemical assays, gene expression profiling, and 1H NMR-based metabolomics in the liver, urine, and feces. RESULTS: Perinatal pesticide exposure did not affect body weight or energy homeostasis in 6- and 14-week-old mice. As expected, HFD increased body weight and induced metabolic disorders as compared to a low-fat diet. However, HFD-induced metabolic perturbations were similar between mice with and without perinatal pesticide exposure. Interestingly, perinatal pesticide exposure induced time-specific and sex-specific alterations in the urinary and fecal metabolomes of adult mice, suggesting long-lasting changes in gut microbiota. CONCLUSIONS: Perinatal pesticide exposure induced sustained sexually dimorphic perturbations of the urinary and fecal metabolic fingerprints, but did not significantly influence the development of HFD-induced metabolic diseases.


Asunto(s)
Microbioma Gastrointestinal , Plaguicidas , Animales , Dieta Alta en Grasa/efectos adversos , Heces , Femenino , Ratones , Ratones Endogámicos C57BL , Plaguicidas/toxicidad
17.
Toxicol Appl Pharmacol ; 236(3): 282-92, 2009 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-19245819

RESUMEN

Phthalates are industrial additives widely used as plasticizers. In addition to deleterious effects on male genital development, population studies have documented correlations between phthalates exposure and impacts on reproductive tract development and on the metabolic syndrome in male adults. In this work we investigated potential mechanisms underlying the impact of DEHP on adult mouse liver in vivo. A parallel analysis of hepatic transcript and metabolic profiles from adult mice exposed to varying DEHP doses was performed. Hepatic genes modulated by DEHP are predominantly PPARalpha targets. However, the induction of prototypic cytochrome P450 genes strongly supports the activation of additional NR pathways, including Constitutive Androstane Receptor (CAR). Integration of transcriptomic and metabonomic profiles revealed a correlation between the impacts of DEHP on genes and metabolites related to heme synthesis and to the Rev-erbalpha pathway that senses endogenous heme level. We further confirmed the combined impact of DEHP on the hepatic expression of Alas1, a critical enzyme in heme synthesis and on the expression of Rev-erbalpha target genes involved in the cellular clock and in energy metabolism. This work shows that DEHP interferes with hepatic CAR and Rev-erbalpha pathways which are both involved in the control of metabolism. The identification of these new hepatic pathways targeted by DEHP could contribute to metabolic and endocrine disruption associated with phthalate exposure. Gene expression profiles performed on microdissected testis territories displayed a differential responsiveness to DEHP. Altogether, this suggests that impacts of DEHP on adult organs, including testis, could be documented and deserve further investigations.


Asunto(s)
Dietilhexil Ftalato/toxicidad , Hígado/efectos de los fármacos , Biología de Sistemas , Animales , Perfilación de la Expresión Génica , Hemo/biosíntesis , Hígado/enzimología , Hígado/metabolismo , Espectroscopía de Resonancia Magnética , Ratones , Transcripción Genética
18.
Sci Rep ; 9(1): 20169, 2019 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-31882815

RESUMEN

Metabolic diseases such as obesity, type II diabetes and hepatic steatosis are a public health concern in developed countries. The metabolic risk is gender-dependent. The constitutive androstane receptor (CAR), which is at the crossroads between energy metabolism and endocrinology, has recently emerged as a promising therapeutic agent for the treatment of obesity and type 2 diabetes. In this study we sought to determine its role in the dimorphic regulation of energy homeostasis. We tracked male and female WT and CAR deficient (CAR-/-) mice for over a year. During aging, CAR-/- male mice developed hypercortisism, obesity, glucose intolerance, insulin insensitivity, dyslipidemia and hepatic steatosis. Remarkably, the latter modifications were absent, or minor, in female CAR-/- mice. When ovariectomized, CAR-/- female mice developed identical patterns of metabolic disorders as observed in male mice. These results highlight the importance of steroid hormones in the regulation of energy metabolism by CAR. They unveil a sexually dimorphic role of CAR in the maintenance of endocrine and metabolic homeostasis underscoring the importance of considering sex in treatment of metabolic diseases.

19.
Environ Health Perspect ; 126(6): 067007, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29950287

RESUMEN

BACKGROUND: Epidemiological evidence suggests a link between pesticide exposure and the development of metabolic diseases. However, most experimental studies have evaluated the metabolic effects of pesticides using individual molecules, often at nonrelevant doses or in combination with other risk factors such as high-fat diets. OBJECTIVES: We aimed to evaluate, in mice, the metabolic consequences of chronic dietary exposure to a pesticide mixture at nontoxic doses, relevant to consumers' risk assessment. METHODS: A mixture of six pesticides commonly used in France, i.e., boscalid, captan, chlorpyrifos, thiofanate, thiacloprid, and ziram, was incorporated in a standard chow at doses exposing mice to the tolerable daily intake (TDI) of each pesticide. Wild-type (WT) and constitutive androstane receptor-deficient (CAR-/-) male and female mice were exposed for 52 wk. We assessed metabolic parameters [body weight (BW), food and water consumption, glucose tolerance, urinary metabolome] throughout the experiment. At the end of the experiment, we evaluated liver metabolism (histology, transcriptomics, metabolomics, lipidomics) and pesticide detoxification using liquid chromatography-mass spectrometry (LC-MS). RESULTS: Compared to those fed control chow, WT male mice fed pesticide chow had greater BW gain and more adiposity. Moreover, these WT males fed pesticide chow exhibited characteristics of hepatic steatosis and glucose intolerance, which were not observed in those fed control chow. WT exposed female mice exhibited fasting hyperglycemia, higher reduced glutathione (GSH):oxidized glutathione (GSSG) liver ratio and perturbations of gut microbiota-related urinary metabolites compared to WT mice fed control chow. When we performed these experiments on CAR-/- mice, pesticide-exposed CAR-/- males did not exhibit BW gain or changes in glucose metabolism compared to the CAR-/- males fed control chow. Moreover, CAR-/- females fed pesticide chow exhibited pesticide toxicity with higher BWs and mortality rate compared to the CAR-/- females fed control chow. CONCLUSIONS: To our knowledge, we are the first to demonstrate a sexually dimorphic obesogenic and diabetogenic effect of chronic dietary exposure to a common mixture of pesticides at TDI levels, and to provide evidence for a partial role for CAR in an in vivo mouse model. This raises questions about the relevance of TDI for individual pesticides when present in a mixture. https://doi.org/10.1289/EHP2877.


Asunto(s)
Fungicidas Industriales/toxicidad , Trastornos del Metabolismo de la Glucosa/inducido químicamente , Insecticidas/toxicidad , Receptores Citoplasmáticos y Nucleares/genética , Animales , Animales Modificados Genéticamente , Peso Corporal/efectos de los fármacos , Receptor de Androstano Constitutivo , Exposición Dietética , Hígado Graso/inducido químicamente , Femenino , Glutatión/metabolismo , Inactivación Metabólica , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Metaboloma/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Factores Sexuales , Pruebas de Toxicidad Crónica
20.
J Virol Methods ; 143(1): 11-5, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17386948

RESUMEN

A caprine arthritis encephalitis virus (CAEV), carrying the green fluorescent protein (GFP) into the tat region was recently reported [Mselli-Lakhal, L., Guiguen, F., Greenland, T., Mornex, J.F., Chebloune, Y., 2006. Gene transfer system derived from the caprine arthritis-encephalitis lentivirus. J. Virol. Meth. 136, 177-184]. This construct, called pK2EGFPH replicated to titres up to 10(5)IU/ml on infection of caprine cells, and could be concentrated to 10(6)IU/ml by ultracentrifugation. In the present study, the pK2EGFPH construct was characterized better and used in cross-species infection studies. The pK2EGFPH virus could transduce GFP protein expression both to goat synovial membrane cells and to an immortalized goat milk epithelial cell line. The pK2EGFPH infected cells were demonstrated to express both GFP protein and CAEV viral proteins, as demonstrated by radioimmunoprecipitation and multinucleated cell formation. However GFP expression could not be maintained over passages. This vector was used to investigate cross-species infectious potential of CAEV. The bovine cell lines MDBK and GBK were found to be sensitive to infection while the human cell lines Hela, A431 and THP-1 were not. The pK2EGFPH vector should prove useful in studies of CAEV tropism both in vitro and in vivo.


Asunto(s)
Virus de la Artritis-Encefalitis Caprina/genética , Virus de la Artritis-Encefalitis Caprina/fisiología , Proteínas Fluorescentes Verdes/biosíntesis , Animales , Virus de la Artritis-Encefalitis Caprina/aislamiento & purificación , Bovinos , Línea Celular , Línea Celular Tumoral , Vectores Genéticos , Proteínas Fluorescentes Verdes/genética , Humanos , Infecciones por Lentivirus/virología , Especificidad de la Especie , Transducción Genética , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA