Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Nature ; 467(7318): 951-4, 2010 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-20935626

RESUMEN

More than half of the solar energy absorbed by land surfaces is currently used to evaporate water. Climate change is expected to intensify the hydrological cycle and to alter evapotranspiration, with implications for ecosystem services and feedback to regional and global climate. Evapotranspiration changes may already be under way, but direct observational constraints are lacking at the global scale. Until such evidence is available, changes in the water cycle on land−a key diagnostic criterion of the effects of climate change and variability−remain uncertain. Here we provide a data-driven estimate of global land evapotranspiration from 1982 to 2008, compiled using a global monitoring network, meteorological and remote-sensing observations, and a machine-learning algorithm. In addition, we have assessed evapotranspiration variations over the same time period using an ensemble of process-based land-surface models. Our results suggest that global annual evapotranspiration increased on average by 7.1 ± 1.0 millimetres per year per decade from 1982 to 1997. After that, coincident with the last major El Niño event in 1998, the global evapotranspiration increase seems to have ceased until 2008. This change was driven primarily by moisture limitation in the Southern Hemisphere, particularly Africa and Australia. In these regions, microwave satellite observations indicate that soil moisture decreased from 1998 to 2008. Hence, increasing soil-moisture limitations on evapotranspiration largely explain the recent decline of the global land-evapotranspiration trend. Whether the changing behaviour of evapotranspiration is representative of natural climate variability or reflects a more permanent reorganization of the land water cycle is a key question for earth system science.


Asunto(s)
Atmósfera/química , Agua Dulce/análisis , Calentamiento Global , Transpiración de Plantas/fisiología , Ciclo Hidrológico , Inteligencia Artificial , Calentamiento Global/estadística & datos numéricos , Historia del Siglo XX , Historia del Siglo XXI , Humedad , Reproducibilidad de los Resultados , Estaciones del Año , Suelo/análisis , Incertidumbre , Volatilización
2.
Nat Commun ; 6: 6603, 2015 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-25824529

RESUMEN

The biophysical effects of forests on climate have been extensively studied with climate models. However, models cannot accurately reproduce local climate effects due to their coarse spatial resolution and uncertainties, and field observations are valuable but often insufficient due to their limited coverage. Here we present new evidence acquired from global satellite data to analyse the biophysical effects of forests on local climate. Results show that tropical forests have a strong cooling effect throughout the year; temperate forests show moderate cooling in summer and moderate warming in winter with net cooling annually; and boreal forests have strong warming in winter and moderate cooling in summer with net warming annually. The spatiotemporal cooling or warming effects are mainly driven by the two competing biophysical effects, evapotranspiration and albedo, which in turn are strongly influenced by rainfall and snow. Implications of our satellite-based study could be useful for informing local forestry policies.


Asunto(s)
Clima , Política Ambiental , Bosque Lluvioso , Nave Espacial , Taiga , Temperatura , Cambio Climático , Bosques , Modelos Teóricos
3.
Glob Chang Biol ; 19(8): 2401-12, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23589484

RESUMEN

There is increasing concern that widespread forest decline could occur in regions of the world where droughts are predicted to increase in frequency and severity as a result of climate change. The average annual leaf area index (LAI) is an indicator of canopy cover and the difference between the annual maximum and minimum LAI is an indicator of annual leaf turnover. In this study, we analyzed satellite-derived estimates of monthly LAI across forested coastal catchments of southwest Western Australia over a 12 year period (2000-2011) that included the driest year on record for the last 60 years. We observed that over the 12 year study period, the spatial pattern of average annual satellite-derived LAI values was linearly related to mean annual rainfall. However, interannual changes to LAI in response to changes in annual rainfall were far less than expected from the long-term LAI-rainfall trend. This buffered response was investigated using a physiological growth model and attributed to availability of deep soil moisture and/or groundwater storage. The maintenance of high LAIs may be linked to a long-term decline in areal average underground water storage and diminished summer flows, with an emerging trend toward more ephemeral flow regimes.


Asunto(s)
Ecosistema , Transpiración de Plantas , Plantas/metabolismo , Lluvia , Movimientos del Agua , Cambio Climático , Modelos Biológicos , Tecnología de Sensores Remotos , Nave Espacial , Australia Occidental
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA