Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Nature ; 584(7822): 602-607, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32641831

RESUMEN

Species often include multiple ecotypes that are adapted to different environments1. However, it is unclear how ecotypes arise and how their distinctive combinations of adaptive alleles are maintained despite hybridization with non-adapted populations2-4. Here, by resequencing 1,506 wild sunflowers from 3 species (Helianthus annuus, Helianthus petiolaris and Helianthus argophyllus), we identify 37 large (1-100 Mbp in size), non-recombining haplotype blocks that are associated with numerous ecologically relevant traits, as well as soil and climate characteristics. Limited recombination in these haplotype blocks keeps adaptive alleles together, and these regions differentiate sunflower ecotypes. For example, haplotype blocks control a 77-day difference in flowering between ecotypes of the silverleaf sunflower H. argophyllus (probably through deletion of a homologue of FLOWERING LOCUS T (FT)), and are associated with seed size, flowering time and soil fertility in dune-adapted sunflowers. These haplotypes are highly divergent, frequently associated with structural variants and often appear to represent introgressions from other-possibly now-extinct-congeners. These results highlight a pervasive role of structural variation in ecotypic adaptation.


Asunto(s)
Ecotipo , Haplotipos , Helianthus/genética , Aclimatación/genética , Alelos , Flores/genética , Helianthus/anatomía & histología , Helianthus/crecimiento & desarrollo , Filogenia , Semillas/genética
2.
Proc Natl Acad Sci U S A ; 120(14): e2205783119, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36972449

RESUMEN

Crop wild relatives represent valuable sources of alleles for crop improvement, including adaptation to climate change and emerging diseases. However, introgressions from wild relatives might have deleterious effects on desirable traits, including yield, due to linkage drag. Here, we analyzed the genomic and phenotypic impacts of wild introgressions in inbred lines of cultivated sunflower to estimate the impacts of linkage drag. First, we generated reference sequences for seven cultivated and one wild sunflower genotype, as well as improved assemblies for two additional cultivars. Next, relying on previously generated sequences from wild donor species, we identified introgressions in the cultivated reference sequences, as well as the sequence and structural variants they contain. We then used a ridge-regression best linear unbiased prediction (BLUP) model to test the effects of the introgressions on phenotypic traits in the cultivated sunflower association mapping population. We found that introgression has introduced substantial sequence and structural variation into the cultivated sunflower gene pool, including >3,000 new genes. While introgressions reduced genetic load at protein-coding sequences, they mostly had negative impacts on yield and quality traits. Introgressions found at high frequency in the cultivated gene pool had larger effects than low-frequency introgressions, suggesting that the former likely were targeted by artificial selection. Also, introgressions from more distantly related species were more likely to be maladaptive than those from the wild progenitor of cultivated sunflower. Thus, breeding efforts should focus, as far as possible, on closely related and fully compatible wild relatives.


Asunto(s)
Helianthus , Helianthus/genética , Genoma de Planta/genética , Fitomejoramiento , Genotipo , Genómica
3.
Theor Appl Genet ; 137(3): 56, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38386181

RESUMEN

KEY MESSAGE: A new OrAnom1 gene introgressed in cultivated sunflower from wild Helianthus anomalus confers late post-attachment resistance to Orobanche cumana race G and maps to a target interval in Chromosome 4 where two receptor-like kinases (RLKs) have been identified in the H. anomalus genome as putative candidates. Sunflower broomrape is a parasitic weed that infects sunflower (Helianthus annuus L.) roots causing severe yield losses. Breeding for resistance is the most effective and sustainable control method. In this study, we report the identification, introgression, and genetic and physiological characterization of a new sunflower source of resistance to race G of broomrape developed from the wild annual sunflower H. anomalus (accession PI 468642). Crosses between PI 468642 and the susceptible line P21 were carried out, and the genetic study was conducted in BC1F1, BC1F2, and its derived BC1F3 populations. A BC1F5 germplasm named ANOM1 was developed through selection for race G resistance and resemblance to cultivated sunflower. The resistant trait showed monogenic and dominant inheritance. The gene, named OrAnom1, was mapped to Chromosome 4 within a 1.2 cM interval and co-segregated with 7 SNP markers. This interval corresponds to a 1.32 Mb region in the sunflower reference genome, housing a cluster of receptor-like kinase and receptor-like protein (RLK-RLP) genes. Notably, the analysis of the H. anomalus genome revealed the absence of RLPs in the OrAnom1 target region but featured two RLKs as possible OrAnom1 candidates. Rhizotron and histological studies showed that OrAnom1 determines a late post-attachment resistance mechanism. Broomrape can establish a vascular connection with the host, but parasite growth is stopped before tubercle development, showing phenolic compounds accumulation and tubercle necrosis. ANOM1 will contribute to broadening the genetic basis of broomrape resistance in the cultivated sunflower pool and to a better understanding of the molecular basis of the sunflower-broomrape interaction.


Asunto(s)
Helianthus , Orobanche , Helianthus/genética , Fitomejoramiento , Necrosis , Fenoles
4.
Theor Appl Genet ; 137(5): 103, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38613680

RESUMEN

KEY MESSAGE: The HaOr5 resistance gene is located in a large genomic insertion containing putative resistance genes and provides resistance to O. cumana, preventing successful connection to the sunflower root vascular system. Orobanche cumana (sunflower broomrape) is a parasitic plant that is part of the Orobanchaceae family and specifically infests sunflower crops. This weed is an obligate parasitic plant that does not carry out photosynthetic activity or develop roots and is fully dependent on its host for its development. It produces thousands of dust-like seeds per plant. It possesses a high spreading ability and has been shown to quickly overcome resistance genes successively introduced by selection in cultivated sunflower varieties. The first part of its life cycle occurs underground. The connection to the sunflower vascular system is essential for parasitic plant survival and development. The HaOr5 gene provides resistance to sunflower broomrape race E by preventing the connection of O. cumana to the root vascular system. We mapped a single position of the HaOr5 gene by quantitative trait locus mapping using two segregating populations. The same location of the HaOr5 gene was identified by genome-wide association. Using a large population of thousands of F2 plants, we restricted the location of the HaOr5 gene to a genomic region of 193 kb. By sequencing the whole genome of the resistant line harboring the major resistance gene HaOr5, we identified a large insertion of a complex genomic region containing a cluster of putative resistance genes.


Asunto(s)
Helianthus , Orobanche , Helianthus/genética , Orobanche/genética , Estudio de Asociación del Genoma Completo , Mapeo Cromosómico , Genómica
5.
Theor Appl Genet ; 135(2): 501-525, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34741641

RESUMEN

KEY MESSAGE: OrDeb2 confers post-attachment resistance to Orobanche cumana and is located in a 1.38 Mbp genomic interval containing a cluster of receptor-like kinase and receptor-like protein genes with nine high-confidence candidates. Sunflower broomrape is a holoparasitic angiosperm that parasitizes on sunflower roots, severely constraining crop yield. Breeding for resistance is the most effective method of control. OrDeb2 is a dominant resistance gene introgressed into cultivated sunflower from a wild-related species that confers resistance to highly virulent broomrape races. The objectives of this study were as follows: (i) locate OrDeb2 into the sunflower genome and determine putative candidate genes and (ii) characterize its underlying resistance mechanism. A segregating population from a cross between the sunflower resistant line DEB2, carrying OrDeb2, and a susceptible line was phenotyped for broomrape resistance in four experiments, including different environments and two broomrape races (FGV and GTK). This population was also densely genotyped with microsatellite and SNP markers, which allowed locating OrDeb2 within a 0.9 cM interval in the upper half of Chromosome 4. This interval corresponded to a 1.38 Mbp genomic region of the sunflower reference genome that contained a cluster of genes encoding LRR (leucine-rich repeat) receptor-like proteins lacking a cytoplasmic kinase domain and receptor-like kinases with one or two kinase domains and lacking an extracellular LRR region, which were valuable candidates for OrDeb2. Rhizotron and histological studies showed that OrDeb2 determines a post-attachment resistance response that blocks O. cumana development mainly at the cortex before the establishment of host-parasite vascular connections. This study will contribute to understand the interaction between crops and parasitic weeds, to establish durable breeding strategies based on genetic resistance and provide useful tools for marker-assisted selection and OrDeb2 map-based cloning.


Asunto(s)
Helianthus , Orobanche , Helianthus/genética , Orobanche/genética , Fitomejoramiento , Raíces de Plantas/fisiología , Malezas
6.
Int J Mol Sci ; 21(23)2020 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-33260931

RESUMEN

Parasitic plants have a unique heterotrophic lifestyle based on the extraction of water and nutrients from host plants. Some parasitic plant species, particularly those of the family Orobanchaceae, attack crops and cause substantial yield losses. The breeding of resistant crop varieties is an inexpensive way to control parasitic weeds, but often does not provide a long-lasting solution because the parasites rapidly evolve to overcome resistance. Understanding mechanisms underlying naturally occurring parasitic plant resistance is of great interest and could help to develop methods to control parasitic plants. In this review, we describe the virulence mechanisms of parasitic plants and resistance mechanisms in their hosts, focusing on obligate root parasites of the genera Orobanche and Striga. We noticed that the resistance (R) genes in the host genome often encode proteins with nucleotide-binding and leucine-rich repeat domains (NLR proteins), hence we proposed a mechanism by which host plants use NLR proteins to activate downstream resistance gene expression. We speculated how parasitic plants and their hosts co-evolved and discussed what drives the evolution of virulence effectors in parasitic plants by considering concepts from similar studies of plant-microbe interaction. Most previous studies have focused on the host rather than the parasite, so we also provided an updated summary of genomic resources for parasitic plants and parasitic genes for further research to test our hypotheses. Finally, we discussed new approaches such as CRISPR/Cas9-mediated genome editing and RNAi silencing that can provide deeper insight into the intriguing life cycle of parasitic plants and could potentially contribute to the development of novel strategies for controlling parasitic weeds, thereby enhancing crop productivity and food security globally.


Asunto(s)
Interacciones Huésped-Parásitos/fisiología , Orobanche/parasitología , Striga/fisiología , Evolución Biológica , Orobanche/genética , Striga/genética , Transcriptoma/genética , Virulencia/genética
7.
Plant J ; 93(4): 747-770, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29232012

RESUMEN

Despite the importance of plant-plant interactions on crop yield and plant community dynamics, our understanding of the genetic and molecular bases underlying natural variation of plant-plant interactions is largely limited in comparison with other types of biotic interactions. By listing 63 quantitative trait loci (QTL) mapping and global gene expression studies based on plants directly challenged by other plants, we explored whether the genetic architecture and the function of the candidate genes underlying natural plant-plant interactions depend on the type of interactions between two plants (competition versus commensalism versus reciprocal helping versus asymmetry). The 16 transcriptomic studies are unevenly distributed between competitive interactions (n = 12) and asymmetric interactions (n = 4, all focusing on response to parasitic plants). By contrast, 17 and 30 QTL studies were identified for competitive interactions and asymmetric interactions (either weed suppressive ability or response to parasitic plants), respectively. Surprisingly, no studies have been carried out on the identification of genetic and molecular bases underlying natural variation in positive interactions. The candidate genes underlying natural plant-plant interactions can be classified into seven categories of plant function that have been identified in artificial environments simulating plant-plant interactions either frequently (photosynthesis, hormones), only recently (cell wall modification and degradation, defense pathways against pathogens) or rarely (ABC transporters, histone modification and meristem identity/life history traits). Finally, we introduce several avenues that need to be explored in the future to obtain a thorough understanding of the genetic and molecular bases underlying plant-plant interactions within the context of realistic community complexity.


Asunto(s)
Exudados de Plantas/fisiología , Fenómenos Fisiológicos de las Plantas/genética , Sitios de Carácter Cuantitativo , Variación Genética , Luz , Microbiota/genética , Fotosíntesis , Procesamiento Proteico-Postraduccional , Transducción de Señal , Compuestos Orgánicos Volátiles/metabolismo
9.
Theor Appl Genet ; 131(2): 319-332, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29098310

RESUMEN

KEY MESSAGE: This study compares five models of GWAS, to show the added value of non-additive modeling of allelic effects to identify genomic regions controlling flowering time of sunflower hybrids. Genome-wide association studies are a powerful and widely used tool to decipher the genetic control of complex traits. One of the main challenges for hybrid crops, such as maize or sunflower, is to model the hybrid vigor in the linear mixed models, considering the relatedness between individuals. Here, we compared two additive and three non-additive association models for their ability to identify genomic regions associated with flowering time in sunflower hybrids. A panel of 452 sunflower hybrids, corresponding to incomplete crossing between 36 male lines and 36 female lines, was phenotyped in five environments and genotyped for 2,204,423 SNPs. Intra-locus effects were estimated in multi-locus models to detect genomic regions associated with flowering time using the different models. Thirteen quantitative trait loci were identified in total, two with both model categories and one with only non-additive models. A quantitative trait loci on LG09, detected by both the additive and non-additive models, is located near a GAI homolog and is presented in detail. Overall, this study shows the added value of non-additive modeling of allelic effects for identifying genomic regions that control traits of interest and that could participate in the heterosis observed in hybrids.


Asunto(s)
Flores/fisiología , Estudios de Asociación Genética , Helianthus/genética , Modelos Genéticos , Genotipo , Helianthus/fisiología , Vigor Híbrido , Desequilibrio de Ligamiento , Fenotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
10.
BMC Plant Biol ; 17(1): 167, 2017 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-29052528

RESUMEN

BACKGROUND: Phoma macdonaldii has been reported as the causal agent of black stem disease (BS) and premature ripening (PR) on sunflower. PR is considered as the most widespread and detrimental disease on sunflower in France. While genetic variability and QTL mapping for partial resistance of sunflower to stem, collar and roots attacks have been reported on plantlets in controlled conditions, this work aims to describe the genetic variability in a subset of a sunflower lines, and for the first time to map QTL involved in PR resistance evaluated in field conditions using controlled inoculation. RESULTS: An efficient and reliable method for inoculation used in field experiments induced stem base necrosis on up to 98% of all plants. A significant genetic variability for PR resistance in the field was detected among the 20 inbred lines of the core collection tested across the two years. For QTL mapping, the PR resistance evaluation was performed on two recombinant inbred lines (RIL) populations derived from the crosses XRQxPSC8 and FUxPAZ2 in two different years. QTL analyses were based on a newly developed consensus genetic map comprising 1007 non-redundant molecular markers. In each of the two RIL populations, different QTL involved in PR partial sunflower resistance were detected. The most significant QTL were detected 49 days post infection (DPI) on LG10 (LOD 7.7) and on LG7 (LOD 12.1) in the XRQxPSC8 and FUxPAZ2 RIL population, respectively. In addition, different QTL were detected on both populations for PR resistance measured between 14 and 35 DPI. In parallel, the incidence of natural attack of P. macdonaldii resulting in BS disease was recorded, showing that in these populations, the genetic of resistance to both diseases is not governed by the same factors. CONCLUSION: This work provides the first insights on the genetic architecture of sunflower PR resistance in the field. Moreover, the separate studies of symptoms on different organs and in time series allowed the identification of a succession of genetic components involved in the sunflower resistance to PR and BS diseases caused by Phoma macdonaldii along the development of the {plant * pathogen} interaction.


Asunto(s)
Ascomicetos/patogenicidad , Helianthus/microbiología , Interacciones Huésped-Patógeno/genética , Enfermedades de las Plantas/microbiología , Tallos de la Planta/microbiología , Ascomicetos/fisiología , Resistencia a la Enfermedad/genética , Helianthus/genética , Raíces de Plantas/microbiología , Sitios de Carácter Cuantitativo/genética
11.
Plant Cell Environ ; 40(10): 2276-2291, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28418069

RESUMEN

Understanding the genetic basis of phenotypic plasticity is crucial for predicting and managing climate change effects on wild plants and crops. Here, we combined crop modelling and quantitative genetics to study the genetic control of oil yield plasticity for multiple abiotic stresses in sunflower. First, we developed stress indicators to characterize 14 environments for three abiotic stresses (cold, drought and nitrogen) using the SUNFLO crop model and phenotypic variations of three commercial varieties. The computed plant stress indicators better explain yield variation than descriptors at the climatic or crop levels. In those environments, we observed oil yield of 317 sunflower hybrids and regressed it with three selected stress indicators. The slopes of cold stress norm reaction were used as plasticity phenotypes in the following genome-wide association study. Among the 65 534 tested Single Nucleotide Polymorphisms (SNPs), we identified nine quantitative trait loci controlling oil yield plasticity to cold stress. Associated single nucleotide polymorphisms are localized in genes previously shown to be involved in cold stress responses: oligopeptide transporters, lipid transfer protein, cystatin, alternative oxidase or root development. This novel approach opens new perspectives to identify genomic regions involved in genotype-by-environment interaction of a complex traits to multiple stresses in realistic natural or agronomical conditions.


Asunto(s)
Productos Agrícolas/genética , Estudio de Asociación del Genoma Completo , Aceites de Plantas/metabolismo , Estrés Fisiológico/genética , Mapeo Cromosómico , Frío , Ambiente , Genes de Plantas , Calor , Modelos Teóricos , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética
12.
Theor Appl Genet ; 130(6): 1099-1112, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28255669

RESUMEN

KEY MESSAGE: SNP genotyping of 114 cultivated sunflower populations showed that the multiplication process and the main traits selected during breeding of sunflower cultivars drove molecular diversity of the populations. The molecular diversity in a set of 114 cultivated sunflower populations was studied by single-nucleotide polymorphism genotyping. These populations were chosen as representative of the 400 entries in the INRA collection received or developed between 1962 and 2011 and made up of land races, open-pollinated varieties, and breeding pools. Mean allele number varied from 1.07 to 1.90. Intra-population variability was slightly reduced according to the number of multiplications since entry but some entries were probably largely homozygous when received. A principal component analysis was used to study inter-population variability. The first 3 axes accounted for 17% of total intra-population variability. The first axis was significantly correlated with seed oil content, more closely than just the distinction between oil and confectionary types. The second axis was related to the presence or absence of restorer genes and the third axis to flowering date and possibly to adaptation to different climates. Our results provide arguments highlighting the effect of the maintenance process on the within population genetic variability as well as on the impact of breeding for major agronomic traits on the between population variability of the collection. Propositions are made to improve sunflower population maintenance procedures to keep maximum genetic variability for future breeding.


Asunto(s)
Genética de Población , Helianthus/genética , Fitomejoramiento , Polimorfismo de Nucleótido Simple , Alelos , ADN de Plantas/genética , Ligamiento Genético , Genotipo
13.
Proc Natl Acad Sci U S A ; 110(42): 17125-30, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24082112

RESUMEN

Domestication of crop plants had effects on human lifestyle and agriculture. However, little is known about the underlying molecular mechanisms accompanying the changes in fruit appearance as a consequence of selection by early farmers. We report the fine mapping and cloning of a tomato (Solanum lycopersicum) fruit mass gene encoding the ortholog of KLUH, SlKLUH, a P450 enzyme of the CYP78A subfamily. The increase in fruit mass is predominantly the result of enlarged pericarp and septum tissues caused by increased cell number in the large fruited lines. SlKLUH also modulates plant architecture by regulating number and length of the side shoots, and ripening time, and these effects are particularly strong in plants that transgenically down-regulate SlKLUH expression carrying fruits of a dramatically reduced mass. Association mapping followed by segregation analyses revealed that a single nucleotide polymorphism in the promoter of the gene is highly associated with fruit mass. This single polymorphism may potentially underlie a regulatory mutation resulting in increased SlKLUH expression concomitant with increased fruit mass. Our findings suggest that the allele giving rise to large fruit arose in the early domesticates of tomato and becoming progressively more abundant upon further selections. We also detected association of fruit weight with CaKLUH in chile pepper (Capsicum annuum) suggesting that selection of the orthologous gene may have occurred independently in a separate domestication event. Altogether, our findings shed light on the molecular basis of fruit mass, a key domestication trait in tomato and other fruit and vegetable crops.


Asunto(s)
Sistema Enzimático del Citocromo P-450/biosíntesis , Frutas/enzimología , Proteínas de Plantas/biosíntesis , Sitios de Carácter Cuantitativo/fisiología , Solanum lycopersicum/enzimología , Sistema Enzimático del Citocromo P-450/genética , Regulación hacia Abajo/fisiología , Frutas/genética , Regulación Enzimológica de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Humanos , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Polimorfismo de Nucleótido Simple
14.
BMC Plant Biol ; 14: 279, 2014 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-25325924

RESUMEN

BACKGROUND: Domestication and selection of crops have notably reshaped fruit morphology. With its large phenotypic diversity, tomato (Solanum lycopersicum) illustrates this evolutive trend. Genes involved in flower meristem development are known to regulate also fruit morphology. To decipher the genetic variation underlying tomato fruit morphology, we assessed the nucleotide diversity and selection footprints of candidate genes involved in flower and fruit development and performed genome-wide association studies. RESULTS: Thirty candidate genes were selected according to their similarity with genes involved in meristem development or their known causal function in Arabidopsis thaliana. In tomato, these genes and flanking regions were sequenced in a core collection of 96 accessions (including cultivated, cherry-type and wild relative accessions) maximizing the molecular diversity, using the Roche 454 technology. A total amount of 17 Mb was sequenced allowing the discovery of 6,106 single nucleotide polymorphisms (SNPs). The annotation of the 30 gene regions identified 231 exons carrying 517 SNPs. Subsequently, the nucleotide diversity (π) and the neutral evolution of each region were compared against genome-wide values within the collection, using a SNP array carrying 7,667 SNPs mainly distributed in coding sequences.About half of the genes revealed footprints of selection and polymorphisms putatively involved in fruit size variation by showing negative Tajima's D and nucleotide diversity reduction in cultivated tomato compared to its wild relative. Among the candidates, FW2.2 and BAM1 sequences revealed selection footprints within their promoter regions suggesting their potential involvement in their regulation. Two associations co-localized with previously identified loci: LC (locule number) and Ovate (fruit shape). CONCLUSION: Compared to whole genome genotypic data, a drastic reduction of nucleotide diversity was shown for several candidate genes. Strong selection patterns were identified in 15 candidates highlighting the critical role of meristem maintenance genes as well as the impact of domestication on candidates. The study highlighted a set of polymorphisms putatively important in the evolution of these genes.


Asunto(s)
Flores/genética , Variación Genética/genética , Meristema/genética , Selección Genética/genética , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Genoma de Planta/genética , Solanum lycopersicum/clasificación , Meristema/metabolismo , Polimorfismo de Nucleótido Simple/genética
15.
Theor Appl Genet ; 126(3): 567-81, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23124430

RESUMEN

Association mapping has been proposed as an efficient approach to assist in the identification of the molecular basis of agronomical traits in plants. For this purpose, we analyzed the phenotypic and genetic diversity of a large collection of tomato accessions including 44 heirloom and vintage cultivars (Solanum lycopersicum), 127 S. lycopersicum var. cerasiforme (cherry tomato) and 17 Solanum pimpinellifolium accessions. The accessions were genotyped using a SNPlex™ assay of 192 SNPs, among which 121 were informative for subsequent analysis. Linkage disequilibrium (LD) of pairwise loci and population structure were analyzed, and the association analysis between SNP genotypes and ten fruit quality traits was performed using a mixed linear model. High level of LD was found in the collection at the whole genome level. It was lower when considering only the 127 S. lycopersicum var. cerasiforme accessions. Genetic structure analysis showed that the population was structured into two main groups, corresponding to cultivated and wild types and many intermediates. The number of associations detected per trait varied, according to the way the structure was taken into account, with 0-41 associations detected per trait in the whole collection and a maximum of four associations in the S. lycopersicum var. cerasiforme accessions. A total of 40 associations (30 %) were co-localized with previously identified quantitative trait loci. This study thus showed the potential and limits of using association mapping in tomato populations.


Asunto(s)
Mapeo Cromosómico , Frutas/genética , Genoma de Planta , Fenotipo , Polimorfismo de Nucleótido Simple , Solanum lycopersicum/genética , ADN de Plantas/genética , Genotipo , Desequilibrio de Ligamiento , Sitios de Carácter Cuantitativo
16.
Trends Plant Sci ; 28(1): 31-42, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36114125

RESUMEN

Interactions among plants have been long recognized as a major force driving plant community dynamics and crop yield. Surprisingly, our knowledge of the ecological genetics associated with variation of plant-plant interactions remains limited. In this opinion article by scientists from complementary disciplines, the international PLANTCOM network identified four timely questions to foster a better understanding of the mechanisms mediating plant assemblages. We propose that by identifying the key relationships among phenotypic traits involved in plant-plant interactions and the underlying adaptive genetic and molecular pathways, while considering environmental fluctuations at diverse spatial and time scales, we can improve predictions of genotype-by-genotype-by-environment interactions and modeling of productive and stable plant assemblages in wild habitats and crop fields.


Asunto(s)
Ecosistema , Plantas , Genotipo , Fenotipo , Plantas/genética
17.
Plant Physiol ; 156(4): 2244-54, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21673133

RESUMEN

In tomato (Solanum lycopersicum) fruit, the number of locules (cavities containing seeds that are derived from carpels) varies from two to up to 10 or more. Locule number affects fruit shape and size and is controlled by several quantitative trait loci (QTLs). The large majority of the phenotypic variation is explained by two of these QTLs, fasciated (fas) and locule number (lc), that interact epistatically with one another. FAS has been cloned, and mutations in the gene are described as key factors leading to the increase in fruit size in modern varieties. Here, we report the map-based cloning of lc. The lc QTL includes a 1,600-bp region that is located 1,080 bp from the 3' end of WUSCHEL, which encodes a homeodomain protein that regulates stem cell fate in plants. The molecular evolution of lc showed a reduction of diversity in cultivated accessions with the exception of two single-nucleotide polymorphisms. These two single-nucleotide polymorphisms were shown to be responsible for the increase in locule number. An evolutionary model of locule number is proposed herein, suggesting that the fas mutation appeared after the mutation in the lc locus to confer the extreme high-locule-number phenotype.


Asunto(s)
Proteínas de Plantas/genética , Polimorfismo de Nucleótido Simple/genética , Semillas/genética , Solanum lycopersicum/anatomía & histología , Solanum lycopersicum/genética , Agricultura , Secuencia de Bases , Evolución Molecular , Flores/anatomía & histología , Flores/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Estudios de Asociación Genética , Modelos Genéticos , Datos de Secuencia Molecular , Tamaño de los Órganos , Fenotipo , Mapeo Físico de Cromosoma , Reproducibilidad de los Resultados
18.
Plant Physiol ; 156(1): 275-85, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21441384

RESUMEN

Phenotypic diversity within cultivated tomato (Solanum lycopersicum) is particularly evident for fruit shape and size. Four genes that control tomato fruit shape have been cloned. SUN and OVATE control elongated shape whereas FASCIATED (FAS) and LOCULE NUMBER (LC) control fruit locule number and flat shape. We investigated the distribution of the fruit shape alleles in the tomato germplasm and evaluated their contribution to morphology in a diverse collection of 368 predominantly tomato and tomato var. cerasiforme accessions. Fruits were visually classified into eight shape categories that were supported by objective measurements obtained from image analysis using the Tomato Analyzer software. The allele distribution of SUN, OVATE, LC, and FAS in all accessions was strongly associated with fruit shape classification. We also genotyped 116 representative accessions with additional 25 markers distributed evenly across the genome. Through a model-based clustering we demonstrated that shape categories, germplasm classes, and the shape genes were nonrandomly distributed among five genetic clusters (P < 0.001), implying that selection for fruit shape genes was critical to subpopulation differentiation within cultivated tomato. Our data suggested that the LC, FAS, and SUN mutations arose in the same ancestral population while the OVATE mutation arose in a separate lineage. Furthermore, LC, OVATE, and FAS mutations may have arisen prior to domestication or early during the selection of cultivated tomato whereas the SUN mutation appeared to be a postdomestication event arising in Europe.


Asunto(s)
Frutas/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Alelos , Secuencia de Bases , Evolución Molecular , Genotipo , Datos de Secuencia Molecular , Mutación , Fenotipo , Sitios de Carácter Cuantitativo/genética , Análisis de Secuencia de ADN
19.
Front Plant Sci ; 13: 1056231, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36714707

RESUMEN

Introduction: Sunflower breeding for resistance to the parasitic plant sunflower broomrape (Orobanche cumana Wallr.) requires the identification of novel resistance genes. In this research, we conducted a genome-wide association study (GWAS) to identify QTLs associated with broomrape resistance. Methods: The marker-trait associations were examined across a germplasm set composed of 104 sunflower accessions. They were genotyped with a 600k AXIOM® genome-wide array and evaluated for resistance to three populations of the parasite with varying levels of virulence (races EFR, FGV, and GTK) in two environments. Results and Discussion: The analysis of the genetic structure of the germplasm set revealed the presence of two main groups. The application of optimized treatments based on the general linear model (GLM) and the mixed linear model (MLM) allowed the detection of 14 SNP markers significantly associated with broomrape resistance. The highest number of marker-trait associations were identified on chromosome 3, clustered in two different genomic regions of this chromosome. Other associations were identified on chromosomes 5, 10, 13, and 16. Candidate genes for the main genomic regions associated with broomrape resistance were studied and discussed. Particularly, two significant SNPs on chromosome 3 associated with races EFR and FGV were found at two tightly linked SWEET sugar transporter genes. The results of this study have confirmed the role of some QTL on resistance to sunflower broomrape and have revealed new ones that may play an important role in the development of durable resistance to this parasitic weed in sunflower.

20.
Front Plant Sci ; 13: 1038684, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36340383

RESUMEN

Orobanche cumana Wall., sunflower broomrape, is one of the major pests for the sunflower crop. Breeding for resistant varieties in sunflower has been the most efficient method to control this parasitic weed. However, more virulent broomrape populations continuously emerge by overcoming genetic resistance. It is thus essential to identify new broomrape resistances acting at various stages of the interaction and combine them to improve resistance durability. In this study, 71 wild sunflowers and wild relatives accessions from 16 Helianthus species were screened in pots for their resistance to broomrape at the late emergence stage. From this initial screen, 18 accessions from 9 species showing resistance, were phenotyped at early stages of the interaction: the induction of broomrape seed germination by sunflower root exudates, the attachment to the host root and the development of tubercles in rhizotron assays. We showed that wild Helianthus accessions are an important source of resistance to the most virulent broomrape races, affecting various stages of the interaction: the inability to induce broomrape seed germination, the development of incompatible attachments or necrotic tubercles, and the arrest of emerged structure growth. Cytological studies of incompatible attachments showed that several cellular mechanisms were shared among resistant Helianthus species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA