Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 598(7882): 652-656, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34646009

RESUMEN

Humans are considered as the main host for Mycobacterium leprae1, the aetiological agent of leprosy, but spillover has occurred to other mammals that are now maintenance hosts, such as nine-banded armadillos and red squirrels2,3. Although naturally acquired leprosy has also been described in captive nonhuman primates4-7, the exact origins of infection remain unclear. Here we describe leprosy-like lesions in two wild populations of western chimpanzees (Pan troglodytes verus) in Cantanhez National Park, Guinea-Bissau and Taï National Park, Côte d'Ivoire, West Africa. Longitudinal monitoring of both populations revealed the progression of disease symptoms compatible with advanced leprosy. Screening of faecal and necropsy samples confirmed the presence of M. leprae as the causative agent at each site and phylogenomic comparisons with other strains from humans and other animals show that the chimpanzee strains belong to different and rare genotypes (4N/O and 2F). These findings suggest that M. leprae may be circulating in more wild animals than suspected, either as a result of exposure to humans or other unknown environmental sources.


Asunto(s)
Lepra/veterinaria , Pan troglodytes/microbiología , Animales , Autopsia/veterinaria , Côte d'Ivoire , Heces/microbiología , Genotipo , Guinea Bissau , Humanos , Lepra/microbiología , Mycobacterium leprae/genética , Mycobacterium leprae/aislamiento & purificación , Filogenia
2.
Arch Virol ; 168(2): 61, 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36631547

RESUMEN

Although rabies is endemic in Malawi, there have been no studies in which rabies virus was systematically investigated and characterized in multiple animal hosts in that country. In order to provide molecular epidemiological data on rabies virus in Malawi, 683 suspected rabies case reports from 2008 to 2021 were examined, and 46 (dog = 40, cow = 5, and cat = 1) viable rabies-positive brain samples archived at the Central Veterinary Laboratory (CVL), Lilongwe, Malawi, were analyzed genetically. The results showed an increase in the submission of brain samples from 2008 to 2010, with the highest number of submissions observed in 2020. Of the 683 case reports analyzed for the period under review, 38.1% (260/683) (CI: 34.44 - 41.84) were confirmed by direct fluorescent antibody test. Among the confirmed cases, 65.4% (170/260) (CI: 59.23 - 71.09) were canine rabies. Further, phylogenetic analysis revealed that sequences from different animal hosts clustered together within the Africa 1b lineage, suggesting that the strains circulating in livestock are similar to those in domestic dogs. This finding supports the hypothesis that canine rabies is spilling over to livestock and emphasizes the need for further studies to provide data for effective control of rabies in Malawi.


Asunto(s)
Enfermedades de los Perros , Virus de la Rabia , Rabia , Femenino , Bovinos , Animales , Perros , Virus de la Rabia/genética , Rabia/epidemiología , Rabia/veterinaria , Filogenia , Malaui/epidemiología , Epidemiología Molecular , Enfermedades de los Perros/epidemiología , Ganado
3.
Emerg Infect Dis ; 26(6): 1283-1286, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32441635

RESUMEN

Yaws-like lesions are widely reported in wild African great apes, yet the causative agent has not been confirmed in affected animals. We describe yaws-like lesions in a wild chimpanzee in Guinea for which we demonstrate infection with Treponema pallidum subsp. pertenue. Assessing the conservation implications of this pathogen requires further research.


Asunto(s)
Buba , Animales , Guinea/epidemiología , Pan troglodytes , Treponema , Treponema pallidum/genética , Buba/epidemiología , Buba/veterinaria
4.
Mol Ecol ; 28(18): 4242-4258, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31177585

RESUMEN

Living in groups provides benefits but also incurs costs such as attracting disease vectors. For example, synanthropic flies associate with human settlements, and higher fly densities increase pathogen transmission. We investigated whether such associations also exist in highly mobile nonhuman primate (NHP) Groups. We studied flies in a group of wild sooty mangabeys (Cercocebus atys atys) and three communities of wild chimpanzees (Pan troglodytes verus) in Taï National Park, Côte d'Ivoire. We observed markedly higher fly densities within both mangabey and chimpanzee groups. Using a mark-recapture experiment, we showed that flies stayed with the sooty mangabey group for up to 12 days and for up to 1.3 km. We also tested mangabey-associated flies for pathogens infecting mangabeys in this ecosystem, Bacillus cereus biovar anthracis (Bcbva), causing sylvatic anthrax, and Treponema pallidum pertenue, causing yaws. Flies contained treponemal (6/103) and Bcbva (7/103) DNA. We cultured Bcbva from all PCR-positive flies, confirming bacterial viability and suggesting that this bacterium might be transmitted and disseminated by flies. Whole genome sequences of Bcbva isolates revealed a diversity of Bcbva, probably derived from several sources. We conclude that flies actively track mangabeys and carry infectious bacterial pathogens; these associations represent an understudied cost of sociality and potentially expose many social animals to a diversity of pathogens.


Asunto(s)
Dípteros/microbiología , Primates/microbiología , Primates/parasitología , Bosque Lluvioso , Animales , Teorema de Bayes , ADN/genética , Complejo IV de Transporte de Electrones/genética , Funciones de Verosimilitud , Modelos Lineales , Filogenia , Dinámica Poblacional , Conducta Social
5.
Emerg Infect Dis ; 22(12): 2165-2167, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27869589

RESUMEN

In early 2014, abortions and death of ruminants were reported on farms in Maputo and Gaza Provinces, Mozambique. Serologic analysis and quantitative and conventional reverse transcription PCR confirmed the presence of Rift Valley fever virus. The viruses belonged to lineage C, which is prevalent among Rift Valley fever viruses in southern Africa.


Asunto(s)
Ganado/virología , Fiebre del Valle del Rift/epidemiología , Fiebre del Valle del Rift/virología , Virus de la Fiebre del Valle del Rift , Animales , Anticuerpos Antivirales , Brotes de Enfermedades , Cabras , Humanos , Mozambique/epidemiología , Fiebre del Valle del Rift/inmunología , Virus de la Fiebre del Valle del Rift/clasificación , Virus de la Fiebre del Valle del Rift/genética , Virus de la Fiebre del Valle del Rift/inmunología , Virus de la Fiebre del Valle del Rift/aislamiento & purificación , Estudios Seroepidemiológicos , Pruebas Serológicas , Ovinos
6.
Data Brief ; 52: 109951, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38186741

RESUMEN

Mining activities in the Zambian Copperbelt Province have led to the release of heavy metal-containing waste, causing contamination in nearby areas. Despite this environmental challenge, limited knowledge exists regarding the mycobiota in copper mine sites. This study investigates fungal community structure in copper(Cu) and cobalt (Co) contaminated soils around decommisioned dams in Kitwe. Metagenomic analysis of the ITSF1 gene amplicons was used for the purpose. The composition of soil fungal communities was characterized, and the findings revealed significant insights. At the phylum level, Basidiomycota dominated the fungal profiles in the tailings (64.59%), followed by Ascomycota (21.30%), Glomeromycota (4.53%), and Rozellomycota (0.0275%). Several fungal genera, including Vanrija, Paraconiothyrium, Toxicladosporium, Neocosmospora, Septoglomus, and Fusarium, were more abundant in contaminated tailings soils, suggesting their potential in leaching, absorbing, and transforming heavy metals. In contrast, the reference soil at Mwekera National Forest exhibited different dominance patterns with four fungal phyla identified, with Basidiomycota and Ascomycota dominating most samples. Glomeromycota, known for forming arbuscular mycorrhizae with plants, were found in contaminated soils, while Rozellomycota, which can serve ecological roles in various ecosystems, were also present. Notable fungal species such as Aspergillus, Penicillium, Fusarium, and Oidiodendron demonstrated resilience to Cu and Co, the primary contaminants in the Copperbelt.

7.
Vet Parasitol Reg Stud Reports ; 39: 100847, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36878632

RESUMEN

Rickettsiales of the genus Anaplasma are globally distributed tick-borne pathogens of animals and humans with complex epidemiological cycles. Anaplasmosis is an important livestock disease in Zambia but its epidemiological information is inadequate. This study aimed to detect and characterize the species of Anaplasma present in domestic and wild ruminants in Zambia with a focus on the infection risk posed by the translocation of sable antelope (Hippotragus niger) from North-Western Province to Lusaka Province. Archived DNA samples (n = 100) extracted from whole blood (sable n = 47, cattle n = 53) were screened for Anaplasmataceae using 16S rRNA partial gene amplification followed by species confirmation using phylogenetic analysis. Out of the 100 samples, Anaplasma species were detected in 7% (4/57) of the cattle and 24% (10/43) of the sable antelope samples. Of the 14 positive samples, five were determined to be A. marginale (four from cattle and one from sable), seven were A. ovis (sable) and two were A. platys (sable). Phylogenetic analysis of the 16S rRNA partial gene sequences revealed genetic proximity between A. ovis and A. marginale, regardless of host. The detection of Anaplasma in wildlife in Zambia shows the risk of transmission of Anaplasma species associated with wildlife translocation.


Asunto(s)
Antílopes , Mustelidae , Humanos , Animales , Bovinos , Ovinos , Anaplasma/genética , ARN Ribosómico 16S/genética , Zambia/epidemiología , Filogenia
8.
Sci Rep ; 12(1): 11283, 2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35787645

RESUMEN

Understanding the level of heavy metal contamination coupled with the assessment of environmental and human risks associated with mine waste dumpsites is an important step to initiating efficient measures for mine wasteland restoration, stabilization, and bioremediation. In the present study, concentration of the heavy metals; Copper (Cu), Cobalt (Co), Iron (Fe), Lead (Pb), Manganese (Mn), and Zinc (Zn) in soil from mine waste dumpsites around Kitwe (Sites: TD25 and TD26) and Mufulira (Site: TD10), Zambia, was assessed to determine the level of contamination, ecological risks, and progress made in reclamation. The mine waste dumpsites in the two towns are located in the vicinity of residential areas. Therefore, there is need to provide information for optimization of protocols for post-mining landscape in Zambia and elsewhere to limit soil, river, and groundwater contamination and to accelerate the restoration process . Mean values for soil pH, electrical conductivity, and organic matter varied between 5.9-8.4, 2534.8-538.6 µS/cm, and 0.90-2.75%, respectively. The mean concentrations of heavy metals of TD25, TD26, and TD10 decreased in order of Fe > Cu > Co > Mn > Pb > Zn across all sites. However, the order of overall degree of heavy metal contamination computed using control soil as a baseline in TD25, TD26, and TD10 was Cu > Co > Fe > Pb > Mn > Zn. The pollution load index was 0.355 at TD25, 0.329 at TD26, and 0.189 at TD10, indicating high soil pollution at TD25 and TD26. The Potential Ecological Risk Index for all heavy metals tested at TD25, TD26, and TD10 showed low ecological risk in the vicinity of the studied dumpsites. Furthermore, the present study also showed that the polluted soils around smelter sites and mine waste dumpsites are susceptible to dispersion by wind and water. Additionally, results from TD10 revealed that the initiated remediation of the tailings dam was somewhat successful. Finally, this study provided an updated status regarding the accumulation of heavy metals in mine waste dumpsites of Kitwe and Mufulira, Zambia and baseline information necessary to enhance post-mining landscape reclamation.


Asunto(s)
Cobre , Metales Pesados , Cobalto , Humanos , Plomo , Manganeso , Suelo , Zambia , Zinc
9.
Front Microbiol ; 13: 1045671, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36532421

RESUMEN

There is great potential to remediate heavy metal contaminated environments through bioaugmentation with filamentous fungi. However, these fungi have been poorly investigated in most developing countries, such as Zambia. Therefore, the present study aimed at isolating indigenous filamentous fungi from heavy metal contaminated soil and to explore their potential for use in bioaugmentation. The conventional streak plate method was used to isolate fungi from heavy metal-contaminated soil. Filamentous fungal isolates were identified using morphological and molecular techniques. The radial growth diameter technique was used to evaluate heavy metal tolerance of the fungi. The most abundant and highly tolerant fungi, identified as Aspergillus transmontanensis, Cladosporium cladosporioides, and Geotrichum candidum species, were used to bioremediate heavy metal contaminated soil samples with uncontaminated soil sample being employed as a control. A maximum tolerance index (TI) between 0.7 and 11.0 was observed for A. transmontanensis, and G. candidum while C. cladosporioides displayed the TI between 0.2 and 1.2 in the presence of 1,000 ppm of Cu, Co, Fe, Mn, and Zn. The interspecific interaction was analyzed to determine the compatibility among isolates. Our results showed mutual intermingling between the three evaluated fungal species, which confirms their common influence in biomineralization of heavy metals in contaminated soils. Maximum bio-removal capacities after 90 days were 72% for Cu, 99.8% for Co, 60.6% for Fe, 82.2% for Mn, and 100% for both Pb and Zn. This study has demonstrated the potential of highly resistant autochthonous fungal isolates to remediate the heavy metal contamination problem.

10.
PLoS Negl Trop Dis ; 16(2): e0010193, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35120135

RESUMEN

BACKGROUND: Although vector-borne zoonotic diseases are a major public health threat globally, they are usually neglected, especially among resource-constrained countries, including those in sub-Saharan Africa. This scoping review examined the current knowledge and identified research gaps of vector-borne zoonotic pathogens in Zambia. METHODS AND FINDINGS: Major scientific databases (Web of Science, PubMed, Scopus, Google Scholar, CABI, Scientific Information Database (SID)) were searched for articles describing vector-borne (mosquitoes, ticks, fleas and tsetse flies) zoonotic pathogens in Zambia. Several mosquito-borne arboviruses have been reported including Yellow fever, Ntaya, Mayaro, Dengue, Zika, West Nile, Chikungunya, Sindbis, and Rift Valley fever viruses. Flea-borne zoonotic pathogens reported include Yersinia pestis and Rickettsia felis. Trypanosoma sp. was the only tsetse fly-borne pathogen identified. Further, tick-borne zoonotic pathogens reported included Crimean-Congo Haemorrhagic fever virus, Rickettsia sp., Anaplasma sp., Ehrlichia sp., Borrelia sp., and Coxiella burnetii. CONCLUSIONS: This study revealed the presence of many vector-borne zoonotic pathogens circulating in vectors and animals in Zambia. Though reports of human clinical cases were limited, several serological studies provided considerable evidence of zoonotic transmission of vector-borne pathogens in humans. However, the disease burden in humans attributable to vector-borne zoonotic infections could not be ascertained from the available reports and this precludes the formulation of national policies that could help in the control and mitigation of the impact of these diseases in Zambia. Therefore, there is an urgent need to scale-up "One Health" research in emerging and re-emerging infectious diseases to enable the country to prepare for future epidemics, including pandemics.


Asunto(s)
Enfermedades Transmisibles Emergentes , Enfermedades Transmitidas por Vectores/epidemiología , Zoonosis/epidemiología , Animales , Vectores Artrópodos , Bacterias , Humanos , Salud Única , Trypanosoma , Virus , Zambia/epidemiología
11.
Pathogens ; 11(11)2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36422597

RESUMEN

Transmission dynamics and the maintenance of mammarenaviruses in nature are poorly understood. Using metagenomic next-generation sequencing (mNGS) and RT-PCR, we investigated the presence of mammarenaviruses and co-infecting helminths in various tissues of 182 Mastomys natalensis rodents and 68 other small mammals in riverine and non-riverine habitats in Zambia. The Luna virus (LUAV) genome was the only mammarenavirus detected (7.7%; 14/182) from M. natalensis. Only one rodent from the non-riverine habitat was positive, while all six foetuses from one pregnant rodent carried LUAV. LUAV-specific mNGS reads were 24-fold higher in semen than in other tissues from males. Phylogenetically, the viruses were closely related to each other within the LUAV clade. Helminth infections were found in 11.5% (21/182) of M. natalensis. LUAV-helminth co-infections were observed in 50% (7/14) of virus-positive rodents. Juvenility (OR = 9.4; p = 0.018; 95% CI: 1.47-59.84), nematodes (OR = 15.5; p = 0.001; 95% CI: 3.11-76.70), cestodes (OR = 10.8; p = 0.025; 95% CI: 1.35-86.77), and being male (OR = 4.6; p = 0.036; 95% CI: 1.10-18.90) were associated with increased odds of LUAV RNA detection. The role of possible sexual and/or congenital transmission in the epidemiology of LUAV infections in rodents requires further study, along with the implications of possible helminth co-infection.

12.
BMJ Open ; 12(12): e066763, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36600354

RESUMEN

OBJECTIVES: To determine the prevalence of COVID-19 postmortem setting in Lusaka, Zambia. DESIGN: A systematic, postmortem prevalence study. SETTING: A busy, inner-city morgue in Lusaka. PARTICIPANTS: We sampled a random subset of all decedents who transited the University Teaching Hospital morgue. We sampled the posterior nasopharynx of decedents using quantitative PCR. Prevalence was weighted to account for age-specific enrolment strategies. INTERVENTIONS: Not applicable-this was an observational study. PRIMARY OUTCOMES: Prevalence of COVID-19 detections by PCR. Results were stratified by setting (facility vs community deaths), age, demographics and geography and time. SECONDARY OUTCOMES: Shifts in viral variants; causal inferences based on cycle threshold values and other features; antemortem testing rates. RESULTS: From 1118 decedents enrolled between January and June 2021, COVID-19 was detected among 32.0% (358/1116). Roughly four COVID-19+ community deaths occurred for every facility death. Antemortem testing occurred for 52.6% (302/574) of facility deaths but only 1.8% (10/544) of community deaths and overall, only ~10% of COVID-19+ deaths were identified in life. During peak transmission periods, COVID-19 was detected in ~90% of all deaths. We observed three waves of transmission that peaked in July 2020, January 2021 and ~June 2021: the AE.1 lineage and the Beta and Delta variants, respectively. PCR signals were strongest among those whose deaths were deemed 'probably due to COVID-19', and weakest among children, with an age-dependent increase in PCR signal intensity. CONCLUSIONS: COVID-19 was common among deceased individuals in Lusaka. Antemortem testing was rarely done, and almost never for community deaths. Suspicion that COVID-19 was the cause of deaths was highest for those with a respiratory syndrome and lowest for individuals <19 years.


Asunto(s)
COVID-19 , Niño , Humanos , COVID-19/diagnóstico , COVID-19/epidemiología , Zambia/epidemiología , Prevalencia , SARS-CoV-2 , Reacción en Cadena de la Polimerasa , Prueba de COVID-19
13.
Viruses ; 14(9)2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-36146671

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) have significantly impacted the global epidemiology of the pandemic. From December 2020 to April 2022, we conducted genomic surveillance of SARS-CoV-2 in the Southern Province of Zambia, a region that shares international borders with Botswana, Namibia, and Zimbabwe and is a major tourist destination. Genetic analysis of 40 SARS-CoV-2 whole genomes revealed the circulation of Alpha (B.1.1.7), Beta (B.1.351), Delta (AY.116), and multiple Omicron subvariants with the BA.1 subvariant being predominant. Whereas Beta, Delta, and Omicron variants were associated with the second, third, and fourth pandemic waves, respectively, the Alpha variant was not associated with any wave in the country. Phylogenetic analysis showed evidence of local transmission and possible multiple introductions of SARS-CoV-2 VOCs in Zambia from different European and African countries. Across the 40 genomes analysed, a total of 292 mutations were observed, including 182 missense mutations, 66 synonymous mutations, 23 deletions, 9 insertions, 1 stop codon, and 11 mutations in the non-coding region. This study stresses the need for the continued monitoring of SARS-CoV-2 circulation in Zambia, particularly in strategically positioned regions such as the Southern Province which could be at increased risk of introduction of novel VOCs.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , Codón de Terminación , Genómica , Humanos , Mutación , Filogenia , SARS-CoV-2/genética , Zambia/epidemiología
14.
Front Vet Sci ; 8: 684487, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34164457

RESUMEN

Tick-borne zoonotic pathogens are increasingly becoming important across the world. In sub-Saharan Africa, tick-borne pathogens identified include viruses, bacteria and protozoa, with Rickettsia being the most frequently reported. This study was conducted to screen and identify Rickettsia species in ticks (Family Ixodidae) infesting livestock in selected districts of southern Zambia. A total of 236 ticks from three different genera (Amblyomma, Hyalomma, and Rhipicephalus) were collected over 14 months (May 2018-July 2019) and were subsequently screened for the presence of Rickettsia pathogens based on PCR amplification targeting the outer membrane protein B (ompB). An overall Rickettsia prevalence of 18.6% (44/236) was recorded. Multi-locus sequencing and phylogenetic characterization based on the ompB, ompA, 16S rRNA and citrate synthase (gltA) genes revealed the presence of Rickettsia africae (R. africae), R. aeschlimannii-like species and unidentified Rickettsia species. While R. aeschlimannii-like species are being reported for the first time in Zambia, R. africae has been reported previously, with our results showing a wider distribution of the bacteria in the country. Our study reveals the potential risk of human infection by zoonotic Rickettsia species and highlights the need for increased awareness of these infections in Zambia's public health systems.

15.
Pathogens ; 10(10)2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34684256

RESUMEN

Rickettsial pathogens are amongst the emerging and re-emerging vector-borne zoonoses of public health importance. Though traditionally considered to be transmitted by ixodid ticks, the role of argasid ticks as vectors of these pathogens is increasingly being recognized. While bat-feeding (Ornithodoros faini) and chicken-feeding (Argas walkerae) argasid ticks have been shown to harbor Rickettsia pathogens in Zambia, there are currently no reports of Rickettsia infection in southern Africa from warthog-feeding (Phacochoerus africanus) soft ticks, particularly Ornithodoros moubata and Ornithodoros porcinus. Our study sought to expand on the existing knowledge on the role of soft ticks in the epidemiology of Rickettsia species through screening for Rickettsia pathogens in warthog burrow-dwelling soft ticks from two national parks in Zambia. The tick species from which Rickettsia were detected in this study were identified as Ornithodoros porcinus, and an overall minimal Rickettsia infection rate of 19.8% (32/162) was observed. All of the sequenced Rickettsia were identified as Rickettsia lusitaniae based on nucleotide sequence similarity and phylogenetic analysis of the citrate synthase (gltA) and 17kDa common antigen (htrA) genes. Utilizing all of the gltA (n = 10) and htrA (n = 12) nucleotide sequences obtained in this study, BLAST analysis showed 100% nucleotide similarity to Rickettsia lusitaniae. Phylogenetic analysis revealed that all of the Zambian gltA and htrA gene sequences could be grouped with those of Rickettsia lusitaniae obtained in various parts of the world. Our data suggest that Rickettsia lusitaniae has a wider geographic and vector range, enhancing to our understanding of Rickettsia lusitaniae epidemiology in sub-Saharan Africa.

16.
Pathogens ; 10(12)2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34959568

RESUMEN

Crimean-Congo hemorrhagic fever virus (CCHFV) is endemic in Africa, Asia, and Eastern Europe where it circulates among animals and ticks causing sporadic outbreaks in humans. Although CCHF is endemic in sub-Saharan Africa, epidemiological information is lacking in many countries, including Malawi. To assess the risk of CCHF in Malawi, we conducted an epidemiological study in cattle reared by smallholder livestock farmers in central Malawi. A cross-sectional study was conducted in April 2020 involving seven districts, four from Kasungu and three from Lilongwe Agriculture Development Divisions. A structured questionnaire was administered to farmers to obtain demographic, animal management, and ecological risk factors data. Sera were collected from randomly selected cattle and screened for CCHF virus (CCHFV) specific antibodies using a commercial ELISA kit. Ticks were collected from cattle and classified morphologically to species level. An overall CCHFV seropositivity rate of 46.9% (n = 416; 95% CI: 42.0-51.8%) was observed. The seropositivity was significantly associated with the age of cattle (p < 0.001), sex (p < 0.001), presence of ticks in herds (p = 0.01), district (p = 0.025), and type of grazing lands (p = 0.013). Five species of ticks were identified, including Hyalomma truncatum, a known vector of CCHFV. Ticks of the species Hyalomma truncatum were not detected in two districts with the highest seroprevalence for CCHF and vector competency must be further explored in the study area. To our knowledge, this is the first report of serologic evidence of the presence of CCHV among smallholder cattle in central Malawi. This study emphasizes the need for continued monitoring of CCHFV infection among livestock, ticks, and humans for the development of data-based risk mitigation strategies.

17.
Pathogens ; 10(8)2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-34451471

RESUMEN

Emerging and re-emerging mosquito-borne viral diseases are a threat to global health. This systematic review aimed to investigate the available evidence of mosquito-borne viral pathogens reported in Zambia. A search of literature was conducted in PubMed and Google Scholar for articles published from 1 January 1930 to 30 June 2020 using a combination of keywords. Eight mosquito-borne viruses belonging to three families, Togaviridae, Flaviviridae and Phenuiviridae were reported. Three viruses (Chikungunya virus, Mayaro virus, Mwinilunga virus) were reported among the togaviruses whilst four (dengue virus, West Nile virus, yellow fever virus, Zika virus) were among the flavivirus and only one virus, Rift Valley fever virus, was reported in the Phenuiviridae family. The majority of these mosquito-borne viruses were reported in Western and North-Western provinces. Aedes and Culex species were the main mosquito-borne viral vectors reported. Farming, fishing, movement of people and rain patterns were among factors associated with mosquito-borne viral infection in Zambia. Better diagnostic methods, such as the use of molecular tools, to detect the viruses in potential vectors, humans, and animals, including the recognition of arboviral risk zones and how the viruses circulate, are important for improved surveillance and design of effective prevention and control measures.

18.
Int J Infect Dis ; 102: 455-459, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33035675

RESUMEN

Since its first discovery in December 2019 in Wuhan, China, COVID-19, caused by the novel coronavirus SARS-CoV-2, has spread rapidly worldwide. While African countries were relatively spared initially, the initial low incidence of COVID-19 cases was not sustained for long due to continuing travel links between China, Europe and Africa. In preparation, Zambia had applied a multisectoral national epidemic disease surveillance and response system resulting in the identification of the first case within 48 h of the individual entering the country by air travel from a trip to France. Contact tracing showed that SARS-CoV-2 infection was contained within the patient's household, with no further spread to attending health care workers or community members. Phylogenomic analysis of the patient's SARS-CoV-2 strain showed that it belonged to lineage B.1.1., sharing the last common ancestor with SARS-CoV-2 strains recovered from South Africa. At the African continental level, our analysis showed that B.1 and B.1.1 lineages appear to be predominant in Africa. Whole genome sequence analysis should be part of all surveillance and case detection activities in order to monitor the origin and evolution of SARS-CoV-2 lineages across Africa.


Asunto(s)
COVID-19/virología , Genoma Viral , SARS-CoV-2/genética , Adulto , África , Humanos , Masculino , Filogenia , SARS-CoV-2/clasificación , Viaje , Zambia
19.
Microb Genom ; 6(11)2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33125317

RESUMEN

Many non-human primate species in sub-Saharan Africa are infected with Treponema pallidum subsp. pertenue, the bacterium causing yaws in humans. In humans, yaws is often characterized by lesions of the extremities and face, while T. pallidum subsp. pallidum causes venereal syphilis and is typically characterized by primary lesions on the genital, anal or oral mucosae. It remains unclear whether other T. pallidum subspecies found in humans also occur in non-human primates and how the genomic diversity of non-human primate T. pallidum subsp. pertenue lineages is distributed across hosts and space. We observed orofacial and genital lesions in sooty mangabeys (Cercocebus atys) in Taï National Park, Côte d'Ivoire and collected swabs and biopsies from symptomatic animals. We also collected non-human primate bones from 8 species in Taï National Park and 16 species from 11 other sites across sub-Saharan Africa. Samples were screened for T. pallidum DNA using polymerase chain reactions (PCRs) and we used in-solution hybridization capture to sequence T. pallidum genomes. We generated three nearly complete T. pallidum genomes from biopsies and swabs and detected treponemal DNA in bones of six non-human primate species in five countries, allowing us to reconstruct three partial genomes. Phylogenomic analyses revealed that both orofacial and genital lesions in sooty mangabeys from Taï National Park were caused by T. pallidum subsp. pertenue. We showed that T. pallidum subsp. pertenue has infected non-human primates in Taï National Park for at least 28 years and has been present in two non-human primate species that had not been described as T. pallidum subsp. pertenue hosts in this ecosystem, western chimpanzees (Pan troglodytes verus) and western red colobus (Piliocolobus badius), complementing clinical evidence that started accumulating in Taï National Park in 2014. More broadly, simian T. pallidum subsp. pertenue strains did not form monophyletic clades based on host species or the symptoms caused, but rather clustered based on geography. Geographical clustering of T. pallidum subsp. pertenue genomes might be compatible with cross-species transmission of T. pallidum subsp. pertenue within ecosystems or environmental exposure, leading to the acquisition of closely related strains. Finally, we found no evidence for mutations that confer antimicrobial resistance.


Asunto(s)
Cercocebus atys/microbiología , Genoma Bacteriano/genética , Enfermedades de los Monos/transmisión , Treponema/genética , Buba/veterinaria , Animales , Côte d'Ivoire , Secuenciación de Nucleótidos de Alto Rendimiento , Enfermedades de los Monos/microbiología , Reacción en Cadena de la Polimerasa , Treponema/aislamiento & purificación , Secuenciación Completa del Genoma , Buba/microbiología , Buba/transmisión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA