Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Mol Cell ; 77(1): 17-25.e5, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31704183

RESUMEN

Structural and biochemical studies have revealed the basic principles of how the replisome duplicates genomic DNA, but little is known about its dynamics during DNA replication. We reconstitute the 34 proteins needed to form the S. cerevisiae replisome and show how changing local concentrations of the key DNA polymerases tunes the ability of the complex to efficiently recycle these proteins or to dynamically exchange them. Particularly, we demonstrate redundancy of the Pol α-primase DNA polymerase activity in replication and show that Pol α-primase and the lagging-strand Pol δ can be re-used within the replisome to support the synthesis of large numbers of Okazaki fragments. This unexpected malleability of the replisome might allow it to deal with barriers and resource challenges during replication of large genomes.


Asunto(s)
ADN Polimerasa III/genética , Replicación del ADN/genética , ADN/genética , Células Eucariotas/fisiología , ADN Polimerasa I/genética , ADN Primasa/genética , Saccharomyces cerevisiae/genética
2.
Nucleic Acids Res ; 51(1): e5, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36321650

RESUMEN

The activity of enzymes is traditionally characterised through bulk-phase biochemical methods that only report on population averages. Single-molecule methods are advantageous in elucidating kinetic and population heterogeneity but are often complicated, time consuming, and lack statistical power. We present a highly-generalisable and high-throughput single-molecule assay to rapidly characterise proteins involved in DNA metabolism. The assay exclusively relies on changes in total fluorescence intensity of surface-immobilised DNA templates as a result of DNA synthesis, unwinding or digestion. Combined with an automated data-analysis pipeline, our method provides enzymatic activity data of thousands of molecules in less than an hour. We demonstrate our method by characterising three fundamentally different enzyme activities: digestion by the phage λ exonuclease, synthesis by the phage Phi29 polymerase, and unwinding by the E. coli UvrD helicase. We observe the previously unknown activity of the UvrD helicase to remove neutravidin bound to 5'-, but not 3'-ends of biotinylated DNA.


Asunto(s)
ADN Helicasas , ADN , ADN/metabolismo , ADN Helicasas/metabolismo , ADN de Cadena Simple , Escherichia coli , Proteínas de Escherichia coli/metabolismo , Cinética
3.
Proc Natl Acad Sci U S A ; 117(48): 30354-30361, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33199603

RESUMEN

Efficient and faithful replication of the genome is essential to maintain genome stability. Replication is carried out by a multiprotein complex called the replisome, which encounters numerous obstacles to its progression. Failure to bypass these obstacles results in genome instability and may facilitate errors leading to disease. Cells use accessory helicases that help the replisome bypass difficult barriers. All eukaryotes contain the accessory helicase Pif1, which tracks in a 5'-3' direction on single-stranded DNA and plays a role in genome maintenance processes. Here, we reveal a previously unknown role for Pif1 in replication barrier bypass. We use an in vitro reconstituted Saccharomyces cerevisiae replisome to demonstrate that Pif1 enables the replisome to bypass an inactive (i.e., dead) Cas9 (dCas9) R-loop barrier. Interestingly, dCas9 R-loops targeted to either strand are bypassed with similar efficiency. Furthermore, we employed a single-molecule fluorescence visualization technique to show that Pif1 facilitates this bypass by enabling the simultaneous removal of the dCas9 protein and the R-loop. We propose that Pif1 is a general displacement helicase for replication bypass of both R-loops and protein blocks.


Asunto(s)
Replicación del ADN , ADN/genética , ADN/metabolismo , Estructuras R-Loop , Proteínas de Unión a Telómeros/metabolismo , Proteína 9 Asociada a CRISPR/metabolismo , ADN/química , Edición Génica , Modelos Biológicos , Antígeno Nuclear de Célula en Proliferación/metabolismo , Unión Proteica , ARN Guía de Kinetoplastida
4.
Anal Biochem ; 592: 113541, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31870680

RESUMEN

Many strategies have been developed to manipulate DNA molecules and investigate protein-DNA interactions with single-molecule resolution. Often, these require long DNA molecules with a length of several 10s of kb that are chemically modified at specific regions. This need has traditionally been met by commercially available DNA from bacteriophage λ. However, λ DNA does not allow for the generation of highly customizable substrates in a straightforward manner, an important factor when developing assays to study complex biochemical reactions. Here we present a generalizable method for the design and production of very long chemically modified DNA substrates derived from a single plasmid. We show the versatility of this design by demonstrating its application in studying DNA replication in vitro. We anticipate this strategy will be broadly useful in producing a range of long chemically modified DNA molecules required for a diverse range of single-molecule approaches.


Asunto(s)
Replicación del ADN , ADN/síntesis química , Plásmidos/química , Imagen Individual de Molécula/métodos
5.
Chem Biomed Imaging ; 2(9): 595-614, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39328428

RESUMEN

Genome maintenance comprises a group of complex and interrelated processes crucial for preserving and safeguarding genetic information within all organisms. Key aspects of genome maintenance involve DNA replication, transcription, recombination, and repair. Improper regulation of these processes could cause genetic changes, potentially leading to antibiotic resistance in bacterial populations. Due to the complexity of these processes, ensemble averaging studies may not provide the level of detail required to capture the full spectrum of molecular behaviors and dynamics of each individual biomolecule. Therefore, researchers have increasingly turned to single-molecule approaches, as these techniques allow for the direct observation and manipulation of individual biomolecules, and offer a level of detail that is unattainable with traditional ensemble methods. In this review, we provide an overview of recent in vitro and in vivo single-molecule imaging approaches employed to study the complex processes involved in prokaryotic genome maintenance. We will first highlight the principles of imaging techniques such as total internal reflection fluorescence microscopy and atomic force microscopy, primarily used for in vitro studies, and highly inclined and laminated optical sheet and super-resolution microscopy, mainly employed in in vivo studies. We then demonstrate how applying these single-molecule techniques has enabled the direct visualization of biological processes such as replication, transcription, DNA repair, and recombination in real time. Finally, we will showcase the results obtained from super-resolution microscopy approaches, which have provided unprecedented insights into the spatial organization of different biomolecules within bacterial organisms.

6.
Biophys Rev ; : 641-651, 2019 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-31273608

RESUMEN

DNA replication, or the copying of DNA, is a fundamental process to all life. The system of proteins that carries out replication, the replisome, encounters many roadblocks on its way. An inability of the replisome to properly overcome these roadblocks will negatively affect genomic integrity which in turn can lead to disease. Over the past decades, efforts by many researchers using a broad array of approaches have revealed roles for many different proteins during the initial response of the replisome upon encountering roadblocks. Here, we revisit what is known about DNA replication and the effect of roadblocks during DNA replication across different organisms. We also address how advances in single-molecule techniques have changed our view of the replisome from a highly stable machine with behavior dictated by deterministic principles to a dynamic system that is controlled by stochastic processes. We propose that these dynamics will play crucial roles in roadblock bypass. Further single-molecule studies of this bypass will, therefore, be essential to facilitate the in-depth investigation of multi-protein complexes that is necessary to understand complicated collisions on the DNA.

7.
Sci Rep ; 9(1): 13292, 2019 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-31527759

RESUMEN

Limited experimental tools are available to study the consequences of collisions between DNA-bound molecular machines. Here, we repurpose a catalytically inactivated Cas9 (dCas9) construct as a generic, novel, targetable protein-DNA roadblock for studying mechanisms underlying enzymatic activities on DNA substrates in vitro. We illustrate the broad utility of this tool by demonstrating replication fork arrest by the specifically bound dCas9-guideRNA complex to arrest viral, bacterial and eukaryotic replication forks in vitro.


Asunto(s)
Proteína 9 Asociada a CRISPR/genética , Replicación del ADN/genética , ADN Bacteriano/genética , Escherichia coli/genética , ARN Guía de Kinetoplastida/genética , Sistemas CRISPR-Cas/genética , Streptococcus pyogenes/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA