RESUMEN
RATIONALE: Bone marrow derived progenitor cells participate in the repair of injured vessels. The lungs of individuals with emphysema have reduced alveolar capillary density and increased endothelial apoptosis. We hypothesized that circulating levels of endothelial and hematopoietic progenitor cells would be reduced in this group of patients. OBJECTIVES: The goal of this study was to measure circulating levels of endothelial progenitor cells (EPCs) and hematopoietic progenitor cells (HPCs) in subjects with COPD and to determine if progenitor levels correlated with disease severity and the presence of emphysema. METHODS: Peripheral blood mononuclear cells were isolated from 61 patients with COPD and 32 control subjects. Levels of EPCs (CD45(dim) CD34+) and HPCs (CD45(+) CD34(+) VEGF-R2(+)) were quantified using multi-parameter flow cytometry. Progenitor cell function was assessed using cell culture assays. All subjects were evaluated with spirometry and CT scanning. MEASUREMENTS AND MAIN RESULTS: HPC levels were reduced in subjects with COPD compared to controls, whereas circulating EPC levels were similar between the two groups. HPC levels correlated with severity of obstruction and were lowest in subjects with severe emphysema. These associations remained after correction for factors known to affect progenitor cell levels including age, smoking status, the use of statin medications and the presence of coronary artery disease. The ability of mononuclear cells to form endothelial cell colony forming units (EC-CFU) was also reduced in subjects with COPD. CONCLUSIONS: HPC levels are reduced in subjects with COPD and correlate with emphysema phenotype and severity of obstruction. Reduction of HPCs may disrupt maintenance of the capillary endothelium, thereby contributing to the pathogenesis of COPD.
Asunto(s)
Células Progenitoras Endoteliales , Células Madre Hematopoyéticas , Enfermedad Pulmonar Obstructiva Crónica/sangre , Enfisema Pulmonar/sangre , Índice de Severidad de la Enfermedad , Antígeno AC133 , Anciano , Antígenos CD/análisis , Antígenos CD34/análisis , Recuento de Células , Células Cultivadas , Ensayo de Unidades Formadoras de Colonias , Células Progenitoras Endoteliales/química , Femenino , Volumen Espiratorio Forzado , Glicoproteínas/análisis , Células Madre Hematopoyéticas/química , Células Madre Hematopoyéticas/fisiología , Humanos , Antígenos Comunes de Leucocito/análisis , Masculino , Persona de Mediana Edad , Péptidos/análisis , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Enfisema Pulmonar/complicaciones , Receptor 2 de Factores de Crecimiento Endotelial Vascular/análisis , Capacidad VitalRESUMEN
RATIONALE: During acute lung injury (ALI) the macrophage pool expands markedly as inflammatory monocytes migrate from the circulation to the airspaces. As inflammation resolves, macrophage numbers return to preinjury levels and normal tissue structure and function are restored. OBJECTIVES: To determine the fate of resident and recruited macrophages during the resolution of ALI in mice and to elucidate the mechanisms responsible for macrophage removal. METHODS: ALI was induced in mice using influenza A (H1N1; PR8) infection and LPS instillation. Dye labeling techniques, bone marrow transplantation, and surface immunophenotyping were used to distinguish resident and recruited macrophages during inflammation and to study the role of Fas in determining macrophage fate during resolving ALI. MEASUREMENTS AND MAIN RESULTS: During acute and resolving lung injury from influenza A and LPS, a high proportion of the original resident alveolar macrophages persisted. In contrast, recruited macrophages exhibited robust accumulation in early inflammation, followed by a progressive decline in their number. This decline was mediated by apoptosis with local phagocytic clearance. Recruited macrophages expressed high levels of the death receptor Fas and were rapidly depleted from the airspaces by Fas-activating antibodies. In contrast, macrophage depletion was inhibited in mice treated with Fas-blocking antibodies and in chimeras with Fas-deficient bone marrow. Caspase-8 inhibition prevented macrophage apoptosis and delayed the resolution of ALI. CONCLUSIONS: These findings indicate that Fas-induced apoptosis of recruited macrophages is essential for complete resolution of ALI.
Asunto(s)
Lesión Pulmonar Aguda/patología , Apoptosis/inmunología , Macrófagos Alveolares/patología , Receptor fas/inmunología , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/terapia , Animales , Líquido del Lavado Bronquioalveolar/química , Líquido del Lavado Bronquioalveolar/citología , Líquido del Lavado Bronquioalveolar/inmunología , Caspasa 8/inmunología , Modelos Animales de Enfermedad , Citometría de Flujo , Inmunohistoquímica , Macrófagos Alveolares/inmunología , Ratones , Ratones Endogámicos C57BL , Receptor fas/metabolismoRESUMEN
Efficient removal of apoptotic cells is essential for resolution of inflammation. Failure to clear dying cells can exacerbate lung injury and lead to persistent inflammation and autoimmunity. Here we show that TNFalpha blocks apoptotic cell clearance by alveolar macrophages and leads to proinflammatory responses in the lung. Compared with mice treated with intratracheal TNFalpha or exogenous apoptotic cells, mice treated with the combination of TNFalpha plus apoptotic cells demonstrated reduced apoptotic cell clearance from the lungs and increased recruitment of inflammatory leukocytes to the air spaces. Treatment with intratracheal TNFalpha had no effect on the removal of exogenous apoptotic cells from the lungs of TNFalpha receptor-1 (p55) and -2 (p75) double mutant mice and no effect on leukocyte recruitment. Bronchoalveolar lavage from mice treated with TNFalpha plus apoptotic cells contained increased levels of proinflammatory cytokines IL-6, KC, and MCP-1, but exhibited no change in levels of anti-inflammatory cytokines IL-10 and TGF-beta. Administration of TNFalpha plus apoptotic cells during LPS-induced lung injury augmented neutrophil accumulation and proinflammatory cytokine production. These findings suggest that the presence of TNFalpha in the lung can alter the response of phagocytes to apoptotic cells leading to inflammatory cell recruitment and proinflammatory mediator production.
Asunto(s)
Apoptosis/efectos de los fármacos , Pulmón/patología , Neumonía/etiología , Factor de Necrosis Tumoral alfa/farmacología , Animales , Ensayo de Inmunoadsorción Enzimática , Femenino , Citometría de Flujo , Inflamación/etiología , Inflamación/fisiopatología , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Leucocitos/metabolismo , Lipopolisacáridos/farmacología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Macrófagos Alveolares/citología , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/metabolismo , Ratones , Ratones Endogámicos BALB C , Neutrófilos/metabolismo , Fagocitosis , Neumonía/fisiopatología , Receptores Tipo I de Factores de Necrosis Tumoral/fisiología , Receptores Tipo II del Factor de Necrosis Tumoral/fisiología , Factor de Crecimiento Transformador beta/metabolismoRESUMEN
Allogeneic bone marrow transplantation is a common method used to study the contribution of myeloid and lymphoid cell populations in murine models of disease. The method requires lethal doses of radiation to ablate the bone marrow. Unintended consequences of radiation include organ injury and inflammatory cell activation. The goal of our study was to determine the degree to which bone marrow transplantation alters lungs and to develop a system to protect the lungs during radiation. C57BL/6 mice were subjected to total body irradiation with 900cGy and then transplanted with bone marrow from green fluorescent protein (GFP) expressing mice. Resultant chimeras exhibited a significant decline in alveolar macrophage numbers within 72h, modest influx of neutrophils in the lungs at 14days, and repopulation of the lungs by alveolar macrophages of bone marrow origin by 28days. Neutrophil influx and alveolar macrophage turnover were prevented when 1cm thick lead shields were used to protect the lungs during radiation, such that 8weeks after transplantation less than 30% of alveolar macrophages were of donor origin. Lung-shielded mice achieved a high level of bone marrow engraftment with greater than 95% of circulating leukocytes expressing GFP. In addition, their response to intratracheal lipopolysaccharide was similar to non-transplanted mice. We describe a model whereby lead shields protect resident cell populations in the lungs from radiation during bone marrow transplantation but permit full bone marrow engraftment. This system may be applicable to other organ systems in which protection from radiation during bone marrow transplantation is desired.