Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Psychol Med ; 54(2): 278-288, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37212052

RESUMEN

BACKGROUND: Individuals with bipolar disorder are commonly correctly diagnosed a decade after symptom onset. Machine learning techniques may aid in early recognition and reduce the disease burden. As both individuals at risk and those with a manifest disease display structural brain markers, structural magnetic resonance imaging may provide relevant classification features. METHODS: Following a pre-registered protocol, we trained linear support vector machine (SVM) to classify individuals according to their estimated risk for bipolar disorder using regional cortical thickness of help-seeking individuals from seven study sites (N = 276). We estimated the risk using three state-of-the-art assessment instruments (BPSS-P, BARS, EPIbipolar). RESULTS: For BPSS-P, SVM achieved a fair performance of Cohen's κ of 0.235 (95% CI 0.11-0.361) and a balanced accuracy of 63.1% (95% CI 55.9-70.3) in the 10-fold cross-validation. In the leave-one-site-out cross-validation, the model performed with a Cohen's κ of 0.128 (95% CI -0.069 to 0.325) and a balanced accuracy of 56.2% (95% CI 44.6-67.8). BARS and EPIbipolar could not be predicted. In post hoc analyses, regional surface area, subcortical volumes as well as hyperparameter optimization did not improve the performance. CONCLUSIONS: Individuals at risk for bipolar disorder, as assessed by BPSS-P, display brain structural alterations that can be detected using machine learning. The achieved performance is comparable to previous studies which attempted to classify patients with manifest disease and healthy controls. Unlike previous studies of bipolar risk, our multicenter design permitted a leave-one-site-out cross-validation. Whole-brain cortical thickness seems to be superior to other structural brain features.


Asunto(s)
Trastorno Bipolar , Humanos , Trastorno Bipolar/diagnóstico por imagen , Trastorno Bipolar/patología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Imagen por Resonancia Magnética/métodos , Aprendizaje Automático , Reconocimiento en Psicología , Máquina de Vectores de Soporte
2.
Psychol Med ; : 1-11, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38801091

RESUMEN

BACKGROUND: Individuals at risk for bipolar disorder (BD) have a wide range of genetic and non-genetic risk factors, like a positive family history of BD or (sub)threshold affective symptoms. Yet, it is unclear whether these individuals at risk and those diagnosed with BD share similar gray matter brain alterations. METHODS: In 410 male and female participants aged 17-35 years, we compared gray matter volume (3T MRI) between individuals at risk for BD (as assessed using the EPIbipolar scale; n = 208), patients with a DSM-IV-TR diagnosis of BD (n = 87), and healthy controls (n = 115) using voxel-based morphometry in SPM12/CAT12. We applied conjunction analyses to identify similarities in gray matter volume alterations in individuals at risk and BD patients, relative to healthy controls. We also performed exploratory whole-brain analyses to identify differences in gray matter volume among groups. ComBat was used to harmonize imaging data from seven sites. RESULTS: Both individuals at risk and BD patients showed larger volumes in the right putamen than healthy controls. Furthermore, individuals at risk had smaller volumes in the right inferior occipital gyrus, and BD patients had larger volumes in the left precuneus, compared to healthy controls. These findings were independent of course of illness (number of lifetime manic and depressive episodes, number of hospitalizations), comorbid diagnoses (major depressive disorder, attention-deficit hyperactivity disorder, anxiety disorder, eating disorder), familial risk, current disease severity (global functioning, remission status), and current medication intake. CONCLUSIONS: Our findings indicate that alterations in the right putamen might constitute a vulnerability marker for BD.

3.
Psychol Med ; 53(10): 4707-4719, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-35796024

RESUMEN

BACKGROUND: While adolescent-onset schizophrenia (ADO-SCZ) and adolescent-onset bipolar disorder with psychosis (psychotic ADO-BPD) present a more severe clinical course than their adult forms, their pathophysiology is poorly understood. Here, we study potentially state- and trait-related white matter diffusion-weighted magnetic resonance imaging (dMRI) abnormalities along the adolescent-onset psychosis continuum to address this need. METHODS: Forty-eight individuals with ADO-SCZ (20 female/28 male), 15 individuals with psychotic ADO-BPD (7 female/8 male), and 35 healthy controls (HCs, 18 female/17 male) underwent dMRI and clinical assessments. Maps of extracellular free-water (FW) and fractional anisotropy of cellular tissue (FAT) were compared between individuals with psychosis and HCs using tract-based spatial statistics and FSL's Randomise. FAT and FW values were extracted, averaged across all voxels that demonstrated group differences, and then utilized to test for the influence of age, medication, age of onset, duration of illness, symptom severity, and intelligence. RESULTS: Individuals with adolescent-onset psychosis exhibited pronounced FW and FAT abnormalities compared to HCs. FAT reductions were spatially more widespread in ADO-SCZ. FW increases, however, were only present in psychotic ADO-BPD. In HCs, but not in individuals with adolescent-onset psychosis, FAT was positively related to age. CONCLUSIONS: We observe evidence for cellular (FAT) and extracellular (FW) white matter abnormalities in adolescent-onset psychosis. Although cellular white matter abnormalities were more prominent in ADO-SCZ, such alterations may reflect a shared trait, i.e. neurodevelopmental pathology, present across the psychosis spectrum. Extracellular abnormalities were evident in psychotic ADO-BPD, potentially indicating a more dynamic, state-dependent brain reaction to psychosis.


Asunto(s)
Trastorno Bipolar , Trastornos Psicóticos , Esquizofrenia , Sustancia Blanca , Adulto , Masculino , Humanos , Femenino , Adolescente , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/patología , Trastorno Bipolar/diagnóstico por imagen , Trastorno Bipolar/patología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Trastornos Psicóticos/diagnóstico por imagen , Trastornos Psicóticos/patología , Encéfalo/patología
4.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36768234

RESUMEN

NMDA-receptor hypofunction is increasingly considered to be an important pathomechanism in schizophrenia. However, to date, it has not been possible to identify patients with relevant NMDA-receptor hypofunction who would respond to glutamatergic treatments. Preclinical models, such as the ketamine model, could help identify biomarkers related to NMDA-receptor function that respond to glutamatergic modulation, for example, via activation of the glycine-binding site. We, therefore, aimed to investigate the effects of opposing modulation of the NMDA receptor on gamma activity (30-100 Hz) at rest, the genesis of which appears to be highly dependent on NMDA receptors. The effects of subanesthetic doses of S-ketamine and pretreatment with glycine on gamma activity at rest were examined in twenty-five healthy male participants using 64-channel electroencephalography. Psychometric scores were assessed using the PANSS and the 5D-ASC. While S-ketamine significantly increased psychometric scores and gamma activity at the scalp and in the source space, pretreatment with glycine did not significantly attenuate any of these effects when controlled for multiple comparisons. Our results question whether increased gamma activity at rest constitutes a suitable biomarker for the target engagement of glutamatergic drugs in the preclinical ketamine model. They might further point to a differential role of NMDA receptors in gamma activity generation.


Asunto(s)
Ketamina , Esquizofrenia , Humanos , Masculino , Ketamina/farmacología , Receptores de N-Metil-D-Aspartato/fisiología , Esquizofrenia/tratamiento farmacológico , Ácido Glutámico , N-Metilaspartato , Electroencefalografía , Biomarcadores
5.
Neuroimage ; 251: 119004, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35176492

RESUMEN

Although a substantial number of studies suggests some clinical benefit concerning negative symptoms in schizophrenia through the modulation of NMDA-receptor function, none of these approaches achieved clinical approval. Given the large body of evidence concerning glutamatergic dysfunction in a subgroup of patients, biomarkers to identify those with a relevant clinical benefit through glutamatergic modulation are urgently needed. A similar reduction of the early auditory evoked gamma-band response (aeGBR) as found in schizophrenia patients can be observed in healthy subjects following the application of an NMDA-receptor antagonist in the ketamine-model, which addresses the excitation / inhibition (E/I) imbalance of the disease. Moreover, this oscillatory change can be related to the emergence of negative symptoms. Accordingly, this study investigated whether glycine-related increases of the aeGBR, through NMDA-receptor co-agonism, accompany an improvement concerning negative symptoms in the ketamine-model. The impact of subanesthetic ketamine doses and the pretreatment with glycine was examined in twenty-four healthy male participants while performing a cognitively demanding aeGBR paradigm with 64-channel electroencephalography. Negative Symptoms were assessed through the PANSS. S-Ketamine alone caused a reduction of the aeGBR amplitude associated with more pronounced negative symptoms compared to placebo. Pretreatment with glycine attenuated both, the ketamine-induced alterations of the aeGBR amplitude and the increased PANSS negative scores in glycine-responders, classified based on relative aeGBR increase. Thus, we propose that the aeGBR represents a possible biomarker for negative symptoms in schizophrenia related to insufficient glutamatergic neurotransmission. This would allow to identify patients with negative symptoms, who might benefit from glutamatergic treatment.


Asunto(s)
Glicina , Ketamina , Esquizofrenia , Potenciales Evocados Auditivos/efectos de los fármacos , Potenciales Evocados Auditivos/fisiología , Glicina/farmacología , Humanos , Ketamina/efectos adversos , Ketamina/farmacología , Masculino , Receptores de N-Metil-D-Aspartato , Esquizofrenia/tratamiento farmacológico
6.
Neuroimage ; 239: 118307, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34174389

RESUMEN

Neural oscillations are fundamental mechanisms of the human brain that enable coordinated activity of different brain regions during perceptual and cognitive processes. A frontotemporal network generated by means of gamma oscillations and comprising the auditory cortex (AC) and the anterior cingulate cortex (ACC) has been shown to be involved in the cognitively demanding auditory information processing. This study aims to reveal patterns of functional and effective connectivity within this network in healthy subjects by means of simultaneously recorded electroencephalography (EEG) and functional magnetic resonance imaging (fMRI). We simultaneously recorded EEG and fMRI in 28 healthy subjects during the performance of a cognitively demanding auditory choice reaction task. Connectivity between the ACC and AC was analysed employing EEG and fMRI connectivity measures. We found a significant BOLD signal correlation between the ACC and AC, a significant task-dependant increase of fMRI connectivity (gPPI) and a significant increase in functional coupling in the gamma frequency range between these regions (LPS), which was increased in top-down direction (granger analysis). EEG and fMRI connectivity measures were positively correlated. The results of these study point to a role of a top-down influence of the ACC on the AC executed by means of gamma synchronisation. The replication of fMRI connectivity patterns in simultaneously recorded EEG data and the correlation between connectivity measures from both domains found in our study show, that brain connectivity based on the synchronisation of gamma oscillations is mirrored in fMRI connectivity patterns.


Asunto(s)
Corteza Auditiva/diagnóstico por imagen , Percepción Auditiva/fisiología , Conectoma , Sincronización de Fase en Electroencefalografía , Lóbulo Frontal/diagnóstico por imagen , Rayos gamma , Giro del Cíngulo/diagnóstico por imagen , Red Nerviosa/diagnóstico por imagen , Tálamo/diagnóstico por imagen , Adulto , Corteza Auditiva/fisiología , Electroencefalografía , Sincronización de Fase en Electroencefalografía/fisiología , Femenino , Lóbulo Frontal/fisiología , Giro del Cíngulo/fisiología , Humanos , Imagen por Resonancia Magnética , Masculino , Red Nerviosa/fisiología , Tálamo/fisiología , Adulto Joven
7.
Brain Topogr ; 34(3): 283-296, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33733706

RESUMEN

Since our environment typically contains more information than can be processed at any one time due to the limited capacity of our visual system, we are bound to differentiate between relevant and irrelevant information. This process, termed attentional selection, is usually categorized into bottom-up and top-down processes. However, recent research suggests reward might also be an important factor in guiding attention. Monetary reward can bias attentional selection in favor of task-relevant targets and reduce the efficiency of visual search when a reward-associated, but task-irrelevant distractor is present. This study is the first to investigate reward-related target and distractor processing in an additional singleton task using neurophysiological measures and source space analysis. Based on previous studies, we hypothesized that source space analysis would find enhanced neural activity in regions of the value-based attention network, such as the visual cortex and the anterior cingulate. Additionally, we went further and explored the time courses of the underlying attentional mechanisms. Our neurophysiological results showed that rewarding distractors led to a stronger attentional capture. In line with this, we found that reward-associated distractors (compared with reward-associated targets) enhanced activation in frontal regions, indicating the involvement of top-down control processes. As hypothesized, source space analysis demonstrated that reward-related targets and reward-related distractors elicited activation in regions of the value-based attention network. However, these activations showed time-dependent differences, indicating that the neural mechanisms underlying reward biasing might be different for task-relevant and task-irrelevant stimuli.


Asunto(s)
Recompensa , Corteza Visual , Electroencefalografía , Lóbulo Frontal , Humanos , Tiempo de Reacción
8.
Eur Arch Psychiatry Clin Neurosci ; 271(1): 135-156, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33211157

RESUMEN

Transcranial alternating current stimulation (tACS) is a unique form of non-invasive brain stimulation. Sinusoidal alternating electric currents are delivered to the scalp to affect mostly cortical neurons. tACS is supposed to modulate brain function and, in turn, cognitive processes by entraining brain oscillations and inducing long-term synaptic plasticity. Therefore, tACS has been investigated in cognitive neuroscience, but only recently, it has been also introduced in psychiatric clinical trials. This review describes current concepts and first findings of applying tACS as a potential therapeutic tool in the field of psychiatry. The current understanding of its mechanisms of action is explained, bridging cellular neuronal activity and the brain network mechanism. Revisiting the relevance of altered brain oscillations found in six major psychiatric disorders, putative targets for the management of mental disorders using tACS are discussed. A systematic literature search on PubMed was conducted to report findings of the clinical studies applying tACS in patients with psychiatric conditions. In conclusion, the initial results may support the feasibility of tACS in clinical psychiatric populations without serious adverse events. Moreover, these results showed the ability of tACS to reset disturbed brain oscillations, and thus to improve behavioural outcomes. In addition to its potential therapeutic role, the reactivity of the brain circuits to tACS could serve as a possible tool to determine the diagnosis, classification or prognosis of psychiatric disorders. Future double-blind randomised controlled trials are necessary to answer currently unresolved questions. They may aim to detect response predictors and control for various confounding factors.


Asunto(s)
Encéfalo , Psiquiatría/métodos , Estimulación Transcraneal de Corriente Directa , Encéfalo/citología , Encéfalo/fisiología , Humanos , Plasticidad Neuronal , Neuronas/fisiología
9.
J Neuroinflammation ; 17(1): 56, 2020 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-32061259

RESUMEN

BACKGROUND: In the last decade, there has been growing evidence that an interaction exists between inflammation and the kynurenine pathway in schizophrenia. Additionally, many authors found microglial activation in cases of schizophrenia due to inflammatory mechanisms related mostly to an increase of pro-inflammatory cytokines. In order to gain new insights into the pathophysiology of schizophrenia, it is important to incorporate the latest published evidence concerning inflammatory mechanisms and kynurenine metabolism. This systematic review aims to collect reliable recent findings within the last decade supporting such a theory. METHODS: A structured search of electronic databases was conducted for publications between 2008 and 2018 to identify eligible studies investigating patients with schizophrenia/psychosis and the relationship between inflammation and kynurenine pathway. Applicable studies were systematically scored using the NIH Quality Assessment Tools. Two researchers independently extracted data on diagnosis (psychosis/schizophrenia), inflammation, and kynurenine/tryptophan metabolites. RESULTS: Ten eligible articles were identified where seven studies assessed blood samples and three assessed cerebrospinal fluid in schizophrenic patients. Of these articles: Four investigated the relationship between immunoglobulins and the kynurenine pathway and found correlations between IgA-mediated responses and levels of tryptophan metabolites (i.e., kynurenine pathway).Five examined the correlation between cytokines and kynurenine metabolites where three showed a relationship between elevated IL-6, TNF-α concentrations, and the kynurenine pathway.Only one study discovered correlations between IL-8 and the kynurenine pathway.Two studies showed correlations with lower concentrations of IL-4 and the kynurenine pathway.Moreover, this systematic review did not find a significant correlation between CRP (n = 1 study), IFN-γ (n = 3 studies), and the kynurenine pathway in schizophrenia. INTERPRETATION: These results emphasize how different inflammatory markers can unbalance the tryptophan/kynurenine pathway in schizophrenia. Several tryptophan/kynurenine pathway metabolites are produced which can, in turn, underlie different psychotic and cognitive symptoms via neurotransmission modulation. However, due to heterogeneity and the shortage of eligible articles, they do not robustly converge to the same findings. Hence, we recommend further studies with larger sample sizes to elucidate the possible interactions between the various markers, their blood vs. CSF ratios, and their correlation with schizophrenia symptoms.


Asunto(s)
Inflamación/metabolismo , Quinurenina/metabolismo , Trastornos Psicóticos/metabolismo , Esquizofrenia/metabolismo , Humanos
10.
Brain Topogr ; 32(3): 482-491, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30689144

RESUMEN

Several studies using electroencephalography (EEG) demonstrate that the processing of feedback in patients suffering from borderline personality disorder (BPD) is altered in comparison to healthy controls. Differences occur in the theta (ca. 5 Hz) and high-beta frequency-ranges (ca. 20 Hz) of oscillations in response to negative and positive feedback, respectively. However, alpha (ca. 10 Hz) and low-beta (ca. 15 Hz) oscillations have also been shown to be involved in feedback processing. We hypothesized that additional alterations might occur in these frequency ranges in BPD. Eighteen patients with BPD and twenty-two healthy controls performed a gambling task while 64-channel-EEG was recorded. Induced oscillatory responses to positive (i.e. gain) and negative (i.e. loss) feedback in the alpha and low-beta frequency range were investigated. No significant differences were found in the alpha frequency range. Regarding the low-beta frequency range a significant Group (i.e. BPD vs. healthy controls) × Valence (i.e. gain vs. loss) interaction in the time frame between 600 and 700 milliseconds after feedback was found. This effect showed a significant correlation with symptom severity (assessed with the BSL-23). The results indicate that feedback processing in BPD could be more heavily altered than previously expected, with more severe symptomatology being linked to stronger alterations in oscillatory responses to feedback in the low-beta range.


Asunto(s)
Ritmo beta , Trastorno de Personalidad Limítrofe/fisiopatología , Retroalimentación Psicológica , Adulto , Estudios de Casos y Controles , Electroencefalografía , Femenino , Juego de Azar , Humanos , Masculino , Índice de Severidad de la Enfermedad , Análisis y Desempeño de Tareas , Adulto Joven
11.
Neuroimage ; 173: 49-56, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29471098

RESUMEN

Reports linking a 'jumping-to-conclusions' bias to delusions have led to growing interest in the neurobiological correlates of probabilistic reasoning. Several brain areas have been implicated in probabilistic reasoning; however, findings are difficult to integrate into a coherent account. The present study aimed to provide additional evidence by investigating, for the first time, effective connectivity among brain areas involved in different stages of evidence gathering. We investigated evidence gathering in 25 healthy individuals using fMRI and a new paradigm (Box Task) designed such as to minimize the effects of cognitive effort and reward processing. Decisions to collect more evidence ('draws') were contrasted to decisions to reach a final choice ('conclusions') with respect to BOLD activity. Psychophysiological interaction analysis was used to investigate effective connectivity. Conclusion events were associated with extensive brain activations in widely distributed brain areas associated with the task-positive network. In contrast, draw events were characterized by higher activation in areas assumed to be part of the task-negative network. Effective connectivity between the two networks decreased during draws and increased during conclusion events. Our findings indicate that probabilistic reasoning may depend on the balance between the task-positive and task-negative network, and that shifts in connectivity between the two may be crucial for evidence gathering. Thus, abnormal connectivity between the two systems may significantly contribute to the jumping-to-conclusions bias.


Asunto(s)
Encéfalo/fisiología , Red Nerviosa/fisiología , Pensamiento/fisiología , Adulto , Mapeo Encefálico/métodos , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Adulto Joven
12.
Neuroimage ; 174: 352-363, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29421325

RESUMEN

We propose a new method for the localization of nonlinear cross-frequency coupling in EEG and MEG data analysis, based on the estimation of bicoherences at the source level. While for the analysis of rhythmic brain activity, source directions are commonly chosen to maximize power, we suggest to maximize bicoherence instead. The resulting nonlinear cost function can be minimized effectively using a gradient approach. We argue, that bicoherence is also a generally useful tool to analyze phase-amplitude coupling (PAC), by deriving formal relations between PAC and bispectra. This is illustrated in simulated and empirical LFP data. The localization method is applied to EEG resting state data, where the most prominent bicoherence signatures originate from the occipital alpha rhythm and the mu rhythm. While the latter is hardly visible using power analysis, we observe clear bicoherence peaks in the high alpha range of sensorymotor areas. We additionally apply our method to resting-state data of subjects with schizophrenia and healthy controls and observe significant bicoherence differences in motor areas which could not be found from analyzing power differences.


Asunto(s)
Ritmo alfa , Encéfalo/fisiología , Electroencefalografía/métodos , Magnetoencefalografía/métodos , Encéfalo/fisiopatología , Humanos , Modelos Neurológicos , Esquizofrenia/fisiopatología , Procesamiento de Señales Asistido por Computador
13.
Brain Topogr ; 31(2): 218-226, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28803269

RESUMEN

Interhemispheric auditory connectivity via the corpus callosum has been demonstrated to be important for normal speech processing. According to the callosal relay model, directed information flow from the right to the left auditory cortex has been suggested, but this has not yet been proven. For this purpose, 33 healthy participants were investigated with 64-channel EEG while performing the dichotic listening task in which two different consonant-vowel syllables were presented simultaneously to the left (LE) and right ear (RE). eLORETA source estimation was used to investigate the functional (lagged phase synchronization/LPS) and effective (isolated effective coherence/ICoh) connectivity between right and left primary (PAC) and secondary auditory cortices (SAC) in the gamma-band (30-100 Hz) during right and left ear reports. The major finding was a significantly increased effective connectivity in the gamma-band from the right to the left SAC during conscious perception of LE stimuli. In addition, effective and functional connectivity was significantly enhanced during LE as compared to RE reports. These findings give novel insight into transcallosal information transfer during auditory perception by showing that LE performance requires causal interhemispheric inputs from the right to the left auditory cortices, and that this interaction is mediated by synchronized gamma-band oscillations.


Asunto(s)
Corteza Auditiva/fisiología , Vías Auditivas/fisiología , Percepción Auditiva/fisiología , Cuerpo Calloso/fisiología , Lateralidad Funcional/fisiología , Adulto , Pruebas de Audición Dicótica , Electroencefalografía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
15.
J Psychiatry Neurosci ; 42(4): 273-283, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28556775

RESUMEN

BACKGROUND: Targeting the N-methyl-D-aspartate receptor (NMDAR) is a major translational approach for treating negative symptoms of schizophrenia. Ketamine comprehensively produces schizophrenia-like symptoms, such as positive, cognitive and negative symptoms in healthy volunteers. The amplitude of the mismatch negativity (MMN) is known to be significantly reduced not only in patients with schizophrenia, but also in healthy controls receiving ketamine. Accordingly, it was the aim of the present study to investigate whether changes of MMN amplitudes during ketamine administration are associated with the emergence of schizophrenia-like negative symptoms in healthy volunteers. METHODS: We examined the impact of ketamine during an MMN paradigm with 64-channel electroencephalography (EEG) and assessed the psychopathological status using the Positive and Negative Syndrome Scale (PANSS) in healthy male volunteers using a single-blind, randomized, placebo-controlled crossover design. Low-resolution brain electromagnetic tomography was used for source localization. RESULTS: Twenty-four men were included in our analysis. Significant reductions of MMN amplitudes and an increase in all PANSS scores were identified under the ketamine condition. Smaller MMN amplitudes were specifically associated with more pronounced negative symptoms. Source analysis of MMN generators indicated a significantly reduced current source density (CSD) under the ketamine condition in the primary auditory cortex, the posterior cingulate and the middle frontal gyrus. LIMITATIONS: The sample included only men within a tight age range of 20-32 years. CONCLUSION: The MMN might represent a biomarker for negative symptoms in schizophrenia related to an insufficient NMDAR system and could be used to identify patients with schizophrenia with negative symptoms due to NMDAR dysfunction.


Asunto(s)
Encéfalo/fisiología , Potenciales Evocados Auditivos/efectos de los fármacos , Antagonistas de Aminoácidos Excitadores/farmacología , Ácido Glutámico/metabolismo , Voluntarios Sanos/psicología , Ketamina/farmacología , Esquizofrenia/inducido químicamente , Adulto , Encéfalo/efectos de los fármacos , Humanos , Masculino , Receptores de N-Metil-D-Aspartato/metabolismo , Esquizofrenia/diagnóstico , Método Simple Ciego , Adulto Joven
16.
Brain Topogr ; 30(1): 30-45, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27659288

RESUMEN

Growing evidence from neuroimaging studies suggest that emotional and cognitive processes are interrelated. Anatomical key structures in this context are the dorsal and rostral-ventral anterior cingulate cortex (dACC and rvACC). However, up to now, the time course of activations within these regions during emotion-cognition interactions has not been disentangled. In the present study, we used event-related potentials (ERP) and standardized low-resolution electromagnetic tomography (sLORETA) region of interest (ROI) source localization analyses to explore the time course of neural activations within the dACC and rvACC using a modified emotional Stroop paradigm. ERP components related to Stroop conflict (N200, N450 and late negativity) were analyzed. The time course of brain activations in the dACC and rvACC was strikingly different with more pronounced initial responses in the rvACC followed by increased dACC activity mainly at the late negativity window. Moreover, emotional valence modulated the earlier N450 stage within the rvACC region with higher neural activations in the positive compared to the negative and neutral conditions. Emotional arousal modulated the late negativity stage; firstly in the significant arousal × congruence ERP effect and then the significant higher current density in the low arousal condition within the dACC. Using sLORETA source localization, substantial differences in the activation time courses in the dACC and rvACC could be found during the emotional Stroop task. We suggest that during late negativity, within the dACC, emotional arousal modulated the processing of response conflict, reflected in the correlation between the ex-Gaussian µ and the current density in the dACC.


Asunto(s)
Atención/fisiología , Emociones/fisiología , Potenciales Evocados/fisiología , Giro del Cíngulo/fisiología , Test de Stroop , Adulto , Nivel de Alerta/fisiología , Cognición/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Factores de Tiempo , Adulto Joven
17.
Cereb Cortex ; 26(11): 4265-4281, 2016 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-27613435

RESUMEN

Cognitive deficits represent a major burden of neuropsychiatric disorders and result in part from abnormal communication within hippocampal-prefrontal circuits. While it has been hypothesized that this network dysfunction arises during development, long before the first clinical symptoms, experimental evidence is still missing. Here, we show that pre-juvenile mice mimicking genetic and environmental risk factors of disease (dual-hit GE mice) have poorer recognition memory that correlates with augmented coupling by synchrony and stronger directed interactions between prefrontal cortex and hippocampus. The network dysfunction emerges already during neonatal development, yet it initially consists in a diminished hippocampal theta drive and consequently, a weaker and disorganized entrainment of local prefrontal circuits in discontinuous oscillatory activity in dual-hit GE mice when compared with controls. Thus, impaired maturation of functional communication within hippocampal-prefrontal networks switching from hypo- to hyper-coupling may represent a mechanism underlying the pathophysiology of cognitive deficits in neuropsychiatric disorders.


Asunto(s)
Trastornos del Conocimiento , Discapacidades del Desarrollo , Interacción Gen-Ambiente , Hipocampo/fisiología , Vías Nerviosas/fisiología , Corteza Prefrontal/fisiopatología , Animales , Animales Recién Nacidos , Trastornos del Conocimiento/genética , Trastornos del Conocimiento/patología , Trastornos del Conocimiento/fisiopatología , Discapacidades del Desarrollo/inducido químicamente , Discapacidades del Desarrollo/complicaciones , Discapacidades del Desarrollo/genética , Modelos Animales de Enfermedad , Potenciales Evocados/efectos de los fármacos , Potenciales Evocados/genética , Femenino , Hipocampo/efectos de los fármacos , Inductores de Interferón/toxicidad , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Vías Nerviosas/efectos de los fármacos , Poli I-C/toxicidad , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/patología , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/fisiopatología
18.
J Neurosci ; 35(19): 7365-73, 2015 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-25972166

RESUMEN

The beneficial effects of placebo treatments on fear and anxiety (placebo anxiolysis) are well known from clinical practice, and there is strong evidence indicating a contribution of treatment expectations to the efficacy of anxiolytic drugs. Although clinically highly relevant, the neural mechanisms underlying placebo anxiolysis are poorly understood. In two studies in humans, we tested whether the administration of an inactive treatment along with verbal suggestions of anxiolysis can attenuate experimentally induced states of phasic fear and/or sustained anxiety. Phasic fear is the response to a well defined threat and includes attentional focusing on the source of threat and concomitant phasic increases of autonomic arousal, whereas in sustained states of anxiety potential and unclear danger requires vigilant scanning of the environment and elevated tonic arousal levels. Our placebo manipulation consistently reduced vigilance measured in terms of undifferentiated reactivity to salient cues (indexed by subjective ratings, skin conductance responses and EEG event-related potentials) and tonic arousal [indexed by cue-unrelated skin conductance levels and enhanced EEG alpha (8-12 Hz) activity], indicating a downregulation of sustained anxiety rather than phasic fear. We also observed a placebo-dependent sustained increase of frontal midline EEG theta (4-7 Hz) power and frontoposterior theta coupling, suggesting the recruitment of frontally based cognitive control functions. Our results thus support the crucial role of treatment expectations in placebo anxiolysis and provide insight into the underlying neural mechanisms.


Asunto(s)
Ansiedad/psicología , Ansiedad/terapia , Mapeo Encefálico , Encéfalo/fisiopatología , Efecto Placebo , Adulto , Ansiedad/fisiopatología , Señales (Psicología) , Estimulación Eléctrica/efectos adversos , Electroencefalografía , Miedo , Femenino , Respuesta Galvánica de la Piel , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Dolor/complicaciones , Dolor/etiología , Dolor/psicología , Dimensión del Dolor , Placebos/uso terapéutico , Factores de Tiempo , Adulto Joven
19.
Brain Topogr ; 28(1): 153-61, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25421170

RESUMEN

Over the last decade, there has been growing interest in aberrant salience as a precursor of positive symptoms in schizophrenia. The present study investigates the neurophysiology of attentional capture by salient stimuli in the visual modality. Evoked oscillatory activity in the gamma frequency range (40 Hz) was assessed during visual processing of physically salient distracters and evaluated in relation to schizotypy and its positive, negative and disorganized dimension. The early evoked visual gamma-band response (GBR) was assessed for 24 healthy participants using EEG time-frequency analysis. Physical salience was constituted by colored stimuli diverting from an ongoing baseline condition. schizotypal personality traits were measured by the schizotypal personality questionnaire (SPQ; Raine in Schizophr Bull 17:555-564, 1991). The early evoked visual GBR was significantly pronounced in the physically salient distracter condition. GBR signal power was significantly correlated with positive schizotypal personality traits (r = 0.588; p = 0.024*). Our results indicate that the early evoked GBR in visual processing of physically salient distracters is associated with schizotypy. These findings refer to the phenomenology of aberrant salience by bridging the gap to neurophysiological research on early sensory selection and attentional capture in the schizophrenia spectrum.


Asunto(s)
Atención/fisiología , Encéfalo/fisiopatología , Ritmo Gamma , Personalidad/fisiología , Psicología del Esquizofrénico , Percepción Visual/fisiología , Adulto , Potenciales Evocados , Femenino , Humanos , Masculino , Persona de Mediana Edad , Actividad Motora/fisiología , Pruebas Neuropsicológicas , Tiempo de Reacción , Encuestas y Cuestionarios , Adulto Joven
20.
Brain Topogr ; 28(6): 865-78, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25926268

RESUMEN

High frequency oscillations in the gamma range are known to be involved in early stages of auditory information processing in terms of synchronization of brain regions, e.g., in cognitive functions. It has been shown using EEG source localisation, as well as simultaneously recorded EEG-fMRI, that the auditory evoked gamma-band response (aeGBR) is modulated by attention. In addition to auditory cortex activity a dorsal anterior cingulate cortex (dACC) generator could be involved. In the present study we investigated aeGBR magnetic fields using magnetoencephalography (MEG). We aimed to localize the aeGBR sources and its connectivity features in relation to mental effort. We investigated the aeGBR magnetic fields in 13 healthy participants using a 275-channel CTF-MEG system. The experimental paradigms were two auditory choice reaction tasks with different difficulties and demands for mental effort. We performed source localization with eLORETA and calculated the aeGBR lagged phase synchronization between bilateral auditory cortices and frontal midline structures. The eLORETA analysis revealed sources of the aeGBR within bilateral auditory cortices and in frontal midline structures of the brain including the dACC. Compared to the control condition the dACC source activity was found to be significantly stronger during the performance of the cognitively demanding task. Moreover, this task involved a significantly stronger functional connectivity between auditory cortices and dACC. In accordance with previous EEG and EEG-fMRI investigations, our study confirms an aeGBR generator in the dACC by means of MEG and suggests its involvement in the effortful processing of auditory stimuli.


Asunto(s)
Corteza Auditiva/fisiología , Mapeo Encefálico , Ritmo Gamma/fisiología , Estimulación Acústica , Adolescente , Adulto , Vías Auditivas/fisiología , Electroencefalografía , Procesamiento Automatizado de Datos , Femenino , Humanos , Imagen por Resonancia Magnética , Magnetoencefalografía , Masculino , Modelos Neurológicos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA