Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Biomolecules ; 12(10)2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36291676

RESUMEN

Glutathione transferases (GSTs) constitute a widespread superfamily of enzymes notably involved in detoxification processes and/or in specialized metabolism. In the cyanobacterium Synechocsytis sp. PCC 6803, SynGSTC1, a chi-class GST (GSTC), is thought to participate in the detoxification process of methylglyoxal, a toxic by-product of cellular metabolism. A comparative genomic analysis showed that GSTCs were present in all orders of cyanobacteria with the exception of the basal order Gloeobacterales. These enzymes were also detected in some marine and freshwater noncyanobacterial bacteria, probably as a result of horizontal gene transfer events. GSTCs were shorter of about 30 residues compared to most cytosolic GSTs and had a well-conserved SRAS motif in the active site (10SRAS13 in SynGSTC1). The crystal structure of SynGSTC1 in complex with glutathione adopted the canonical GST fold with a very open active site because the α4 and α5 helices were exceptionally short. A transferred multipolar electron-density analysis allowed a fine description of the solved structure. Unexpectedly, Ser10 did not have an electrostatic influence on glutathione as usually observed in serinyl-GSTs. The S10A variant was only slightly less efficient than the wild-type and molecular dynamics simulations suggested that S10 was a stabilizer of the protein backbone rather than an anchor site for glutathione.


Asunto(s)
Glutatión Transferasa , Synechocystis , Glutatión Transferasa/metabolismo , Synechocystis/genética , Synechocystis/metabolismo , Piruvaldehído , Glutatión/metabolismo , Estructura Secundaria de Proteína
2.
J Biol Chem ; 285(48): 37342-58, 2010 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-20843813

RESUMEN

Glycosaminoglycans (GAGs) play a central role in many pathophysiological events, and exogenous xyloside substrates of ß1,4-galactosyltransferase 7 (ß4GalT7), a major enzyme of GAG biosynthesis, have interesting biomedical applications. To predict functional peptide regions important for substrate binding and activity of human ß4GalT7, we conducted a phylogenetic analysis of the ß1,4-galactosyltransferase family and generated a molecular model using the x-ray structure of Drosophila ß4GalT7-UDP as template. Two evolutionary conserved motifs, (163)DVD(165) and (221)FWGWGREDDE(230), are central in the organization of the enzyme active site. This model was challenged by systematic engineering of point mutations, combined with in vitro and ex vivo functional assays. Investigation of the kinetic properties of purified recombinant wild-type ß4GalT7 and selected mutants identified Trp(224) as a key residue governing both donor and acceptor substrate binding. Our results also suggested the involvement of the canonical carboxylate residue Asp(228) acting as general base in the reaction catalyzed by human ß4GalT7. Importantly, ex vivo functional tests demonstrated that regulation of GAG synthesis is highly responsive to modification of these key active site amino acids. Interestingly, engineering mutants at position 224 allowed us to modify the affinity and to modulate the specificity of human ß4GalT7 toward UDP-sugars and xyloside acceptors. Furthermore, the W224H mutant was able to sustain decorin GAG chain substitution but not GAG synthesis from exogenously added xyloside. Altogether, this study provides novel insight into human ß4GalT7 active site functional domains, allowing manipulation of this enzyme critical for the regulation of GAG synthesis. A better understanding of the mechanism underlying GAG assembly paves the way toward GAG-based therapeutics.


Asunto(s)
Galactosiltransferasas/química , Galactosiltransferasas/metabolismo , Glicosaminoglicanos/biosíntesis , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Dominio Catalítico , Galactosiltransferasas/genética , Humanos , Invertebrados/química , Invertebrados/clasificación , Invertebrados/enzimología , Invertebrados/genética , Modelos Moleculares , Datos de Secuencia Molecular , Filogenia , Alineación de Secuencia , Especificidad por Sustrato , Vertebrados/clasificación , Vertebrados/genética , Vertebrados/metabolismo
3.
Protein Sci ; 28(6): 1143-1150, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30972861

RESUMEN

Trametes versicolor glutathione transferase Omega 3S (TvGSTO3S) catalyzes the conjugation of isothiocyanates (ITC) with glutathione (GSH). Previously, this isoform was investigated in depth both biochemically and structurally. Structural analysis of complexes revealed the presence of a GSH binding site (G site) and a deep hydrophobic binding site (H site) able to bind plant polyphenols. In the present study, crystals of apo TvGSTO3S were soaked with glutathionyl-phenethylthiocarbamate, the product of the reaction between GSH and phenethyl isothiocyanate (PEITC). On the basis of this crystal structure, we show that the phenethyl moiety binds in a new site at loop ß2 -α2 while the glutathionyl part exhibits a particular conformation that occupies both the G site and the entrance to the H site. This binding mode is allowed by a conformational change of the loop ß2 -α2 at the enzyme active site. It forms a hydrophobic slit that stabilizes the phenethyl group at a distinct site from the previously described H site. Structural comparison of TvGSTO3S with drosophila DmGSTD2 suggests that this flexible loop could be the region that binds PEITC for both isoforms. These structural features are discussed in a catalytic context.


Asunto(s)
Glutatión Transferasa/química , Glutatión/biosíntesis , Isotiocianatos/metabolismo , Trametes/enzimología , Sitios de Unión , Biocatálisis , Glutatión/química , Glutatión Transferasa/metabolismo , Isotiocianatos/química , Modelos Moleculares , Estructura Molecular
4.
J Mol Biol ; 370(3): 512-29, 2007 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-17531267

RESUMEN

Glutathione peroxidases (GPXs) are a group of enzymes that regulate the levels of reactive oxygen species in cells and tissues, and protect them against oxidative damage. Contrary to most of their counterparts in animal cells, the higher plant GPX homologues identified so far possess cysteine instead of selenocysteine in their active site. Interestingly, the plant GPXs are not dependent on glutathione but rather on thioredoxin as their in vitro electron donor. We have determined the crystal structures of the reduced and oxidized form of Populus trichocarpaxdeltoides GPX5 (PtGPX5), using a selenomethionine derivative. PtGPX5 exhibits an overall structure similar to that of the known animal GPXs. PtGPX5 crystallized in the assumed physiological dimeric form, displaying a pseudo ten-stranded beta sheet core. Comparison of both redox structures indicates that a drastic conformational change is necessary to bring the two distant cysteine residues together to form an intramolecular disulfide bond. In addition, a computer model of a complex of PtGPX5 and its in vitro recycling partner thioredoxin h1 is proposed on the basis of the crystal packing of the oxidized form enzyme. A possible role of PtGPX5 as a heavy-metal sink is also discussed.


Asunto(s)
Glutatión Peroxidasa/química , Peroxidasas/química , Proteínas de Plantas/química , Populus/enzimología , Estructura Terciaria de Proteína , Secuencia de Aminoácidos , Animales , Sitios de Unión , Cadmio/metabolismo , Cristalografía por Rayos X , Cisteína/metabolismo , Glutatión Peroxidasa/metabolismo , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Oxidación-Reducción , Peroxidasas/genética , Peroxidasas/metabolismo , Peroxirredoxinas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pliegue de Proteína , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Alineación de Secuencia
5.
FEBS Lett ; 592(18): 3163-3172, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30112765

RESUMEN

Glutathione transferases (GSTs) from the Xi and Omega classes have a catalytic cysteine residue, which gives them reductase activities. Until now, they have been assigned distinct substrates. While Xi GSTs specifically reduce glutathionyl-(hydro)quinones, Omega GSTs are specialized in the reduction of glutathionyl-acetophenones. Here, we present the biochemical and structural analysis of TvGSTX1 and TvGSTX3 isoforms from the wood-degrading fungus Trametes versicolor. TvGSTX1 reduces GS-menadione as expected, while TvGSTX3 reduces both Xi and Omega substrates. An in-depth structural analysis indicates a broader active site for TvGSTX3 due to specific differences in the nature of the residues situated in the C-terminal helix α9. This feature could explain the catalytic duality of TvGSTX3. Based on phylogenetic analysis, we propose that this duality might exist in saprophytic fungi and ascomycetes.


Asunto(s)
Cisteína/metabolismo , Proteínas Fúngicas/metabolismo , Glutatión Transferasa/metabolismo , Trametes/enzimología , Secuencia de Aminoácidos , Biocatálisis , Cristalografía por Rayos X , Cisteína/química , Cisteína/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Glutatión/análogos & derivados , Glutatión/química , Glutatión/metabolismo , Glutatión Transferasa/clasificación , Glutatión Transferasa/genética , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Modelos Moleculares , Filogenia , Unión Proteica , Dominios Proteicos , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Trametes/genética
6.
Sci Rep ; 8(1): 8472, 2018 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-29855494

RESUMEN

Wood decay fungi have complex detoxification systems that enable them to cope with secondary metabolites produced by plants. Although the number of genes encoding for glutathione transferases is especially expanded in lignolytic fungi, little is known about their target molecules. In this study, by combining biochemical, enzymatic and structural approaches, interactions between polyphenols and six glutathione transferases from the white-rot fungus Trametes versicolor have been demonstrated. Two isoforms, named TvGSTO3S and TvGSTO6S have been deeply studied at the structural level. Each isoform shows two distinct ligand-binding sites, a narrow L-site at the dimer interface and a peculiar deep hydrophobic H-site. In TvGSTO3S, the latter appears optimized for aromatic ligand binding such as hydroxybenzophenones. Affinity crystallography revealed that this H-site retains the flavonoid dihydrowogonin from a partially purified wild-cherry extract. Besides, TvGSTO6S binds two molecules of the flavonoid naringenin in the L-site. These data suggest that TvGSTO isoforms could interact with plant polyphenols released during wood degradation.


Asunto(s)
Proteínas Fúngicas/química , Glutatión Transferasa/química , Fase II de la Desintoxicación Metabólica , Polifenoles/química , Trametes/metabolismo , Madera/química , Secuencia de Aminoácidos , Benzofenonas/química , Benzofenonas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Flavonoides/química , Flavonoides/metabolismo , Proteínas Fúngicas/metabolismo , Glutatión Transferasa/metabolismo , Isoenzimas/química , Isoenzimas/metabolismo , Cinética , Polifenoles/metabolismo , Estabilidad Proteica , Estructura Terciaria de Proteína , Prunus/química , Prunus/metabolismo , Alineación de Secuencia , Temperatura , Madera/metabolismo
7.
Protein Sci ; 15(7): 1667-78, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16815917

RESUMEN

The beta1,3-glucuronosyltransferases are responsible for the completion of the protein-glycosaminoglycan linkage region of proteoglycans and of the HNK1 epitope of glycoproteins and glycolipids by transferring glucuronic acid from UDP-alpha-D-glucuronic acid (UDP-GlcA) onto a terminal galactose residue. Here, we develop phylogenetic and mutational approaches to identify critical residues involved in UDP-GlcA binding and enzyme activity of the human beta1,3-glucuronosyltransferase I (GlcAT-I), which plays a key role in glycosaminoglycan biosynthesis. Phylogeny analysis identified 119 related beta1,3-glucuronosyltransferase sequences in vertebrates, invertebrates, and plants that contain eight conserved peptide motifs with 15 highly conserved amino acids. Sequence homology and structural information suggest that Y84, D113, R156, R161, and R310 residues belong to the UDP-GlcA binding site. The importance of these residues is assessed by site-directed mutagenesis, UDP affinity and kinetic analyses. Our data show that uridine binding is primarily governed by stacking interactions with the phenyl group of Y84 and also involves interactions with aspartate 113. Furthermore, we found that R156 is critical for enzyme activity but not for UDP binding, whereas R310 appears less important with regard to both activity and UDP interactions. These results clearly discriminate the function of these two active site residues that were predicted to interact with the pyrophosphate group of UDP-GlcA. Finally, mutation of R161 severely compromises GlcAT-I activity, emphasizing the major contribution of this invariant residue. Altogether, this phylogenetic approach sustained by biochemical analyses affords new insight into the organization of the beta1,3-glucuronosyltransferase family and distinguishes the respective importance of conserved residues in UDP-GlcA binding and activity of GlcAT-I.


Asunto(s)
Aminoácidos/metabolismo , Glucuronosiltransferasa/metabolismo , Mutación , Filogenia , Uridina Difosfato Ácido Glucurónico/metabolismo , Animales , Sitios de Unión/genética , Secuencia Conservada , Glucuronosiltransferasa/genética , Humanos , Mutagénesis Sitio-Dirigida
8.
J Pharm Pharmacol ; 57(5): 547-54, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15901343

RESUMEN

A variety of cationic lipophilic compounds (modulators) have been found to reverse the multidrug resistance of cancer cells. In order to determine the membrane perturbing efficacy and the binding affinity of such drugs in neutral and anionic liposomes, the leakage of Sulfan blue induced by five modulators bearing different electric charges was quantified using liposomes with and without phosphatidic acid (xEPA=0 and 0.1), at four lipid concentrations. The binding isotherms were drawn up using the indirect method based on the dependency of the leakage rate on the modulator and the lipid concentrations. Upon inclusion of negatively charged lipids in the liposomes: (i) the binding of cationic drugs was favoured, except in a case where modulator aggregation occurred in the lipid phase; (ii) the drugs with a net electric charge greater than 1.1 displayed a greater enhancement in their potency to produce membrane perturbation; and (iii) the EPA effect on membrane permeation was due mainly to that on membrane perturbation (>or=50%) and, to a lesser extent, to that on the binding affinity (

Asunto(s)
Resistencia a Múltiples Medicamentos , Membrana Dobles de Lípidos/química , Preparaciones Farmacéuticas/química , Aniones/química , Liposomas/química , Potenciales de la Membrana , Modelos Químicos , Dinámicas no Lineales , Permeabilidad , Ácidos Fosfatidicos/química , Colorantes de Rosanilina/química
9.
Food Chem ; 187: 305-13, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25977031

RESUMEN

Nonenzymatic deamidation of asparaginyl residues can occur spontaneously under physiological conditions principally when a glycyl residue is at the carboxyl side of Asn and leads to formation of aspartyl and isoaspartyl residues. This modification can change the biological activity of proteins or peptides and trigger an auto-immune response. The α-lactalbumins of members of the Camelidae family are the only of described α-lactalbumins that carry two AsnGly sequences. In the present study, high-resolution mass spectrometry, which enables accurate mass measurement has shown that Asn(16) and Asn(45) underwent a nonenzymatic deamidation, the sequence Asn(45)-Gly(46) being deamidated spontaneously at near-neutral and basic pH and Asn(16)-Gly(17) rather at basic pH. The 16-17 sequence was probably stabilized at near-neutral pH by hydrogen bonds according to the molecular modelisation performed with the camel protein.


Asunto(s)
Lactalbúmina/análisis , Leche/química , Secuencia de Aminoácidos , Animales , Asparagina/química , Camelus , Electroforesis en Gel Bidimensional , Concentración de Iones de Hidrógeno , Espectrometría de Masas , Modelos Moleculares , Datos de Secuencia Molecular , Péptidos/química , Conformación Proteica
10.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 9): 1180-5, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25195888

RESUMEN

The chloroplastic Arabidopsis thaliana Nfs2 (AtNfs2) is a group II pyridoxal 5'-phosphate-dependent cysteine desulfurase that is involved in the initial steps of iron-sulfur cluster biogenesis. The group II cysteine desulfurases require the presence of sulfurtransferases such as SufE proteins for optimal activity. Compared with group I cysteine desulfurases, proteins of this group contains a smaller extended lobe harbouring the catalytic cysteine and have a ß-hairpin constraining the active site. Here, two crystal structures of AtNfs2 are reported: a wild-type form with the catalytic cysteine in a persulfide-intermediate state and a C384S variant mimicking the resting state of the enzyme. In both structures the well conserved Lys241 covalently binds pyridoxal 5'-phosphate, forming an internal aldimine. Based on available homologous bacterial complexes, a model of a complex between AtNfs2 and the SufE domain of its biological partner AtSufE1 is proposed, revealing the nature of the binding sites.


Asunto(s)
Proteínas de Arabidopsis/química , Liasas de Carbono-Azufre/química , Plastidios/enzimología , Secuencia de Bases , Cristalografía por Rayos X , Cartilla de ADN , Modelos Moleculares , Conformación Proteica
11.
FEBS Lett ; 586(22): 3944-50, 2012 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-23058289

RESUMEN

SpLigG is one of the three glutathione transferases (GSTs) involved in the process of lignin breakdown in the soil bacterium Sphingobium sp. SYK-6. Sequence comparisons showed that SpLigG and several proteobacteria homologues form an independent cluster within cysteine-containing GSTs. The relationship between SpLigG and other GSTs was investigated. The X-ray structure and biochemical properties of SpLigG indicate that this enzyme belongs to the omega class of glutathione transferases. However, the hydrophilic substrate binding site of SpLigG, together with its known ability to stereoselectively deglutathionylate the physiological substrate α-glutathionyl-ß-hydroxypropiovanillone, argues for broadening the definition of the omega class.


Asunto(s)
Proteínas Bacterianas/metabolismo , Glutatión Transferasa/metabolismo , Lignina/metabolismo , Sphingomonadaceae/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión/genética , Biocatálisis , Cristalografía por Rayos X , Cisteína/química , Cisteína/genética , Cisteína/metabolismo , Glutatión/química , Glutatión/metabolismo , Glutatión Transferasa/clasificación , Glutatión Transferasa/genética , Isoenzimas/clasificación , Isoenzimas/genética , Isoenzimas/metabolismo , Lignina/química , Modelos Moleculares , Estructura Molecular , Mutagénesis Sitio-Dirigida , Filogenia , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Sphingomonadaceae/genética , Especificidad por Sustrato
13.
FEBS Lett ; 584(18): 3962-8, 2010 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-20691685

RESUMEN

ß1,4-Galactosyltransferase 7 (ß4GalT7) is a key enzyme initiating glycosaminoglycan (GAG) synthesis. Based on in vitro and ex vivo kinetics studies and structure-based modelling, we molecularly characterized ß4GalT7 mutants linked to the progeroid form of Ehlers-Danlos syndrome (EDS), a severe connective tissue disorder. Our results revealed that loss of activity upon L206P substitution due to altered protein folding is the primary cause for the GAG synthesis defect in patients carrying the compound A186D and L206P mutations. We showed that R270C substitution strongly reduced ß4GalT7 affinity towards xyloside acceptor, thus affecting GAG chains formation. This study establishes the molecular basis for ß4GalT7 defects associated with altered GAG synthesis in EDS.


Asunto(s)
Síndrome de Ehlers-Danlos/enzimología , Galactosiltransferasas/metabolismo , Glicosaminoglicanos/biosíntesis , Animales , Células CHO , Cricetinae , Cricetulus , Síndrome de Ehlers-Danlos/genética , Galactosiltransferasas/química , Galactosiltransferasas/genética , Humanos , Modelos Moleculares , Mutación
14.
J Biol Chem ; 282(50): 36514-24, 2007 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-17956868

RESUMEN

The human UDP-glucuronosyltransferase UGT1A6 is the primary phenol-metabolizing UDP-glucuronosyltransferase isoform. It catalyzes the nucleophilic attack of phenolic xenobiotics on UDP-glucuronic acid, leading to the formation of water-soluble glucuronides. The catalytic mechanism proposed for this reaction is an acid-base mechanism that involves an aspartic/glutamic acid and/or histidine residue. Here, we investigated the role of 14 highly conserved aspartic/glutamic acid residues over the entire sequence of human UGT1A6 by site-directed mutagenesis. We showed that except for aspartic residues Asp-150 and Asp-488, the substitution of carboxylic residues by alanine led to active mutants but with decreased enzyme activity and lower affinity for acceptor and/or donor substrate. Further analysis including mutation of the corresponding residue in other UGT1A isoforms suggests that Asp-150 plays a major catalytic role. In this report we also identified a single active site residue important for glucuronidation of phenols and carboxylic acid substrates by UGT1A enzyme family. Replacing Pro-40 of UGT1A4 by histidine expanded the glucuronidation activity of the enzyme to phenolic and carboxylic compounds, therefore, leading to UGT1A3-type isoform in terms of substrate specificity. Conversely, when His-40 residue of UGT1A3 was replaced with proline, the substrate specificity shifted toward that of UGT1A4 with loss of glucuronidation of phenolic substrates. Furthermore, mutation of His-39 residue of UGT1A1 (His-40 in UGT1A4) to proline led to loss of glucuronidation of phenols but not of estrogens. This study provides a step forward to better understand the glucuronidation mechanism and substrate recognition, which is invaluable for a better prediction of drug metabolism and toxicity in human.


Asunto(s)
Ácido Aspártico/química , Glucuronosiltransferasa/química , Histidina/química , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Catálisis , Ácido Glucurónico/química , Ácido Glucurónico/metabolismo , Glucuronosiltransferasa/genética , Histidina/genética , Histidina/metabolismo , Humanos , Mutagénesis Sitio-Dirigida , Fenoles/química , Fenoles/metabolismo , Especificidad por Sustrato/genética , Xenobióticos/química
15.
Glycobiology ; 17(8): 857-67, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17567734

RESUMEN

The human beta1,3-glucuronosyltransferases galactose-beta1,3-glucuronosyltransferase I (GlcAT-I) and galactose-beta1,3-glucuronosyltransferase P (GlcAT-P) are key enzymes involved in proteoglycan and HNK-1 carbohydrate epitope synthesis, respectively. Analysis of their acceptor specificity revealed that GlcAT-I was selective toward Galbeta1,3Gal (referred to as Gal2-Gal1), whereas GlcAT-P presented a broader profile. To understand the molecular basis of acceptor substrate recognition, we constructed mutants and chimeric enzymes based on multiple sequence alignment and structural information. The drastic effect of mutations of Glu227, Arg247, Asp252, and Glu281 on GlcAT-I activity indicated a key role for the hydrogen bond network formed by these four conserved residues in dictating Gal2 binding. Investigation of GlcAT-I determinants governing Gal1 recognition showed that Trp243 could not be replaced by its counterpart Phe in GlcAT-P. This result combined with molecular modeling provided evidence for the importance of stacking interactions with Trp at position 243 in the selectivity of GlcAT-I toward Galbeta1,3Gal. Mutation of Gln318 predicted to be hydrogen-bonded to 6-hydroxyl of Gal1 had little effect on GlcAT-I activity, reinforcing the role of Trp243 in Gal1 binding. Substitution of Phe245 in GlcAT-P by Ala selectively abolished Galbeta1,3Gal activity, also highlighting the importance of an aromatic residue at this position in defining the specificity of GlcAT-P. Finally, substituting Phe245, Val320, or Asn321 in GlcAT-P predicted to interact with N-acetylglucosamine (GlcNAc), by their counterpart in GlcAT-I, moderately affected the activity toward the reference substrate of GlcAT-P, N-acetyllactosamine, indicating that its active site tolerates amino acid substitutions, an observation that parallels its promiscuous substrate profile. Taken together, the data clearly define key residues governing the specificity of beta1,3-glucuronosyltransferases.


Asunto(s)
Antígenos CD57/biosíntesis , Epítopos/biosíntesis , Glucuronosiltransferasa/química , Glucuronosiltransferasa/metabolismo , Glicosaminoglicanos/biosíntesis , Secuencia de Aminoácidos , Sitios de Unión , Antígenos CD57/química , Antígenos CD57/inmunología , Glicosaminoglicanos/química , Glicosaminoglicanos/inmunología , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Especificidad por Sustrato
16.
J Biol Chem ; 280(2): 1417-25, 2005 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-15522873

RESUMEN

We determined whether the two major structural modifications, i.e. phosphorylation and sulfation of the glycosaminoglycan-protein linkage region (GlcAbeta1-3Galbeta1-3Galbeta1-4Xylbeta1), govern the specificity of the glycosyltransferases responsible for the biosynthesis of the tetrasaccharide primer. We analyzed the influence of C-2 phosphorylation of Xyl residue on human beta1,4-galactosyltransferase 7 (GalT-I), which catalyzes the transfer of Gal onto Xyl, and we evaluated the consequences of C-4/C-6 sulfation of Galbeta1-3Gal (Gal2-Gal1) on the activity and specificity of beta1,3-glucuronosyltransferase I (GlcAT-I) responsible for the completion of the glycosaminoglycan primer sequence. For this purpose, a series of phosphorylated xylosides and sulfated C-4 and C-6 analogs of Galbeta1-3Gal was synthesized and tested as potential substrates for the recombinant enzymes. Our results revealed that the phosphorylation of Xyl on the C-2 position prevents GalT-I activity, suggesting that this modification may occur once Gal is attached to the Xyl residue of the nascent oligosaccharide linkage. On the other hand, we showed that sulfation on C-6 position of Gal1 of the Galbeta1-3Gal analog markedly enhanced GlcAT-I catalytic efficiency and we demonstrated the importance of Trp243 and Lys317 residues of Gal1 binding site for enzyme activity. In contrast, we found that GlcAT-I was unable to use digalactosides as acceptor substrates when Gal1 was sulfated on C-4 position or when Gal2 was sulfated on both C-4 and C-6 positions. Altogether, we demonstrated that oligosaccharide modifications of the linkage region control the specificity of the glycosyltransferases, a process that may regulate maturation and processing of glycosaminoglycan chains.


Asunto(s)
Galactosiltransferasas/metabolismo , Glucuronosiltransferasa/metabolismo , Glicosaminoglicanos/metabolismo , Oligosacáridos/metabolismo , Proteoglicanos/biosíntesis , Azufre/metabolismo , Sitios de Unión , Secuencia de Carbohidratos , Cromatografía Líquida de Alta Presión , Galactosiltransferasas/química , Glucuronosiltransferasa/química , Glicosaminoglicanos/química , Humanos , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Mutación/genética , Fosforilación , Proteoglicanos/química , Especificidad por Sustrato
17.
Eur J Biochem ; 271(23-24): 4737-44, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15606760

RESUMEN

The glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in the chloroplast of Chlamydomonas reinhardtii is part of a complex that also includes phosphoribulokinase (PRK) and CP12. We identified two residues of GAPDH involved in protein-protein interactions in this complex, by changing residues K128 and R197 into A or E. K128A/E mutants had a Km for NADH that was twice that of the wild type and a lower catalytic constant, whatever the cofactor. The kinetics of the mutant R197A were similar to those of the wild type, while the R197E mutant had a lower catalytic constant with NADPH. Only small structural changes near the mutation may have caused these differences, since circular dichroism and fluorescence spectra were similar to those of wild-type GAPDH. Molecular modelling of the mutants led to the same conclusion. All mutants, except R197E, reconstituted the GAPDH-CP12 subcomplex. Although the dissociation constants measured by surface plasmon resonance were 10-70-fold higher with the mutants than with wild-type GAPDH and CP12, they remained low. For the R197E mutation, we calculated a 4 kcal/mol destabilizing effect, which may correspond to the loss of the stabilizing effect of a salt bridge for the interaction between GAPDH and CP12. All the mutant GAPDH-CP12 subcomplexes failed to interact with PRK and to form the native complex. The absence of kinetic changes of all the mutant GAPDH-CP12 subcomplexes, compared to wild-type GAPDH-CP12, suggests that mutants do not undergo the conformation change essential for PRK binding.


Asunto(s)
Dióxido de Carbono/metabolismo , Chlamydomonas reinhardtii/enzimología , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Secuencia de Aminoácidos , Animales , Catálisis , Gliceraldehído-3-Fosfato Deshidrogenasas/química , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Homología de Secuencia de Aminoácido
18.
J Biol Chem ; 278(34): 32219-26, 2003 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-12794088

RESUMEN

The human beta 1,3-glucuronosyltransferase I (GlcAT-I) is the key enzyme responsible for the completion of glycosaminoglycan-protein linkage tetrasaccharide of proteoglycans (GlcA beta 1,3Gal beta 1,3Gal beta 1,4Xyl beta 1-O-serine). We have investigated the role of aspartate residues Asp194-Asp195-Asp196 corresponding to the glycosyltransferase DXD signature motif, in GlcAT-I function by UDP binding experiments, kinetic analyses, and site-directed mutagenesis. We presented the first evidence that Mn2+ is not only essential for GlcAT-I activity but is also required for cosubstrate binding. In agreement, kinetic studies were consistent with a metal-activated enzyme model whereby activation probably occurs via binding of a Mn2+.UDP-GlcA complex to the enzyme. Mutational analysis showed that the Asp194-Asp195-Asp196 motif is a major element of the UDP/Mn2+ binding site. Furthermore, determination of the individual role of each aspartate showed that substitution of Asp195 as well as Asp196 to alanine strongly impaired GlcAT-I activity, whereas Asp194 replacement produced only a moderate alteration of the enzyme activity. These findings along with molecular modeling and three-dimensional structure comparison of the GlcAT-I catalytic center with that of the Bacillus subtilis glycosyltransferase SpsA provided evidence that the interactions of Asp195 with the ribose moiety of UDP and of Asp196 with the metal cation Mn2+ were crucial for GlcAT-I function. Altogether, these results indicated that, similarly to the SpsA enzyme, the nucleotide binding site of GlcAT-I contains a XDD motif rather than a DXD motif.


Asunto(s)
Secuencias de Aminoácidos , Glucuronosiltransferasa/metabolismo , Secuencia de Bases , Cartilla de ADN , Activación Enzimática , Glucuronosiltransferasa/química , Glucuronosiltransferasa/genética , Humanos , Cinética , Manganeso/metabolismo , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA