RESUMEN
Horses revolutionized human history with fast mobility1. However, the timeline between their domestication and their widespread integration as a means of transport remains contentious2-4. Here we assemble a collection of 475 ancient horse genomes to assess the period when these animals were first reshaped by human agency in Eurasia. We find that reproductive control of the modern domestic lineage emerged around 2200 BCE, through close-kin mating and shortened generation times. Reproductive control emerged following a severe domestication bottleneck starting no earlier than approximately 2700 BCE, and coincided with a sudden expansion across Eurasia that ultimately resulted in the replacement of nearly every local horse lineage. This expansion marked the rise of widespread horse-based mobility in human history, which refutes the commonly held narrative of large horse herds accompanying the massive migration of steppe peoples across Europe around 3000 BCE and earlier3,5. Finally, we detect significantly shortened generation times at Botai around 3500 BCE, a settlement from central Asia associated with corrals and a subsistence economy centred on horses6,7. This supports local horse husbandry before the rise of modern domestic bloodlines.
Asunto(s)
Crianza de Animales Domésticos , Domesticación , Caballos , Transportes , Animales , Femenino , Masculino , Crianza de Animales Domésticos/historia , Asia , Europa (Continente) , Genoma/genética , Historia Antigua , Caballos/clasificación , Caballos/genética , Reproducción , Transportes/historia , Transportes/métodos , FilogeniaRESUMEN
Ancient genomic analyses are often restricted to utilizing pseudohaploid data due to low genome coverage. Leveraging low-coverage data by imputation to calculate phased diploid genotypes that enables haplotype-based interrogation and single nucleotide polymorphism (SNP) calling at unsequenced positions is highly desirable. This has not been investigated for ancient cattle genomes despite these being compelling subjects for archeological, evolutionary, and economic reasons. Here, we test this approach by sequencing a Mesolithic European aurochs (18.49×; 9,852 to 9,376 calBCE) and an Early Medieval European cow (18.69×; 427 to 580 calCE) and combine these with published individuals: two ancient and three modern. We downsample these genomes (0.25×, 0.5×, 1.0×, and 2.0×) and impute diploid genotypes, utilizing a reference panel of 171 published modern cattle genomes that we curated for 21.7 million (Mn) phased SNPs. We recover high densities of correct calls with an accuracy of >99.1% at variant sites for the lowest downsample depth of 0.25×, increasing to >99.5% for 2.0× (transversions only, minor allele frequency [MAF] ≥ 2.5%). The recovery of SNPs correlates with coverage; on average, 58% of sites are recovered for 0.25× increasing to 87% for 2.0×, utilizing an average of 3.5 million (Mn) transversions (MAF ≥2.5%), even in the aurochs, despite the highest temporal distance from the modern reference panel. Our imputed genomes behave similarly to directly called data in allele frequency-based analyses, for example consistently identifying runs of homozygosity >2â Mb, including a long homozygous region in the Mesolithic European aurochs.
Asunto(s)
Genoma , Polimorfismo de Nucleótido Simple , Animales , Bovinos/genética , ADN Antiguo/análisis , Haplotipos , Genotipo , Genómica/métodosRESUMEN
Determining when animal populations have experienced stress in the past is fundamental to understanding how risk factors drive contemporary and future species' responses to environmental change. For insects, quantifying stress and associating it with environmental factors has been challenging due to a paucity of time-series data and because detectable population-level responses can show varying lag effects. One solution is to leverage historic entomological specimens to detect morphological proxies of stress experienced at the time stressors emerged, allowing us to more accurately determine population responses. Here we studied specimens of four bumblebee species, an invaluable group of insect pollinators, from five museums collected across Britain over the 20th century. We calculated the degree of fluctuating asymmetry (FA; random deviations from bilateral symmetry) between the right and left forewings as a potential proxy of developmental stress. We: (a) investigated whether baseline FA levels vary between species, and how this compares between the first and second half of the century; (b) determined the extent of FA change over the century in the four bumblebee species, and whether this followed a linear or nonlinear trend; (c) tested which annual climatic conditions correlated with increased FA in bumblebees. Species differed in their baseline FA, with FA being higher in the two species that have recently expanded their ranges in Britain. Overall, FA significantly increased over the century but followed a nonlinear trend, with the increase starting c. 1925. We found relatively warm and wet years were associated with higher FA. Collectively our findings show that FA in bumblebees increased over the 20th century and under weather conditions that will likely increase in frequency with climate change. By plotting FA trends and quantifying the contribution of annual climate conditions on past populations, we provide an important step towards improving our understanding of how environmental factors could impact future populations of wild beneficial insects.
Asunto(s)
Cambio Climático , Museos , Animales , AbejasRESUMEN
Local wild bovids have been determined to be important prey on the northeastern Tibetan Plateau (NETP), where hunting game was a major subsistence strategy until the late Neolithic, when farming lifestyles dominated in the neighboring Loess Plateau. However, the species affiliation and population ecology of these prehistoric wild bovids in the prehistoric NETP remain unknown. Ancient DNA (aDNA) analysis is highly informative in decoding this puzzle. Here, we applied aDNA analysis to fragmented bovid and rhinoceros specimens dating â¼5,200 y B.P. from the Neolithic site of Shannashuzha located in the marginal area of the NETP. Utilizing both whole genomes and mitochondrial DNA, our results demonstrate that the range of the present-day tropical gaur (Bos gaurus) extended as far north as the margins of the NETP during the late Neolithic from â¼29°N to â¼34°N. Furthermore, comparative analysis with zooarchaeological and paleoclimatic evidence indicated that a high summer temperature in the late Neolithic might have facilitated the northward expansion of tropical animals (at least gaur and Sumatran-like rhinoceros) to the NETP. This enriched the diversity of wildlife, thus providing abundant hunting resources for humans and facilitating the exploration of the Tibetan Plateau as one of the last habitats for hunting game in East Asia.
Asunto(s)
Biodiversidad , Bovinos , ADN Antiguo/análisis , Genoma/genética , Migración Animal , Animales , Bovinos/clasificación , Bovinos/genética , ADN Mitocondrial , Historia Antigua , Fenómenos de Retorno al Lugar Habitual , Humanos , Perisodáctilos/clasificación , Perisodáctilos/genética , Dinámica Poblacional/historia , Rumiantes/clasificación , Rumiantes/genética , TibetRESUMEN
Archaeological evidence indicates that pig domestication had begun by â¼10,500 y before the present (BP) in the Near East, and mitochondrial DNA (mtDNA) suggests that pigs arrived in Europe alongside farmers â¼8,500 y BP. A few thousand years after the introduction of Near Eastern pigs into Europe, however, their characteristic mtDNA signature disappeared and was replaced by haplotypes associated with European wild boars. This turnover could be accounted for by substantial gene flow from local European wild boars, although it is also possible that European wild boars were domesticated independently without any genetic contribution from the Near East. To test these hypotheses, we obtained mtDNA sequences from 2,099 modern and ancient pig samples and 63 nuclear ancient genomes from Near Eastern and European pigs. Our analyses revealed that European domestic pigs dating from 7,100 to 6,000 y BP possessed both Near Eastern and European nuclear ancestry, while later pigs possessed no more than 4% Near Eastern ancestry, indicating that gene flow from European wild boars resulted in a near-complete disappearance of Near East ancestry. In addition, we demonstrate that a variant at a locus encoding black coat color likely originated in the Near East and persisted in European pigs. Altogether, our results indicate that while pigs were not independently domesticated in Europe, the vast majority of human-mediated selection over the past 5,000 y focused on the genomic fraction derived from the European wild boars, and not on the fraction that was selected by early Neolithic farmers over the first 2,500 y of the domestication process.
Asunto(s)
ADN Antiguo , ADN Mitocondrial/genética , Domesticación , Flujo Génico , Filogenia , Porcinos/genética , Animales , Europa (Continente) , Historia Antigua , Medio Oriente , Pigmentación de la Piel/genéticaRESUMEN
Occupied between ~10,300 and 9300 years ago, the Pre-Pottery Neolithic site of Asikli Höyük in Central Anatolia went through early phases of sheep domestication. Analysis of 629 mitochondrial genomes from this and numerous sites in Anatolia, southwest Asia, Europe, and Africa produced a phylogenetic tree with excessive coalescences (nodes) around the Neolithic, a potential signature of a domestication bottleneck. This is consistent with archeological evidence of sheep management at Asikli Höyük which transitioned from residential stabling to open pasturing over a millennium of site occupation. However, unexpectedly, we detected high genetic diversity throughout Asikli Höyük's occupation rather than a bottleneck. Instead, we detected a tenfold demographic bottleneck later in the Neolithic, which caused the fixation of mitochondrial haplogroup B in southwestern Anatolia. The mitochondrial genetic makeup that emerged was carried from the core region of early Neolithic sheep management into Europe and dominates the matrilineal diversity of both its ancient and the billion-strong modern sheep populations.
Asunto(s)
Genoma Mitocondrial , Animales , Ovinos/genética , Filogenia , Oveja Doméstica/genética , Turquía , ÁfricaRESUMEN
The recovery and analysis of ancient DNA and protein from archaeological bone is time-consuming and expensive to carry out, while it involves the partial or complete destruction of valuable or rare specimens. The fields of palaeogenetic and palaeoproteomic research would benefit greatly from techniques that can assess the molecular quality prior to sampling. To be relevant, such screening methods should be effective, minimally-destructive, and rapid. This study reports results based on spectroscopic (Fourier-transform infrared spectroscopy in attenuated total reflectance [FTIR-ATR]; n = 266), palaeoproteomic (collagen content; n = 226), and palaeogenetic (endogenous DNA content; n = 88) techniques. We establish thresholds for three different FTIR indices, a) the infrared splitting factor [IRSF] that assesses relative changes in bioapatite crystals' size and homogeneity; b) the carbonate-to-phosphate [C/P] ratio as a relative measure of carbonate content in bioapatite crystals; and c) the amide-to-phosphate ratio [Am/P] for assessing the relative organic content preserved in bone. These thresholds are both extremely reliable and easy to apply for the successful and rapid distinction between well- and poorly-preserved specimens. This is a milestone for choosing appropriate samples prior to genomic and collagen analyses, with important implications for biomolecular archaeology and palaeontology.
Asunto(s)
Arqueología , Huesos/química , ADN Antiguo/análisis , Fósiles , Proteómica , Animales , Huesos/metabolismo , ADN Antiguo/química , Humanos , Espectroscopía Infrarroja por Transformada de FourierRESUMEN
Tetraploid emmer wheat (Triticum turgidum ssp. dicoccon) is a progenitor of the world's most widely grown crop, hexaploid bread wheat (Triticum aestivum), as well as the direct ancestor of tetraploid durum wheat (T. turgidum subsp. turgidum). Emmer was one of the first cereals to be domesticated in the old world; it was cultivated from around 9700 BC in the Levant1,2 and subsequently in south-western Asia, northern Africa and Europe with the spread of Neolithic agriculture3,4. Here, we report a whole-genome sequence from a museum specimen of Egyptian emmer wheat chaff, 14C dated to the New Kingdom, 1130-1000 BC. Its genome shares haplotypes with modern domesticated emmer at loci that are associated with shattering, seed size and germination, as well as within other putative domestication loci, suggesting that these traits share a common origin before the introduction of emmer to Egypt. Its genome is otherwise unusual, carrying haplotypes that are absent from modern emmer. Genetic similarity with modern Arabian and Indian emmer landraces connects ancient Egyptian emmer with early south-eastern dispersals, whereas inferred gene flow with wild emmer from the Southern Levant signals a later connection. Our results show the importance of museum collections as sources of genetic data to uncover the history and diversity of ancient cereals.
Asunto(s)
Domesticación , Genoma de Planta , Triticum/genética , ADN de Plantas , Grano Comestible/historia , Egipto , Historia Antigua , Filogenia , Análisis de Secuencia de ADNRESUMEN
Genome-wide analysis of 67 ancient Near Eastern cattle, Bos taurus, remains reveals regional variation that has since been obscured by admixture in modern populations. Comparisons of genomes of early domestic cattle to their aurochs progenitors identify diverse origins with separate introgressions of wild stock. A later region-wide Bronze Age shift indicates rapid and widespread introgression of zebu, Bos indicus, from the Indus Valley. This process was likely stimulated at the onset of the current geological age, ~4.2 thousand years ago, by a widespread multicentury drought. In contrast to genome-wide admixture, mitochondrial DNA stasis supports that this introgression was male-driven, suggesting that selection of arid-adapted zebu bulls enhanced herd survival. This human-mediated migration of zebu-derived genetics has continued through millennia, altering tropical herding on each continent.
Asunto(s)
Bovinos/genética , Domesticación , Animales , ADN Mitocondrial/genética , Evolución Molecular , Fertilidad , Genoma , Genómica , Migración HumanaRESUMEN
Current genetic data are equivocal as to whether goat domestication occurred multiple times or was a singular process. We generated genomic data from 83 ancient goats (51 with genome-wide coverage) from Paleolithic to Medieval contexts throughout the Near East. Our findings demonstrate that multiple divergent ancient wild goat sources were domesticated in a dispersed process that resulted in genetically and geographically distinct Neolithic goat populations, echoing contemporaneous human divergence across the region. These early goat populations contributed differently to modern goats in Asia, Africa, and Europe. We also detect early selection for pigmentation, stature, reproduction, milking, and response to dietary change, providing 8000-year-old evidence for human agency in molding genome variation within a partner species.
Asunto(s)
Domesticación , Cabras/genética , Mosaicismo , África , Animales , Animales Domésticos/clasificación , Animales Domésticos/genética , Asia , ADN Antiguo , ADN Mitocondrial/genética , Europa (Continente) , Folistatina/genética , Variación Genética , Genoma , Cabras/clasificación , FilogeniaRESUMEN
The geographic and temporal origins of dogs remain controversial. We generated genetic sequences from 59 ancient dogs and a complete (28x) genome of a late Neolithic dog (dated to ~4800 calendar years before the present) from Ireland. Our analyses revealed a deep split separating modern East Asian and Western Eurasian dogs. Surprisingly, the date of this divergence (~14,000 to 6400 years ago) occurs commensurate with, or several millennia after, the first appearance of dogs in Europe and East Asia. Additional analyses of ancient and modern mitochondrial DNA revealed a sharp discontinuity in haplotype frequencies in Europe. Combined, these results suggest that dogs may have been domesticated independently in Eastern and Western Eurasia from distinct wolf populations. East Eurasian dogs were then possibly transported to Europe with people, where they partially replaced European Paleolithic dogs.