Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Planta ; 256(3): 59, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35984573

RESUMEN

MAIN CONCLUSION: The feruloylarabinoxylan deposition was initiated at the formation of the secondary cell wall, especially S2 layer in moso bamboo, which may affect crosslinking between cell wall components and plant growth. Hemicelluloses, major components of plant cell walls that are hydrogen bonded to cellulose and covalently bound to lignin, are crucial determinants of cell wall properties. Especially in commelinid monocotyledons, arabinoxylan is often esterified with ferulic acid, which is essential to crosslinking with cell wall components. However, the deposition patterns and localization of ferulic acid during cell wall formation remain unclear. In this study, developing moso bamboo (Phyllostachys pubescens) culms were used to elucidate deposition patterns of hemicelluloses including feruloylarabinoxylan. Ferulic acid content peaked with cessation of elongation growth, and thereafter decreased and remained stable as culm development proceeded. During primary cell wall (PCW) formation, xyloglucan and (1,3;1,4)-ß-glucan signals were detected in all tissues. Along with culm development, arabinoxylan and feruloylarabinoxylan signals were sequentially observed in the protoxylem, vascular fibers and metaxylem, and parenchyma. Feruloylarabinoxylan signals were observed slightly later than arabinoxylan signals. Arabinoxylan signals were observed throughout the compound middle lamella and secondary cell wall (SCW), whereas the feruloylarabinoxylan signal was localized to the S2 layer of the SCW. These results indicate that the biosynthesis of hemicelluloses is regulated in accordance with cell wall layers. Feruloylarabinoxylan deposition may be initiated at the formation of SCW, especially S2 layer formation. Ferulic acid-mediated linkages of arabinoxylan-arabinoxylan and arabinoxylan-lignin would arise during SCW formation with the cessation of elongation growth.


Asunto(s)
Lignina , beta-Glucanos , Pared Celular/metabolismo , Celulosa/metabolismo , Lignina/metabolismo , Poaceae/metabolismo , beta-Glucanos/metabolismo
2.
Plants (Basel) ; 10(11)2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34834600

RESUMEN

Lignin is the second most abundant natural polymer on Earth and is a major cell wall component in vascular plants. Lignin biosynthesis has three stages: biosynthesis, transport, and polymerization of its precursors. However, there is limited knowledge on lignin precursor transport, especially in monocots. In the present study, we aimed to elucidate the transport mode of lignin monomers in the lignifying tissues of bamboo (Phyllostachys pubescens). The growth manners and lignification processes of bamboo shoots were elucidated, which enabled us to obtain the lignifying tissues reproducibly. Microsomal membrane fractions were prepared from tissues undergoing vigorous lignification to analyze the transport activities of lignin precursors in order to show the ATP-dependent transport of coniferin and p-glucocoumaryl alcohol. The transport activities for both precursors depend on vacuolar type H+-ATPase and a H+ gradient across the membrane, suggesting that the electrochemical potential is the driving force of the transport of both substrates. These findings are similar to the transport properties of these lignin precursors in the differentiating xylem of poplar and Japanese cypress. Our findings suggest that transport of coniferin and p-glucocoumaryl alcohol is mediated by secondary active transporters energized partly by the vacuolar type H+-ATPase, which is common in lignifying tissues. The loading of these lignin precursors into endomembrane compartments may contribute to lignification in vascular plants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA