Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Proc Natl Acad Sci U S A ; 110(27): 10964-9, 2013 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-23781103

RESUMEN

Codon use among the three domains of life is not confined to the universal genetic code. With only 22 tRNA genes in mammalian mitochondria, exceptions from the universal code are necessary for proper translation. A particularly interesting deviation is the decoding of the isoleucine AUA codon as methionine by the one mitochondrial-encoded tRNA(Met). This tRNA decodes AUA and AUG in both the A- and P-sites of the metazoan mitochondrial ribosome. Enrichment of posttranscriptional modifications is a commonly appropriated mechanism for modulating decoding rules, enabling some tRNA functions while restraining others. In this case, a modification of cytidine, 5-formylcytidine (f(5)C), at the wobble position-34 of human mitochondrial tRNA(f5CAU)(Met) (hmtRNA(f5CAU)(Met)) enables expanded decoding of AUA, resulting in a deviation in the genetic code. Visualization of the codon•anticodon interaction by X-ray crystallography revealed that recognition of both A and G at the third position of the codon occurs in the canonical Watson-Crick geometry. A modification-dependent shift in the tautomeric equilibrium toward the rare imino-oxo tautomer of cytidine stabilizes the f(5)C34•A base pair geometry with two hydrogen bonds.


Asunto(s)
Codón/química , Codón/genética , ARN de Transferencia/química , ARN de Transferencia/genética , Emparejamiento Base , Cristalografía por Rayos X , Citidina/análogos & derivados , Citidina/química , Humanos , Isomerismo , Modelos Moleculares , Conformación de Ácido Nucleico , ARN de Transferencia de Metionina/química , ARN de Transferencia de Metionina/genética
2.
Biochemistry ; 54(48): 7142-55, 2015 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-26598179

RESUMEN

Geosmin synthase from Streptomyces coelicolor (ScGS) catalyzes an unusual, metal-dependent terpenoid cyclization and fragmentation reaction sequence. Two distinct active sites are required for catalysis: the N-terminal domain catalyzes the ionization and cyclization of farnesyl diphosphate to form germacradienol and inorganic pyrophosphate (PPi), and the C-terminal domain catalyzes the protonation, cyclization, and fragmentation of germacradienol to form geosmin and acetone through a retro-Prins reaction. A unique αα domain architecture is predicted for ScGS based on amino acid sequence: each domain contains the metal-binding motifs typical of a class I terpenoid cyclase, and each domain requires Mg(2+) for catalysis. Here, we report the X-ray crystal structure of the unliganded N-terminal domain of ScGS and the structure of its complex with three Mg(2+) ions and alendronate. These structures highlight conformational changes required for active site closure and catalysis. Although neither full-length ScGS nor constructs of the C-terminal domain could be crystallized, homology models of the C-terminal domain were constructed on the basis of ∼36% sequence identity with the N-terminal domain. Small-angle X-ray scattering experiments yield low-resolution molecular envelopes into which the N-terminal domain crystal structure and the C-terminal domain homology model were fit, suggesting possible αα domain architectures as frameworks for bifunctional catalysis.


Asunto(s)
Alendronato/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Naftoles/metabolismo , Sesquiterpenos/metabolismo , Streptomyces coelicolor/enzimología , Cristalografía por Rayos X , Ciclización , Magnesio/metabolismo , Modelos Moleculares , Fosfatos de Poliisoprenilo/metabolismo , Estructura Terciaria de Proteína , Streptomyces coelicolor/química , Streptomyces coelicolor/metabolismo
3.
RNA ; 19(12): 1791-801, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24152548

RESUMEN

The ribosome decodes mRNA by monitoring the geometry of codon-anticodon base-pairing using a set of universally conserved 16S rRNA nucleotides within the conformationally dynamic decoding site. By applying single-molecule FRET and X-ray crystallography, we have determined that conditional-lethal, streptomycin-dependence mutations in ribosomal protein S12 interfere with tRNA selection by allowing conformational distortions of the decoding site that impair GTPase activation of EF-Tu during the tRNA selection process. Distortions in the decoding site are reversed by streptomycin or by a second-site suppressor mutation in 16S rRNA. These observations encourage a refinement of the current model for decoding, wherein ribosomal protein S12 and the decoding site collaborate to optimize codon recognition and substrate discrimination during the early stages of the tRNA selection process.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Ribosómicas/química , Thermus thermophilus/genética , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Sitios de Unión , Cristalografía por Rayos X , Escherichia coli , Modelos Moleculares , Conformación de Ácido Nucleico , Mutación Puntual , Unión Proteica , Subunidades de Proteína/química , Subunidades de Proteína/genética , ARN de Transferencia de Fenilalanina/química , Proteínas Ribosómicas/genética , Ribosomas/química
4.
Antimicrob Agents Chemother ; 58(8): 4308-17, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24820088

RESUMEN

Streptomycin is a bactericidal antibiotic that induces translational errors. It binds to the 30S ribosomal subunit, interacting with ribosomal protein S12 and with 16S rRNA through contacts with the phosphodiester backbone. To explore the structural basis for streptomycin resistance, we determined the X-ray crystal structures of 30S ribosomal subunits from six streptomycin-resistant mutants of Thermus thermophilus both in the apo form and in complex with streptomycin. Base substitutions at highly conserved residues in the central pseudoknot of 16S rRNA produce novel hydrogen-bonding and base-stacking interactions. These rearrangements in secondary structure produce only minor adjustments in the three-dimensional fold of the pseudoknot. These results illustrate how antibiotic resistance can occur as a result of small changes in binding site conformation.


Asunto(s)
Farmacorresistencia Bacteriana/genética , Mutación Puntual , ARN Ribosómico 16S/metabolismo , Proteínas Ribosómicas/química , Subunidades Ribosómicas Pequeñas Bacterianas/química , Antibacterianos/química , Antibacterianos/farmacología , Emparejamiento Base , Secuencia de Bases , Sitios de Unión , Cristalografía por Rayos X , Enlace de Hidrógeno , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Biosíntesis de Proteínas/efectos de los fármacos , ARN Ribosómico 16S/química , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/efectos de los fármacos , Subunidades Ribosómicas Pequeñas Bacterianas/genética , Estreptomicina/química , Estreptomicina/farmacología , Thermus thermophilus/química , Thermus thermophilus/efectos de los fármacos , Thermus thermophilus/genética
5.
EMBO J ; 28(6): 755-65, 2009 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-19229291

RESUMEN

We have used single-particle reconstruction in cryo-electron microscopy to determine a structure of the Thermus thermophilus ribosome in which the ternary complex of elongation factor Tu (EF-Tu), tRNA and guanine nucleotide has been trapped on the ribosome using the antibiotic kirromycin. This represents the state in the decoding process just after codon recognition by tRNA and the resulting GTP hydrolysis by EF-Tu, but before the release of EF-Tu from the ribosome. Progress in sample purification and image processing made it possible to reach a resolution of 6.4 A. Secondary structure elements in tRNA, EF-Tu and the ribosome, and even GDP and kirromycin, could all be visualized directly. The structure reveals a complex conformational rearrangement of the tRNA in the A/T state and the interactions with the functionally important switch regions of EF-Tu crucial to GTP hydrolysis. Thus, the structure provides insights into the molecular mechanism of signalling codon recognition from the decoding centre of the 30S subunit to the GTPase centre of EF-Tu.


Asunto(s)
Factor Tu de Elongación Peptídica/metabolismo , Ribosomas/enzimología , Thermus thermophilus/enzimología , Microscopía por Crioelectrón , Activación Enzimática , Guanosina Difosfato/química , Modelos Moleculares , Factor Tu de Elongación Peptídica/química , Factor Tu de Elongación Peptídica/ultraestructura , Estructura Secundaria de Proteína , Piridonas/química , ARN de Transferencia/química , ARN de Transferencia/ultraestructura , Ribosomas/química , Ribosomas/ultraestructura , Electricidad Estática
6.
J Synchrotron Radiat ; 19(Pt 3): 462-7, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22514186

RESUMEN

Early stage experimental data in structural biology is generally unmaintained and inaccessible to the public. It is increasingly believed that this data, which forms the basis for each macromolecular structure discovered by this field, must be archived and, in due course, published. Furthermore, the widespread use of shared scientific facilities such as synchrotron beamlines complicates the issue of data storage, access and movement, as does the increase of remote users. This work describes a prototype system that adapts existing federated cyberinfrastructure technology and techniques to significantly improve the operational environment for users and administrators of synchrotron data collection facilities used in structural biology. This is achieved through software from the Virtual Data Toolkit and Globus, bringing together federated users and facilities from the Stanford Synchrotron Radiation Lightsource, the Advanced Photon Source, the Open Science Grid, the SBGrid Consortium and Harvard Medical School. The performance and experience with the prototype provide a model for data management at shared scientific facilities.


Asunto(s)
Difusión de la Información , Almacenamiento y Recuperación de la Información , Proteínas/química , Programas Informáticos , Sincrotrones , Estados Unidos
7.
Nat Struct Mol Biol ; 14(6): 498-502, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17496902

RESUMEN

One of the most prevalent base modifications involved in decoding is uridine 5-oxyacetic acid at the wobble position of tRNA. It has been known for several decades that this modification enables a single tRNA to decode all four codons in a degenerate codon box. We have determined structures of an anticodon stem-loop of tRNA(Val) containing the modified uridine with all four valine codons in the decoding site of the 30S ribosomal subunit. An intramolecular hydrogen bond involving the modification helps to prestructure the anticodon loop. We found unusual base pairs with the three noncomplementary codon bases, including a G.U base pair in standard Watson-Crick geometry, which presumably involves an enol form for the uridine. These structures suggest how a modification in the uridine at the wobble position can expand the decoding capability of a tRNA.


Asunto(s)
Anticodón/genética , Modelos Moleculares , ARN de Transferencia de Valina/genética , ARN de Transferencia de Valina/fisiología , Uridina/química , Secuencia de Aminoácidos , Emparejamiento Base , Secuencia de Bases , Codón/genética , Cristalografía , Datos de Secuencia Molecular , Estructura Molecular
8.
J Mol Biol ; 432(4): 913-929, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-31945376

RESUMEN

Three of six arginine codons (CGU, CGC, and CGA) are decoded by two Escherichia coli tRNAArg isoacceptors. The anticodon stem and loop (ASL) domains of tRNAArg1 and tRNAArg2 both contain inosine and 2-methyladenosine modifications at positions 34 (I34) and 37 (m2A37). tRNAArg1 is also modified from cytidine to 2-thiocytidine at position 32 (s2C32). The s2C32 modification is known to negate wobble codon recognition of the rare CGA codon by an unknown mechanism, while still allowing decoding of CGU and CGC. Substitution of s2C32 for C32 in the Saccharomyces cerevisiae tRNAIleIAU anticodon stem and loop domain (ASL) negates wobble decoding of its synonymous A-ending codon, suggesting that this function of s2C at position 32 is a generalizable property. X-ray crystal structures of variously modified ASLArg1ICG and ASLArg2ICG constructs bound to cognate and wobble codons on the ribosome revealed the disruption of a C32-A38 cross-loop interaction but failed to fully explain the means by which s2C32 restricts I34 wobbling. Computational studies revealed that the adoption of a spatially broad inosine-adenosine base pair at the wobble position of the codon cannot be maintained simultaneously with the canonical ASL U-turn motif. C32-A38 cross-loop interactions are required for stability of the anticodon/codon interaction in the ribosomal A-site.


Asunto(s)
Codón/genética , Citidina/análogos & derivados , ARN de Transferencia/metabolismo , Biología Computacional , Cristalografía por Rayos X , Citidina/metabolismo , Inosina/metabolismo , Nucleósidos/metabolismo , ARN/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Termodinámica
9.
Nat Struct Mol Biol ; 11(12): 1251-2, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15558050

RESUMEN

Here we report the crystal structures of I.C and I.A wobble base pairs in the context of the ribosomal decoding center, clearly showing that the I.A base pair is of an I(anti).A(anti) conformation, as predicted by Crick. Additionally, the structures enable the observation of changes in the anticodon to allow purine-purine base pairing, the 'widest' base pair geometry allowed in the wobble position.


Asunto(s)
Anticodón/química , Anticodón/metabolismo , Emparejamiento Base , Purinas/química , Purinas/metabolismo , Ribosomas/química , Ribosomas/metabolismo , Anticodón/genética , Secuencia de Bases , Cristalografía por Rayos X , Modelos Moleculares , ARN Ribosómico 16S/química , ARN Ribosómico 16S/genética , ARN de Transferencia de Arginina/química , ARN de Transferencia de Arginina/genética , ARN de Transferencia de Arginina/metabolismo , Ribosomas/genética
10.
Nat Struct Mol Biol ; 11(12): 1186-91, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15558052

RESUMEN

The natural modification of specific nucleosides in many tRNAs is essential during decoding of mRNA by the ribosome. For example, tRNA(Lys)(UUU) requires the modification N6-threonylcarbamoyladenosine at position 37 (t(6)A37), adjacent and 3' to the anticodon, to bind AAA in the A site of the ribosomal 30S subunit. Moreover, it can only bind both AAA and AAG lysine codons when doubly modified with t(6)A37 and either 5-methylaminomethyluridine or 2-thiouridine at the wobble position (mnm(5)U34 or s(2)U34). Here we report crystal structures of modified tRNA anticodon stem-loops bound to the 30S ribosomal subunit with lysine codons in the A site. These structures allow the rationalization of how modifications in the anticodon loop enable decoding of both lysine codons AAA and AAG.


Asunto(s)
Codón/química , Codón/metabolismo , Conformación de Ácido Nucleico , ARN de Transferencia de Lisina/química , ARN de Transferencia de Lisina/metabolismo , Anticodón/química , Anticodón/metabolismo , Emparejamiento Base , Codón/genética , Cristalografía por Rayos X , Modelos Moleculares , Estabilidad del ARN , ARN de Transferencia de Lisina/genética , Thermus thermophilus/química , Thermus thermophilus/genética
11.
Nucleic Acids Res ; 31(11): 2852-64, 2003 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-12771212

RESUMEN

Ubiquitous high-mobility-group (HMGB) chromosomal proteins bind DNA in a non-sequence- specific fashion to promote chromatin function and gene regulation. Minor groove DNA binding of the HMG domain induces substantial DNA bending toward the major groove, and several interfacial residues contribute by DNA intercalation. The role of the intercalating residues in DNA binding, bending and specificity was systematically examined for a series of mutant Drosophila HMGB (HMG-D) proteins. The primary intercalating residue of HMG-D, Met13, is required both for high-affinity DNA binding and normal DNA bending. Leu9 and Tyr12 directly interact with Met13 and are required for HMG domain stability in addition to linear DNA binding and bending, which is an important function for these residues. In contrast, DNA binding and bending is retained in truncations of intercalating residues Val32 and Thr33 to alanine, but DNA bending is decreased for the glycine substitutions. Furthermore, substitution of the intercalating residues with those predicted to be involved in the specificity of the HMG domain transcription factors results in increased DNA affinity and decreased DNA bending without increased specificity. These studies reveal the importance of residues that buttress intercalating residues and suggest that features of the HMG domain other than a few base-specific hydrogen bonds distinguish the sequence-specific and non-sequence-specific HMG domain functions.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Proteínas del Grupo de Alta Movilidad/química , Proteínas del Grupo de Alta Movilidad/metabolismo , Secuencia de Aminoácidos , Aminoácidos/fisiología , Animales , Sitios de Unión , ADN/química , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Proteínas del Grupo de Alta Movilidad/genética , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Conformación de Ácido Nucleico , Estructura Terciaria de Proteína , Alineación de Secuencia
12.
J Mol Biol ; 416(4): 467-85, 2012 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-22227389

RESUMEN

Human tRNA(Lys3)(UUU) (htRNA(Lys3)(UUU)) decodes the lysine codons AAA and AAG during translation and also plays a crucial role as the primer for HIV-1 (human immunodeficiency virus type 1) reverse transcription. The posttranscriptional modifications 5-methoxycarbonylmethyl-2-thiouridine (mcm(5)s(2)U(34)), 2-methylthio-N(6)-threonylcarbamoyladenosine (ms(2)t(6)A(37)), and pseudouridine (Ψ(39)) in the tRNA's anticodon domain are critical for ribosomal binding and HIV-1 reverse transcription. To understand the importance of modified nucleoside contributions, we determined the structure and function of this tRNA's anticodon stem and loop (ASL) domain with these modifications at positions 34, 37, and 39, respectively (hASL(Lys3)(UUU)-mcm(5)s(2)U(34);ms(2)t(6)A(37);Ψ(39)). Ribosome binding assays in vitro revealed that the hASL(Lys3)(UUU)-mcm(5)s(2)U(34);ms(2)t(6)A(37);Ψ(39) bound AAA and AAG codons, whereas binding of the unmodified ASL(Lys3)(UUU) was barely detectable. The UV hyperchromicity, the circular dichroism, and the structural analyses indicated that Ψ(39) enhanced the thermodynamic stability of the ASL through base stacking while ms(2)t(6)A(37) restrained the anticodon to adopt an open loop conformation that is required for ribosomal binding. The NMR-restrained molecular-dynamics-derived solution structure revealed that the modifications provided an open, ordered loop for codon binding. The crystal structures of the hASL(Lys3)(UUU)-mcm(5)s(2)U(34);ms(2)t(6)A(37);Ψ(39) bound to the 30S ribosomal subunit with each codon in the A site showed that the modified nucleotides mcm(5)s(2)U(34) and ms(2)t(6)A(37) participate in the stability of the anticodon-codon interaction. Importantly, the mcm(5)s(2)U(34)·G(3) wobble base pair is in the Watson-Crick geometry, requiring unusual hydrogen bonding to G in which mcm(5)s(2)U(34) must shift from the keto to the enol form. The results unambiguously demonstrate that modifications pre-structure the anticodon as a key prerequisite for efficient and accurate recognition of cognate and wobble codons.


Asunto(s)
Codón/química , ARN de Transferencia de Lisina/química , Anticodón/química , Emparejamiento Base , Dicroismo Circular , Cristalografía por Rayos X , Humanos , Enlace de Hidrógeno , Modelos Moleculares , Conformación de Ácido Nucleico , Seudouridina/química , Termodinámica , Tiouridina/análogos & derivados , Tiouridina/química
13.
Science ; 326(5953): 688-694, 2009 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-19833920

RESUMEN

The ribosome selects a correct transfer RNA (tRNA) for each amino acid added to the polypeptide chain, as directed by messenger RNA. Aminoacyl-tRNA is delivered to the ribosome by elongation factor Tu (EF-Tu), which hydrolyzes guanosine triphosphate (GTP) and releases tRNA in response to codon recognition. The signaling pathway that leads to GTP hydrolysis upon codon recognition is critical to accurate decoding. Here we present the crystal structure of the ribosome complexed with EF-Tu and aminoacyl-tRNA, refined to 3.6 angstrom resolution. The structure reveals details of the tRNA distortion that allows aminoacyl-tRNA to interact simultaneously with the decoding center of the 30S subunit and EF-Tu at the factor binding site. A series of conformational changes in EF-Tu and aminoacyl-tRNA suggests a communication pathway between the decoding center and the guanosine triphosphatase center of EF-Tu.


Asunto(s)
Factor Tu de Elongación Peptídica/química , ARN Bacteriano/química , Aminoacil-ARN de Transferencia/química , Ribosomas/química , Cristalografía por Rayos X , Activación Enzimática , GTP Fosfohidrolasas/metabolismo , Código Genético , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , ARN de Transferencia de Fenilalanina/química , ARN de Transferencia de Treonina/química , Thermus thermophilus
14.
Science ; 313(5795): 1935-42, 2006 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-16959973

RESUMEN

The crystal structure of the bacterial 70S ribosome refined to 2.8 angstrom resolution reveals atomic details of its interactions with messenger RNA (mRNA) and transfer RNA (tRNA). A metal ion stabilizes a kink in the mRNA that demarcates the boundary between A and P sites, which is potentially important to prevent slippage of mRNA. Metal ions also stabilize the intersubunit interface. The interactions of E-site tRNA with the 50S subunit have both similarities and differences compared to those in the archaeal ribosome. The structure also rationalizes much biochemical and genetic data on translation.


Asunto(s)
Proteínas Bacterianas/química , ARN Mensajero/metabolismo , ARN de Transferencia/metabolismo , Proteínas Ribosómicas/química , Ribosomas/química , Ribosomas/ultraestructura , Thermus thermophilus/química , Anticodón , Proteínas Bacterianas/metabolismo , Codón , Cristalización , Cristalografía por Rayos X , Magnesio/metabolismo , Modelos Moleculares , Conformación de Ácido Nucleico , Peptidil Transferasas/química , Peptidil Transferasas/metabolismo , Biosíntesis de Proteínas , Conformación Proteica , ARN Bacteriano/química , ARN Bacteriano/metabolismo , ARN Mensajero/química , ARN de Transferencia/química , ARN de Transferencia de Metionina/química , ARN de Transferencia de Metionina/metabolismo , ARN de Transferencia de Fenilalanina/química , ARN de Transferencia de Fenilalanina/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Thermus thermophilus/ultraestructura
15.
Cell ; 123(7): 1255-66, 2005 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-16377566

RESUMEN

During protein synthesis, translational release factors catalyze the release of the polypeptide chain when a stop codon on the mRNA reaches the A site of the ribosome. The detailed mechanism of this process is currently unknown. We present here the crystal structures of the ribosome from Thermus thermophilus with RF1 and RF2 bound to their cognate stop codons, at resolutions of 5.9 Angstrom and 6.7 Angstrom, respectively. The structures reveal details of interactions of the factors with the ribosome and mRNA, including elements previously implicated in decoding and peptide release. They also shed light on conformational changes both in the factors and in the ribosome during termination. Differences seen in the interaction of RF1 and RF2 with the L11 region of the ribosome allow us to rationalize previous biochemical data. Finally, this work demonstrates the feasibility of crystallizing ribosomes with bound factors at a defined state along the translational pathway.


Asunto(s)
Codón de Terminación/química , Factores de Terminación de Péptidos/química , Ribosomas/química , Secuencia de Aminoácidos , Cristalografía por Rayos X/métodos , Cristalografía por Rayos X/estadística & datos numéricos , Modelos Moleculares , Datos de Secuencia Molecular , Factores de Terminación de Péptidos/metabolismo , Péptidos/metabolismo , Ribosomas/metabolismo , Alineación de Secuencia , Thermus thermophilus
16.
Cell ; 111(5): 721-32, 2002 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-12464183

RESUMEN

A structural and mechanistic explanation for the selection of tRNAs by the ribosome has been elusive. Here, we report crystal structures of the 30S ribosomal subunit with codon and near-cognate tRNA anticodon stem loops bound at the decoding center and compare affinities of equivalent complexes in solution. In ribosomal interactions with near-cognate tRNA, deviation from Watson-Crick geometry results in uncompensated desolvation of hydrogen-bonding partners at the codon-anticodon minor groove. As a result, the transition to a closed form of the 30S induced by cognate tRNA is unfavorable for near-cognate tRNA unless paromomycin induces part of the rearrangement. We conclude that stabilization of a closed 30S conformation is required for tRNA selection, and thereby structurally rationalize much previous data on translational fidelity.


Asunto(s)
ARN de Transferencia/química , ARN de Transferencia/metabolismo , Ribosomas/metabolismo , Antibacterianos/metabolismo , Antibacterianos/farmacología , Anticodón/química , Anticodón/metabolismo , Emparejamiento Base , Unión Competitiva , Codón/química , Codón/metabolismo , Cristalografía por Rayos X , Enlace de Hidrógeno , Modelos Moleculares , Conformación de Ácido Nucleico , Paromomicina/metabolismo , Paromomicina/farmacología , ARN Bacteriano/química , ARN Bacteriano/metabolismo , ARN Ribosómico 16S/química , ARN Ribosómico 16S/metabolismo , ARN de Transferencia de Fenilalanina/química , ARN de Transferencia de Fenilalanina/metabolismo , Ribosomas/química , Relación Estructura-Actividad , Termodinámica , Thermus thermophilus
17.
Health Care Manage Rev ; 27(1): 76-95, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-11765898

RESUMEN

In spite of the technological sophistication and clinical excellence of the U.S. health care industry and annual health expenditures in excess of a trillion dollars, the overall health status of the American population is comparatively poor. The BCHS in west central Florida sought to improve the health status of the communities that it serves. Known by the acronym CHAPIR, an information-driven health status decision support system was developed, pilot tested, and is now fully implemented throughout the BCHS. The methodological approach, quantitative indicators, report format components, and management implications of the system are described.


Asunto(s)
Planificación en Salud Comunitaria/organización & administración , Promoción de la Salud/organización & administración , Indicadores de Salud , Hospitales Comunitarios/organización & administración , Sistemas Multiinstitucionales/organización & administración , Áreas de Influencia de Salud , Niño , Protección a la Infancia , Femenino , Florida/epidemiología , Humanos , Bienestar Materno , Morbilidad , Mortalidad , Estudios de Casos Organizacionales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA