Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Respir Res ; 24(1): 51, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36788603

RESUMEN

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease that affects 3 million people worldwide. Senescence and small extracellular vesicles (sEVs) have been implicated in the pathogenesis of IPF, although how sEVs promote disease remains unclear. Here, we profile sEVs from bronchial epithelial cells and determine small RNA (smRNA) content. METHODS: Conditioned media was collected and sEVs were isolated from normal human bronchial epithelial cells (NHBEs) and IPF-diseased human bronchial epithelial cells (DHBEs). RESULTS: Increased sEV release from DHBEs compared to NHBEs (n = 4; p < 0.05) was detected by nanoparticle tracking analysis. NHBEs co-cultured with DHBE-derived sEVs for 72 h expressed higher levels of SA-ß-Gal and γH2AX protein, p16 and p21 RNA and increased secretion of IL6 and IL8 proteins (all n = 6-8; p < 0.05). sEVs were also co-cultured with healthy air-liquid interface (ALI) cultures and similar results were observed, with increases in p21 and p16 gene expression and IL6 and IL8 (basal and apical) secretion (n = 6; p < 0.05). Transepithelial electrical resistance (TEER) measurements, a reflection of epithelial barrier integrity, were decreased upon the addition of DHBE-derived sEVs (n = 6; p < 0.05). smRNA-sequencing identified nineteen significantly differentially expressed miRNA in DHBE-derived sEVs compared to NHBE-derived sEVs, with candidate miRNAs validated by qPCR (all n = 5; p < 0.05). Four of these miRNAs were upregulated in NHBEs co-cultured with DHBE-derived sEVs and three in healthy ALI cultures co-cultured with DHBE-derived sEVs (n = 3-4; p < 0.05). CONCLUSIONS: This data demonstrates that DHBE-derived sEVs transfer senescence to neighbouring healthy cells, promoting the disease state in IPF.


Asunto(s)
Vesículas Extracelulares , Fibrosis Pulmonar Idiopática , MicroARNs , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Fibrosis Pulmonar Idiopática/metabolismo , Vesículas Extracelulares/metabolismo
2.
Am J Respir Cell Mol Biol ; 65(4): 347-365, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34129811

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a fatal interstitial lung disease with limited therapeutic options. Current evidence suggests that IPF may be initiated by repeated epithelial injuries in the distal lung, which are followed by abnormal wound healing responses that occur because of intrinsic and extrinsic factors. Mechanisms contributing to chronic damage of the alveolar epithelium in IPF include dysregulated cellular processes such as apoptosis, senescence, abnormal activation of the developmental pathways, aging, and genetic mutations. Therefore, targeting the regenerative capacity of the lung epithelium is an attractive approach in the development of novel therapies for IPF. Endogenous lung regeneration is a complex process involving coordinated cross-talk among multiple cell types and reestablishment of a normal extracellular matrix environment. This review will describe the current knowledge of reparative epithelial progenitor cells in the alveolar region of the lung and discuss potential novel therapeutic approaches for IPF, focusing on endogenous alveolar repair.


Asunto(s)
Células Epiteliales Alveolares/metabolismo , Fibrosis Pulmonar Idiopática/metabolismo , Enfermedades Pulmonares Intersticiales/metabolismo , Pulmón/metabolismo , Animales , Senescencia Celular/fisiología , Humanos , Células Madre/metabolismo
3.
Am J Respir Crit Care Med ; 197(11): 1443-1456, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29634284

RESUMEN

RATIONALE: Idiopathic pulmonary fibrosis (IPF) is characterized by aberrant lung remodeling, which progressively abolishes lung function in an RTK (receptor tyrosine kinase)-dependent manner. Gas6 (growth arrest-specific 6) ligand, Tyro3 (TYRO3 protein tyrosine kinase 3), and Axl (anexelekto) RTK expression and activity are increased in IPF. OBJECTIVES: To determine if targeting these RTK pathways would inhibit fibroblast activation and the development of pulmonary fibrosis. METHODS: Quantitative genomic, proteomic, and functional analyses were used to determine Gas6/TAM (Tyro3, Axl, and Mertk [MER proto-oncogene, tyrosine kinase]) RTK expression and activation in tissues and fibroblasts from normal and IPF lungs. The profibrotic impact of these RTK pathways were also examined in bleomycin-induced pulmonary fibrosis and in SCID/Bg mice that developed pulmonary fibrosis after the intravenous administration of primary IPF fibroblasts. MEASUREMENTS AND MAIN RESULTS: Gas6, Axl, and Tyro3 were increased in both rapidly and slowly progressive IPF compared with normal lung samples and fibroblasts. Targeting these pathways with either specific antibodies directed at Gas6 or Axl, or with small-molecule TAM inhibitors indicated that the small molecule-mediated targeting approach was more efficacious in both in vitro and in vivo studies. Specifically, the TAM receptor inhibitor R428 (also known as BGB324) significantly inhibited the synthetic, migratory, and proliferative properties of IPF fibroblasts compared with the other Gas6/TAM receptor targeting agents. Finally, loss of Gas6 expression decreased lung fibrotic responses to bleomycin and treatment with R428 inhibited pulmonary fibrosis in humanized SCID/Bg mice. CONCLUSIONS: Gas6/TAM receptor activity contributes to the activation of pulmonary fibroblasts in IPF, suggesting that targeting this RTK pathway might be an effective antifibrotic strategy in this disease.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/efectos de los fármacos , Antibióticos Antineoplásicos/uso terapéutico , Bleomicina/uso terapéutico , Fibroblastos/efectos de los fármacos , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/genética , Proteínas de la Membrana/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales/genética , Adulto , Anciano , Anciano de 80 o más Años , Proliferación Celular/efectos de los fármacos , Humanos , Fibrosis Pulmonar Idiopática/fisiopatología , Proteínas de la Membrana/genética , Persona de Mediana Edad , Proto-Oncogenes Mas , Transducción de Señal/genética
4.
Respir Res ; 18(1): 82, 2017 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-28468623

RESUMEN

BACKGROUND: Smoking and aberrant epithelial responses are risk factors for lung cancer as well as chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. In these conditions, disease progression is associated with epithelial damage and fragility, airway remodelling and sub-epithelial fibrosis. The aim of this study was to assess the acute effects of cigarette smoke on epithelial cell phenotype and pro-fibrotic responses in vitro and in vivo. RESULTS: Apoptosis was significantly greater in unstimulated cells from COPD patients compared to control, but proliferation and CXCL8 release were not different. Cigarette smoke dose-dependently induced apoptosis, proliferation and CXCL8 release with normal epithelial cells being more responsive than COPD patient derived cells. Cigarette smoke did not induce epithelial-mesenchymal transition. In vivo, cigarette smoke exposure promoted epithelial apoptosis and proliferation. Moreover, mimicking a virus-induced exacerbation by exposing to mice to poly I:C, exaggerated the inflammatory responses, whereas expression of remodelling genes was similar in both. CONCLUSIONS: Collectively, these data indicate that cigarette smoke promotes epithelial cell activation and hyperplasia, but a secondary stimulus is required for the remodelling phenotype associated with COPD.


Asunto(s)
Transición Epitelial-Mesenquimal/efectos de los fármacos , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Fibrosis Pulmonar/inducido químicamente , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/fisiopatología , Humo/efectos adversos , Productos de Tabaco/envenenamiento , Animales , Apoptosis/efectos de los fármacos , Humanos , Ratones , Ratones Endogámicos C57BL , Enfermedad Pulmonar Obstructiva Crónica/inducido químicamente , Enfermedad Pulmonar Obstructiva Crónica/patología , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/fisiopatología , Mucosa Respiratoria/patología
5.
J Immunol ; 195(3): 1182-90, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26109638

RESUMEN

Small airway chronic inflammation is a major pathologic feature of chronic obstructive pulmonary disease (COPD) and is refractory to current treatments. Dendritic cells (DCs) accumulate around small airways in COPD. DCs are critical mediators of Ag surveillance and Ag presentation and amplify adaptive immune responses. How DCs accumulate around airways remains largely unknown. We use 2-photon DC imaging of living murine lung sections to directly visualize the dynamic movement of living DCs around airways in response to either soluble mediators (IL-1ß) or environmental stimuli (cigarette smoke or TLR3 ligands) implicated in COPD pathogenesis. We find that DCs accumulate around murine airways primarily by increasing velocity (chemokinesis) rather than directional migration (chemotaxis) in response to all three stimuli. DC accumulation maximally occurs in a specific zone located 26-50 µm from small airways, which overlaps with zones of maximal DC velocity. Our data suggest that increased accumulation of DCs around airways results from increased numbers of highly chemokinetic DCs entering the lung from the circulation with balanced rates of immigration and emigration. Increases in DC accumulation and chemokinesis are partially dependent on ccr6, a crucial DC chemokine receptor, and fibroblast expression of the integrin αvß8, a critical activator of TGF-ß. αvß8-Mediated TGF-ß activation is known to enhance IL-1ß-dependent fibroblast expression of the only known endogenous ccr6 chemokine ligand, ccl20. Taken together, these data suggest a mechanism by which αvß8, ccl20, and ccr6 interact to lead to DC accumulation around airways in response to COPD-relevant stimuli.


Asunto(s)
Células Dendríticas/inmunología , Integrinas/inmunología , Interleucina-1beta/inmunología , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Factor de Crecimiento Transformador beta/inmunología , Inmunidad Adaptativa/inmunología , Animales , Movimiento Celular/inmunología , Quimiocina CCL20/biosíntesis , Quimiocina CCL20/inmunología , Modelos Animales de Enfermedad , Activación Enzimática/inmunología , Fibroblastos/inmunología , Integrinas/biosíntesis , Interleucina-1beta/biosíntesis , Pulmón/diagnóstico por imagen , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Poli I-C/farmacología , Enfermedad Pulmonar Obstructiva Crónica/patología , Radiografía , Receptores CCR6/genética , Receptores CCR6/inmunología , Humo/efectos adversos , Receptor Toll-Like 3 , Factor de Crecimiento Transformador beta/metabolismo
6.
Proc Natl Acad Sci U S A ; 111(32): E3297-305, 2014 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-25074909

RESUMEN

Hepatic myofibroblasts are activated in response to chronic liver injury of any etiology to produce a fibrous scar. Despite extensive studies, the origin of myofibroblasts in different types of fibrotic liver diseases is unresolved. To identify distinct populations of myofibroblasts and quantify their contribution to hepatic fibrosis of two different etiologies, collagen-α1(I)-GFP mice were subjected to hepatotoxic (carbon tetrachloride; CCl4) or cholestatic (bile duct ligation; BDL) liver injury. All myofibroblasts were purified by flow cytometry of GFP(+) cells and then different subsets identified by phenotyping. Liver resident activated hepatic stellate cells (aHSCs) and activated portal fibroblasts (aPFs) are the major source (>95%) of fibrogenic myofibroblasts in these models of liver fibrosis in mice. As previously reported using other methodologies, hepatic stellate cells (HSCs) are the major source of myofibroblasts (>87%) in CCl4 liver injury. However, aPFs are a major source of myofibroblasts in cholestatic liver injury, contributing >70% of myofibroblasts at the onset of injury (5 d BDL). The relative contribution of aPFs decreases with progressive injury, as HSCs become activated and contribute to the myofibroblast population (14 and 20 d BDL). Unlike aHSCs, aPFs respond to stimulation with taurocholic acid and IL-25 by induction of collagen-α1(I) and IL-13, respectively. Furthermore, BDL-activated PFs express high levels of collagen type I and provide stimulatory signals to HSCs. Gene expression analysis identified several novel markers of aPFs, including a mesothelial-specific marker mesothelin. PFs may play a critical role in the pathogenesis of cholestatic liver fibrosis and, therefore, serve as an attractive target for antifibrotic therapy.


Asunto(s)
Cirrosis Hepática/patología , Hígado/patología , Miofibroblastos/patología , Animales , Tetracloruro de Carbono/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Colestasis/complicaciones , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadena alfa 1 del Colágeno Tipo I , Modelos Animales de Enfermedad , Proteínas Ligadas a GPI/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Hígado/metabolismo , Cirrosis Hepática/etiología , Cirrosis Hepática/metabolismo , Mesotelina , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Miofibroblastos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Vitamina A/metabolismo
7.
Am J Respir Cell Mol Biol ; 51(2): 163-8, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24749648

RESUMEN

The chronic debilitating lung disease, idiopathic pulmonary fibrosis (IPF), is characterized by a progressive decline in lung function, with a median mortality rate of 2-3 years after diagnosis. IPF is a disease of unknown cause and progression, and multiple pathways have been demonstrated to be activated in the lungs of these patients. A recent genome-wide association study of more than 1,000 patients with IPF identified genes linked to host defense, cell-cell adhesion, and DNA repair being altered due to fibrosis (Fingerlin, et al. Nat Genet 2013;45:613-620). Further emerging data suggest that the respiratory system may not be a truly sterile environment, and it exhibits an altered microbiome during fibrotic disease (Molyneaux and Maher. Eur Respir Rev 2013;22:376-381). These altered host defense mechanisms might explain the increased susceptibility of patients with IPF to microbial- and viral-induced exacerbations. Moreover, chronic epithelial injury and apoptosis are key features in IPF, which might be mediated, in part, by both pathogen-associated (PA) and danger-associated molecular patterns (MPs). Emerging data indicate that both PAMPs and danger-associated MPs contribute to apoptosis, but not necessarily in a manner that allows for the removal of dying cells, without further exacerbating inflammation. In contrast, both types of MPs drive cellular necrosis, leading to an exacerbation of lung injury and/or infection as the debris promotes a proinflammatory response. Thus, this Review focuses on the impact of MPs resulting from infection-driven apoptosis and necrosis during chronic fibrotic lung disease.


Asunto(s)
Fibrosis Pulmonar Idiopática/metabolismo , Pulmón/metabolismo , Transducción de Señal , Animales , Apoptosis , Interacciones Huésped-Patógeno , Humanos , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/inmunología , Fibrosis Pulmonar Idiopática/microbiología , Fibrosis Pulmonar Idiopática/patología , Mediadores de Inflamación/metabolismo , Pulmón/inmunología , Pulmón/microbiología , Pulmón/patología , Necrosis , Pronóstico , Receptores Inmunológicos/metabolismo , Factores de Riesgo
8.
Am J Respir Cell Mol Biol ; 50(1): 144-57, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23972264

RESUMEN

PAR1 plays a central role in mediating the interplay between coagulation and inflammation, but its role in regulating acute neutrophilic inflammation is unknown. We report that antagonism of PAR1 was highly effective at reducing acute neutrophil accumulation in a mouse model of LPS-induced lung inflammation. PAR1 antagonism also reduced alveolar-capillary barrier disruption in these mice. This protection was associated with a reduction in the expression of the chemokines, CCL2 and CCL7, but not the proinflammatory cytokines, TNF and IL-6, or the classic neutrophil chemoattractants, CXCL1 and CXCL2. Antibody neutralization of CCL2 and CCL7 significantly reduced LPS-induced total leukocyte and neutrophil accumulation, recovered from the bronchoalveolar lavage fluid of challenged mice. Immunohistochemical analysis revealed that CCL2 predominantly localized to alveolar macrophages and pulmonary epithelial cells, whereas CCL7 was restricted to the pulmonary epithelium. In keeping with these observations, the intranasal administration of recombinant CCL2 (rCCL2) and rCCL7 led to the accumulation of neutrophils within the lung airspaces of naive mice in the absence of any underlying inflammation. Flow cytometry analysis further demonstrated an increase in Ly6G(hi) neutrophils expressing the chemokine receptors, CCR1 and CCR2, isolated from mouse lungs compared with circulating neutrophils. Conversely, the expression of CXCR2 decreased on neutrophils isolated from the lung compared with circulating neutrophils. Furthermore, this switch in chemokine receptor expression was accentuated after acute LPS-induced lung inflammation. Collectively, these findings reveal a novel role for PAR1 and the chemokines, CCL2 and CCL7, during the early events of acute neutrophilic inflammation.


Asunto(s)
Quimiocina CCL2/metabolismo , Quimiocina CCL7/metabolismo , Neutrófilos/metabolismo , Neumonía/metabolismo , Neumonía/patología , Receptor PAR-1/metabolismo , Animales , Quimiocinas/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/patología , Femenino , Leucocitos/metabolismo , Leucocitos/patología , Pulmón/metabolismo , Pulmón/patología , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patología , Ratones , Ratones Endogámicos BALB C , Neutrófilos/patología , Alveolos Pulmonares/metabolismo , Alveolos Pulmonares/patología , Receptores de Quimiocina/metabolismo , Receptores de Interleucina-8B/metabolismo
9.
Am J Respir Cell Mol Biol ; 50(5): 985-94, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24325475

RESUMEN

The aberrant fibrotic and repair responses in the lung are major hallmarks of idiopathic pulmonary fibrosis (IPF). Numerous antifibrotic strategies have been used in the clinic with limited success, raising the possibility that an effective therapeutic strategy in this disease must inhibit fibrosis and promote appropriate lung repair mechanisms. IL-13 represents an attractive target in IPF, but its disease association and mechanism of action remains unknown. In the present study, an overexpression of IL-13 and IL-13 pathway markers was associated with IPF, particularly a rapidly progressive form of this disease. Targeting IL-13 in a humanized experimental model of pulmonary fibrosis using tralokinumab (CAT354) was found to therapeutically block aberrant lung remodeling in this model. However, targeting IL-13 was also found to promote lung repair and to restore epithelial integrity. Thus, targeting IL-13 inhibits fibrotic processes and enhances repair processes in the lung.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Células Epiteliales/efectos de los fármacos , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Interleucina-13/metabolismo , Animales , Células Epiteliales/metabolismo , Femenino , Humanos , Fibrosis Pulmonar Idiopática/metabolismo , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Ratones , Ratones SCID , Terapia Molecular Dirigida , Regulación hacia Arriba/efectos de los fármacos
10.
Am J Respir Crit Care Med ; 187(2): 180-8, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23220917

RESUMEN

RATIONALE: Lymphocytes are increasingly associated with idiopathic pulmonary fibrosis (IPF). Semaphorin 7a (Sema 7a) participates in lymphocyte activation. OBJECTIVES: To define the relationship between Sema 7a and lymphocytes in IPF. METHODS: We characterized the significance of Sema 7a+ lymphocytes in humans with IPF and in a mouse model of lung fibrosis caused by lung-targeted, transgenic overexpression of TGF-ß1. We determined the site of Sema 7a expression in human and murine lungs and circulation and used adoptive transfer approaches to define the relevance of lymphocytes coexpressing Sema7a and the markers CD19, CD4, or CD4+CD25+FoxP3+ in TGF-ß1-induced murine lung fibrosis. MEASUREMENTS AND MAIN RESULTS: Subjects with IPF show expression of Sema 7a on lung CD4+ cells and circulating CD4+ or CD19+ cells. Sema 7a expression is increased on CD4+ cells and CD4+CD25+FoxP3+ regulatory T cells, but not CD19+ cells, in subjects with progressive IPF. Sema 7a is expressed on lymphocytes expressing CD4 but not CD19 in the lungs and spleen of TGF-ß1-transgenic mice. Sema 7a expressing bone marrow-derived cells induce lung fibrosis and alter the production of T-cell mediators, including IFN-γ, IL-4, IL-17A, and IL-10. These effects require CD4 but not CD19. In comparison to Sema 7a-CD4+CD25+FoxP3+ cells, Sema7a+CD4+CD25+FoxP3+ cells exhibit reduced expression of regulatory genes such as IL-10, and adoptive transfer of these cells induces fibrosis and remodeling in the TGF-ß1-exposed murine lung. CONCLUSIONS: Sema 7a+CD4+CD25+FoxP3+ regulatory T cells are associated with disease progression in subjects with IPF and induce fibrosis in the TGF-ß1-exposed murine lung.


Asunto(s)
Antígenos CD/fisiología , Fibrosis Pulmonar Idiopática/etiología , Semaforinas/fisiología , Linfocitos T Reguladores/fisiología , Factor de Crecimiento Transformador beta1/fisiología , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/fisiología , Modelos Animales de Enfermedad , Humanos , Fibrosis Pulmonar Idiopática/inmunología , Fibrosis Pulmonar Idiopática/fisiopatología , Interleucina-10/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
11.
Life Sci Alliance ; 6(8)2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37230801

RESUMEN

Repeated injury of the lung epithelium is proposed to be the main driver of idiopathic pulmonary fibrosis (IPF). However, available therapies do not specifically target the epithelium and human models of fibrotic epithelial damage with suitability for drug discovery are lacking. We developed a model of the aberrant epithelial reprogramming observed in IPF using alveolar organoids derived from human-induced pluripotent stem cells stimulated with a cocktail of pro-fibrotic and inflammatory cytokines. Deconvolution of RNA-seq data of alveolar organoids indicated that the fibrosis cocktail rapidly increased the proportion of transitional cell types including the KRT5 - /KRT17 + aberrant basaloid phenotype recently identified in the lungs of IPF patients. We found that epithelial reprogramming and extracellular matrix (ECM) production persisted after removal of the fibrosis cocktail. We evaluated the effect of the two clinically approved compounds for IPF, nintedanib and pirfenidone, and found that they reduced the expression of ECM and pro-fibrotic mediators but did not completely reverse epithelial reprogramming. Thus, our system recapitulates key aspects of IPF and is a promising system for drug discovery.


Asunto(s)
Fibrosis Pulmonar Idiopática , Células Madre Pluripotentes , Humanos , Células Epiteliales Alveolares/metabolismo , Pulmón/metabolismo , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis , Células Madre Pluripotentes/metabolismo , Organoides/metabolismo
12.
Curr Opin Rheumatol ; 24(6): 656-62, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22955020

RESUMEN

PURPOSE OF REVIEW: Pulmonary fibrosis is a devastating disease that affects millions of people worldwide. Among the most common forms of lung fibrosis are idiopathic pulmonary fibrosis (IPF) and scleroderma-related interstitial lung disease (SSc-ILD). Despite a wealth of literature regarding each of these diseases, studies that directly compare IPF and SSc-ILD are rare. RECENT FINDINGS: This review compares the salient features of IPF and SSc-ILD. Clinical presentation and demographics will be presented, along with the newly released radiographic and pathologic criteria for IPF. Evolving concepts of pathogenesis including the role of structural cell injury, the pathogenic role of macrophages and lymphocytes, and the origin of fibroblasts are described. We conclude with new developments in the search for predictive biomarkers of disease progression, such as markers of epithelial injury, lymphocyte subsets, and circulating fibrocytes, will be presented. We conclude with a discussion of the results of recent clinical trials. SUMMARY: It is found that despite differences in clinical presentation and response to treatment, similarities are noted in proposed pathogenesis and putative biomarkers. It is hoped that this information will lead to studies aimed at understanding the factors driving these difficult to treat and often deadly diseases.


Asunto(s)
Fibrosis Pulmonar Idiopática/diagnóstico , Esclerodermia Sistémica/diagnóstico , Animales , Biomarcadores/sangre , Diagnóstico Diferencial , Modelos Animales de Enfermedad , Femenino , Humanos , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/inmunología , Inmunosupresores/uso terapéutico , Subgrupos Linfocitarios/inmunología , Subgrupos Linfocitarios/patología , Masculino , Persona de Mediana Edad , Radiografía Torácica , Esclerodermia Sistémica/tratamiento farmacológico , Esclerodermia Sistémica/inmunología
13.
Pulm Pharmacol Ther ; 25(4): 276-80, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21983244

RESUMEN

COPD and IPF are two chronic lung diseases which are characterized by a decline in lung function, resulting in significant morbidity and mortality. Both of these diseases are more commonly associated with an aging population and the duration for which the disease has been underlying is often unknown. Significant matrix deposition occurs, resulting in either non-reversible airways obstruction in the case of COPD and impaired gas exchange and parenchymal consolidation in IPF. There are no approved therapies that have been demonstrated to target these underlying fibrotic changes in the lung. This may in part be due to the challenges of quantitating lung fibrosis in a temporal manner in specific regions of the lung. However, this may also be due to our understanding of aberrant and pathogenic collagen deposition being somewhat limited. The core processes associated with lung fibrosis are often observed in normal wound healing. Moreover, in the extreme fibrotic setting of IPF, the remodelling is sometimes associated with uncontrolled wound healing responses. As wound healing is a critical aspect to maintaining tissue function and homeostasis, targeting this process directly may result in safety concerns. This review therefore describes some of the recent advances in ascertaining pathways promoting lung fibrosis that may be amenable to therapeutic intervention in both COPD and IPF.


Asunto(s)
Fibrosis Pulmonar Idiopática/fisiopatología , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Remodelación de las Vías Aéreas (Respiratorias)/fisiología , Quimiocinas/metabolismo , Quitinasas/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Humanos , Pulmón/fisiopatología , Macrófagos Alveolares/metabolismo
14.
Stem Cell Reports ; 17(12): 2718-2731, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36460000

RESUMEN

The respiratory epithelium consists of multiple, functionally distinct cell types and is maintained by regionally specific progenitor populations that repair the epithelium following injury. Several in vitro methods exist for studying lung epithelial repair using primary murine lung cells, but isolation methods are hampered by a lack of surface markers distinguishing epithelial progenitors along the respiratory epithelium. Here, we developed a 3D printed lobe divider (3DLD) to aid in simultaneous isolation of proximal versus distal lung epithelial progenitors from individual mice that give rise to differentiated epithelia in multiple in vitro assays. In contrast to 3DLD-isolated distal progenitor cells, commonly used manual tracheal ligation methods followed by lobe removal resulted in co-isolation of rare proximal cells with distal cells, which altered the transcriptional landscape and size distribution of distal organoids. The 3DLD aids in reproducible isolation of distal versus proximal progenitor populations and minimizes the potential for contaminating populations to confound in vitro assays.


Asunto(s)
Células Epiteliales , Células Madre , Ratones , Animales , Células Epiteliales/metabolismo , Pulmón , Separación Celular , Diferenciación Celular , Impresión Tridimensional
15.
JCI Insight ; 7(16)2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-35993367

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a chronic disease of unmet medical need. It is characterized by formation of scar tissue leading to a progressive and irreversible decline in lung function. IPF is associated with repeated injury, which may alter the composition of the extracellular matrix (ECM). Here, we demonstrate that IPF patient-derived pulmonary ECM drives profibrotic response in normal human lung fibroblasts (NHLF) in a 3D spheroid assay. Next, we reveal distinct alterations in composition of the diseased ECM, identifying potentially novel associations with IPF. Growth differentiation factor 15 (GDF15) was identified among the most significantly upregulated proteins in the IPF lung-derived ECM. In vivo, GDF15 neutralization in a bleomycin-induced lung fibrosis model led to significantly less fibrosis. In vitro, recombinant GDF15 (rGDF15) stimulated α smooth muscle actin (αSMA) expression in NHLF, and this was mediated by the activin receptor-like kinase 5 (ALK5) receptor. Furthermore, in the presence of rGDF15, the migration of NHLF in collagen gel was reduced. In addition, we observed a cell type-dependent effect of GDF15 on the expression of cell senescence markers. Our data suggest that GDF15 mediates lung fibrosis through fibroblast activation and differentiation, implicating a potential direct role of this matrix-associated cytokine in promoting aberrant cell responses in disease.


Asunto(s)
Matriz Extracelular , Factor 15 de Diferenciación de Crecimiento , Fibrosis Pulmonar Idiopática , Matriz Extracelular/metabolismo , Fibrosis/genética , Fibrosis/metabolismo , Factor 15 de Diferenciación de Crecimiento/biosíntesis , Factor 15 de Diferenciación de Crecimiento/genética , Humanos , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/metabolismo , Transducción de Señal
16.
Immunol Invest ; 40(7-8): 692-722, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21592044

RESUMEN

Triggering receptor expressed on myeloid cells-1 (TREM-1) expression is increased during pulmonary fungal infection suggesting that this receptor might be involved in anti-fungal immune responses. To address the role of TREM-1 in a murine model of fungal allergic airway disease, A. fumigatus-sensitized CBA/J mice received by intratracheal injection a mixture of live A. fumigatus conidia and one of a control adenovirus vector (Ad70), an adenovirus containing a gene encoding for the extracellular domain of mouse TREM-1 and the F(c) portion of human IgG (AdTREM-1Ig; a soluble inhibitor of TREM-1 function), or an adenovirus containing mouse DAP12 (AdDAP12; DAP12 is an intracellular adaptor protein required for TREM-1 signaling), and examined at various days after challenge. Whole lung TREM-1 levels peaked at day 3 whereas circulating TREM-1 levels peaked at day 30 in this fungal asthma model. AdTREM-1Ig-treated mice exhibited significantly higher airway hyperresponsiveness following methacholine challenge compared with Ad70- and AdDAP12-treated mice. Whole lung analysis of AdTREM-1Ig treated mice revealed markedly higher amounts of fungal material compared with the other groups. ELISA analysis of whole lung and bronchoalveolar lavage samples indicated that several pro-allergic cytokine and chemokines including CCL17 and CCL22 were significantly increased in the AdTREM-1Ig group compared with the other groups. Finally, Pam3Cys and soluble Aspergillus antigens induced TREM-1 transcript expression in macrophages in a TLR2 dependent manner. In conclusion, TREM-1 modulates the immune response directed against A. fumigatus during experimental fungal asthma.


Asunto(s)
Aspergilosis Broncopulmonar Alérgica/inmunología , Aspergillus fumigatus/patogenicidad , Asma/inmunología , Glicoproteínas de Membrana/metabolismo , Receptores Inmunológicos/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Aspergilosis Broncopulmonar Alérgica/microbiología , Aspergillus fumigatus/inmunología , Asma/microbiología , Hiperreactividad Bronquial , Líquido del Lavado Bronquioalveolar/inmunología , Quimiocinas/biosíntesis , Quimiocinas/inmunología , Citocinas/biosíntesis , Citocinas/inmunología , Femenino , Humanos , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/microbiología , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Receptores Inmunológicos/genética , Receptor Activador Expresado en Células Mieloides 1
17.
Sci Rep ; 11(1): 21584, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34732748

RESUMEN

The unfolded protein response (UPR) is a direct consequence of cellular endoplasmic reticulum (ER) stress and a key disease driving mechanism in IPF. The resolution of the UPR is directed by PPP1R15A (GADD34) and leads to the restoration of normal ribosomal activity. While the role of PPP1R15A has been explored in lung epithelial cells, the role of this UPR resolving factor has yet to be explored in lung mesenchymal cells. The objective of the current study was to determine the expression and role of PPP1R15A in IPF fibroblasts and in a bleomycin-induced lung fibrosis model. A survey of IPF lung tissue revealed that PPP1R15A expression was markedly reduced. Targeting PPP1R15A in primary fibroblasts modulated TGF-ß-induced fibroblast to myofibroblast differentiation and exacerbated pulmonary fibrosis in bleomycin-challenged mice. Interestingly, the loss of PPP1R15A appeared to promote lung fibroblast senescence. Taken together, our findings demonstrate the major role of PPP1R15A in the regulation of lung mesenchymal cells, and regulation of PPP1R15A may represent a novel therapeutic strategy in IPF.


Asunto(s)
Senescencia Celular , Fibrosis/metabolismo , Proteína Fosfatasa 1/genética , Respuesta de Proteína Desplegada , Anciano , Animales , Bleomicina , Diferenciación Celular , Proliferación Celular , Estrés del Retículo Endoplásmico , Femenino , Fibroblastos/metabolismo , Genotipo , Humanos , Fibrosis Pulmonar Idiopática/metabolismo , Indoles/farmacología , Pulmón/metabolismo , Masculino , Mesodermo/citología , Ratones , Persona de Mediana Edad , Morfolinas/farmacología , Proteína Fosfatasa 1/fisiología , Análisis de Secuencia de ARN , Factor de Crecimiento Transformador beta/metabolismo
18.
JCI Insight ; 6(11)2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-33945505

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is characterized by aberrant repair that diminishes lung function via mechanisms that remain poorly understood. CC chemokine receptor (CCR10) and its ligand CCL28 were both elevated in IPF compared with normal donors. CCR10 was highly expressed by various cells from IPF lungs, most notably stage-specific embryonic antigen-4-positive mesenchymal progenitor cells (MPCs). In vitro, CCL28 promoted the proliferation of CCR10+ MPCs while CRISPR/Cas9-mediated targeting of CCR10 resulted in the death of MPCs. Following the intravenous injection of various cells from IPF lungs into immunodeficient (NOD/SCID-γ, NSG) mice, human CCR10+ cells initiated and maintained fibrosis in NSG mice. Eph receptor A3 (EphA3) was among the highest expressed receptor tyrosine kinases detected on IPF CCR10+ cells. Ifabotuzumab-targeted killing of EphA3+ cells significantly reduced the numbers of CCR10+ cells and ameliorated pulmonary fibrosis in humanized NSG mice. Thus, human CCR10+ cells promote pulmonary fibrosis, and EphA3 mAb-directed elimination of these cells inhibits lung fibrosis.


Asunto(s)
Fibrosis Pulmonar Idiopática/metabolismo , Células Madre Mesenquimatosas/metabolismo , Receptor EphA3/metabolismo , Receptores CCR10/metabolismo , Células Epiteliales Alveolares/metabolismo , Animales , Anticuerpos Monoclonales/farmacología , Sistemas CRISPR-Cas , Quimiocinas CC/metabolismo , Fibroblastos/metabolismo , Técnicas de Inactivación de Genes , Humanos , Fibrosis Pulmonar Idiopática/patología , Células Madre Mesenquimatosas/efectos de los fármacos , Ratones , Ratones Endogámicos NOD , Ratones SCID
19.
Am J Respir Cell Mol Biol ; 43(6): 641-51, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20061511

RESUMEN

Given the contribution various fibroblast subsets make to wound healing and tissue remodeling, the concept of lung fibroblast heterogeneity is of great interest. However, the mechanisms contributing to this heterogeneity are unknown. To this aim, we compared molecular and biophysical characteristics of fibroblasts concurrently isolated from normal human proximal bronchi (B-FBR) and distal lung parenchyma (P-FBR). Using quantitative RT-PCR, spontaneous expression of more than 30 genes related to repair and remodeling was analyzed. All P-FBR lines demonstrated significantly increased basal α-smooth muscle actin (α-SMA) mRNA and protein expression levels when compared with donor-matched B-FBR. These differences were not associated with sex, age, or disease history of lung tissue donors. In contrast to B-FBR, P-FBR displayed enhanced transforming growth factor (TGF)-ß/Smad signaling at baseline, and inhibition of either ALK-5 or neutralization of endogenously produced and activated TGF-ß substantially decreased basal α-SMA protein in P-FBR. Both B-FBR and P-FBR up-regulated α-SMA after stimulation with TGF-ß1, and basal expression levels of TGF-ß1, TGF-ßRI, and TGF-ßRII were not significantly different between fibroblast pairs. Blockade of metalloproteinase-dependent activation of endogenous TGF-ß did not significantly modify α-SMA expression in P-FBR. However, resistance to mechanical tension of these cells was significantly higher in comparison with B-FBR, and added TGF-ß1 significantly increased stiffness of both cell monolayers. Our data suggest that in contrast with human normal bronchial tissue explants, lung parenchyma produces mesenchymal cells with a myofibroblastic phenotype by intrinsic mechanisms of TGF-ß activation in feed-forward manner. These results also offer a new insight into mechanisms of human fibroblast heterogeneity and their function in the airway and lung tissue repair and remodeling.


Asunto(s)
Actinas/metabolismo , Bronquios/citología , Fibroblastos/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta1/metabolismo , Actinas/genética , Adolescente , Adulto , Anciano , Preescolar , Demografía , Dipéptidos/farmacología , Femenino , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/enzimología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Inhibidores de la Metaloproteinasa de la Matriz , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína smad3/metabolismo , Proteína smad7/metabolismo , Factor de Crecimiento Transformador beta1/farmacología , Adulto Joven
20.
Lab Invest ; 90(6): 812-23, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20404807

RESUMEN

Profibrotic cells derived from circulating CD14+ monocytes include fibrocytes and alternatively activated macrophages. These cells are associated with interstitial lung disease (ILD) and are implicated in the pathogenesis of systemic sclerosis (SSc); however, the simultaneous presence of profibrotic cells and their associated mediators in the circulation of these patients has not been defined. We hypothesized that monocytes from patients with SSc-related ILD (SSc-ILD) would show profibrotic characteristics when compared with normal controls. We recruited patients with SSc-ILD (n=12) and normal controls (n=27) and quantified circulating collagen-producing cells by flow cytometry for CD45 and pro-collagen I. The in vitro activation potential of CD14+ monocytes in response to lipopolysaccharide was assessed using flow cytometry for CD163, and by ELISA for CCL18 and IL-10 secretion. Profibrotic mediators in plasma were quantified using Luminex-based assays. The concentration of circulating collagen-producing cells was increased in the SSc-ILD patients when compared with controls. These cells were composed of both CD34+ fibrocytes and a population of CD34+CD14+ cells. Cultured CD14+ monocytes from SSc-ILD patients revealed a profibrotic phenotype characterized by expression of CD163 and by enhanced secretion of CCL18 and IL-10 in response to proinflammatory activation. Plasma levels of IL-10, MCP-1, IL-1RA, and TNF levels were significantly elevated in the plasma of the SSc-ILD cohort. Subgroup analysis of the normal controls revealed that unlike the subjects < or =35 years, subjects > or =60 years old showed higher levels of circulating CD34+CD14+ cells, collagen-producing CD14+ monocytes, CD163+ monocytes, IL-4, IL-10, IL-13, MCP-1, and CCL18. These data indicate that the blood of patients with SSc-ILD and of healthy aged controls is enriched for fibrocytes, profibrotic monocytes, and fibrosis-associated mediators. Investigations defining the factors responsible for this peripheral blood profile may provide new insight into SSc-ILD as well as the pathophysiology of aging.


Asunto(s)
Enfermedades Pulmonares Intersticiales/complicaciones , Monocitos/fisiología , Fibrosis Pulmonar/patología , Esclerodermia Sistémica/sangre , Esclerodermia Sistémica/complicaciones , Adulto , Diferenciación Celular , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Humanos , Antígenos Comunes de Leucocito/sangre , Receptores de Lipopolisacáridos/sangre , Enfermedades Pulmonares Intersticiales/inmunología , Enfermedades Pulmonares Intersticiales/patología , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/patología , Monocitos/inmunología , Monocitos/patología , Esclerodermia Sistémica/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA