Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Biol ; 21(2): e3001922, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36780432

RESUMEN

A universal taxonomy of viruses is essential for a comprehensive view of the virus world and for communicating the complicated evolutionary relationships among viruses. However, there are major differences in the conceptualisation and approaches to virus classification and nomenclature among virologists, clinicians, agronomists, and other interested parties. Here, we provide recommendations to guide the construction of a coherent and comprehensive virus taxonomy, based on expert scientific consensus. Firstly, assignments of viruses should be congruent with the best attainable reconstruction of their evolutionary histories, i.e., taxa should be monophyletic. This fundamental principle for classification of viruses is currently included in the International Committee on Taxonomy of Viruses (ICTV) code only for the rank of species. Secondly, phenotypic and ecological properties of viruses may inform, but not override, evolutionary relatedness in the placement of ranks. Thirdly, alternative classifications that consider phenotypic attributes, such as being vector-borne (e.g., "arboviruses"), infecting a certain type of host (e.g., "mycoviruses," "bacteriophages") or displaying specific pathogenicity (e.g., "human immunodeficiency viruses"), may serve important clinical and regulatory purposes but often create polyphyletic categories that do not reflect evolutionary relationships. Nevertheless, such classifications ought to be maintained if they serve the needs of specific communities or play a practical clinical or regulatory role. However, they should not be considered or called taxonomies. Finally, while an evolution-based framework enables viruses discovered by metagenomics to be incorporated into the ICTV taxonomy, there are essential requirements for quality control of the sequence data used for these assignments. Combined, these four principles will enable future development and expansion of virus taxonomy as the true evolutionary diversity of viruses becomes apparent.


Asunto(s)
Bacteriófagos , Virus , Humanos , Metagenómica , Filogenia , Virus/genética
2.
J Biol Chem ; 300(5): 107218, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522515

RESUMEN

Virus genomes may encode overlapping or nested open reading frames that increase their coding capacity. It is not known whether the constraints on spatial structures of the two encoded proteins limit the evolvability of nested genes. We examine the evolution of a pair of proteins, p22 and p19, encoded by nested genes in plant viruses from the genus Tombusvirus. The known structure of p19, a suppressor of RNA silencing, belongs to the RAGNYA fold from the alpha+beta class. The structure of p22, the cell-to-cell movement protein from the 30K family widespread in plant viruses, is predicted with the AlphaFold approach, suggesting a single jelly-roll fold core from the all-beta class, structurally similar to capsid proteins from plant and animal viruses. The nucleotide and codon preferences impose modest constraints on the types of secondary structures encoded in the alternative reading frames, nonetheless allowing for compact, well-ordered folds from different structural classes in two similarly-sized nested proteins. Tombusvirus p22 emerged through radiation of the widespread 30K family, which evolved by duplication of a virus capsid protein early in the evolution of plant viruses, whereas lineage-specific p19 may have emerged by a stepwise increase in the length of the overprinted gene and incremental acquisition of functionally active secondary structure elements by the protein product. This evolution of p19 toward the RAGNYA fold represents one of the first documented examples of protein structure convergence in naturally occurring proteins.


Asunto(s)
Tombusvirus , Evolución Molecular , Sistemas de Lectura Abierta , Pliegue de Proteína , Estructura Secundaria de Proteína , Tombusvirus/genética , Tombusvirus/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Proteínas Virales/química , Secuencia de Aminoácidos , Homología de Secuencia de Aminoácido , Modelos Psicológicos , Estructura Terciaria de Proteína
3.
Arch Virol ; 169(11): 236, 2024 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-39488803

RESUMEN

This article reports changes to virus taxonomy and taxon nomenclature that were approved and ratified by the International Committee on Taxonomy of Viruses (ICTV) in April 2024. The entire ICTV membership was invited to vote on 203 taxonomic proposals that had been approved by the ICTV Executive Committee (EC) in July 2023 at the 55th EC meeting in Jena, Germany, or in the second EC vote in November 2023. All proposals were ratified by online vote. Taxonomic additions include one new phylum (Ambiviricota), one new class, nine new orders, three new suborders, 51 new families, 18 new subfamilies, 820 new genera, and 3547 new species (excluding taxa that have been abolished). Proposals to complete the process of species name replacement to the binomial (genus + species epithet) format were ratified. Currently, a total of 14,690 virus species have been established.


Asunto(s)
Terminología como Asunto , Virus , Virus/clasificación , Virus/genética , Virus/aislamiento & purificación , Clasificación/métodos , Filogenia , Virología/métodos
4.
J Gen Virol ; 104(5)2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37141106

RESUMEN

The taxonomy of viruses is developed and overseen by the International Committee on Taxonomy of Viruses (ICTV), which scrutinizes, approves and ratifies taxonomic proposals, and maintains a list of virus taxa with approved names (https://ictv.global). The ICTV has approximately 180 members who vote by simple majority. Taxon-specific Study Groups established by the ICTV have a combined membership of over 600 scientists from the wider virology community; they provide comprehensive expertise across the range of known viruses and are major contributors to the creation and evaluation of taxonomic proposals. Proposals can be submitted by anyone and will be considered by the ICTV irrespective of Study Group support. Thus, virus taxonomy is developed from within the virology community and realized by a democratic decision-making process. The ICTV upholds the distinction between a virus or replicating genetic element as a physical entity and the taxon category to which it is assigned. This is reflected by the nomenclature of the virus species taxon, which is now mandated by the ICTV to be in a binomial format (genus + species epithet) and is typographically distinct from the names of viruses. Classification of viruses below the rank of species (such as, genotypes or strains) is not within the remit of the ICTV. This article, authored by the ICTV Executive Committee, explains the principles of virus taxonomy and the organization, function, processes and resources of the ICTV, with the aim of encouraging greater understanding and interaction among the wider virology community.


Asunto(s)
Virus , Virus/clasificación , Clasificación
5.
Arch Virol ; 168(7): 175, 2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-37296227

RESUMEN

This article reports changes to virus taxonomy and taxon nomenclature that were approved and ratified by the International Committee on Taxonomy of Viruses (ICTV) in April 2023. The entire ICTV membership was invited to vote on 174 taxonomic proposals that had been approved by the ICTV Executive Committee in July 2022, as well as a proposed revision of the ICTV Statutes. All proposals and the revised ICTV Statutes were approved by a majority of the voting membership. Of note, the ICTV continued the process of renaming existing species in accordance with the recently mandated binomial format and included gene transfer agents (GTAs) in the classification framework by classifying them as viriforms. In total, one class, seven orders, 31 families, 214 genera, and 858 species were created.


Asunto(s)
Virus , Humanos , Virus/genética , Miembro de Comité
6.
Arch Virol ; 167(4): 1231-1234, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35043230

RESUMEN

Following the results of the International Committee on Taxonomy of Viruses (ICTV) Ratification Vote held in March 2021, a standard two-part "binomial nomenclature" is now the norm for naming virus species. Adoption of the new nomenclature is still in its infancy; thus, it is timely to reiterate the distinction between "virus" and "virus species" and to provide guidelines for naming and writing them correctly.


Asunto(s)
Virus no Clasificados , Virus , Virus ADN , Virus/genética , Escritura
7.
Arch Virol ; 167(11): 2429-2440, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35999326

RESUMEN

This article reports the changes to virus taxonomy approved and ratified by the International Committee on Taxonomy of Viruses (ICTV) in March 2022. The entire ICTV was invited to vote on 174 taxonomic proposals approved by the ICTV Executive Committee at its annual meeting in July 2021. All proposals were ratified by an absolute majority of the ICTV members. Of note, the Study Groups have started to implement the new rule for uniform virus species naming that became effective in 2021 and mandates the binomial 'Genus_name species_epithet' format with or without Latinization. As a result of this ratification, the names of 6,481 virus species (more than 60 percent of all species names currently recognized by ICTV) now follow this format.


Asunto(s)
Virus , Miembro de Comité , Virus/genética
8.
Int J Mol Sci ; 23(1)2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-35008947

RESUMEN

The prevailing current view of protein folding is the thermodynamic hypothesis, under which the native folded conformation of a protein corresponds to the global minimum of Gibbs free energy G. We question this concept and show that the empirical evidence behind the thermodynamic hypothesis of folding is far from strong. Furthermore, physical theory-based approaches to the prediction of protein folds and their folding pathways so far have invariably failed except for some very small proteins, despite decades of intensive theory development and the enormous increase of computer power. The recent spectacular successes in protein structure prediction owe to evolutionary modeling of amino acid sequence substitutions enhanced by deep learning methods, but even these breakthroughs provide no information on the protein folding mechanisms and pathways. We discuss an alternative view of protein folding, under which the native state of most proteins does not occupy the global free energy minimum, but rather, a local minimum on a fluctuating free energy landscape. We further argue that ΔG of folding is likely to be positive for the majority of proteins, which therefore fold into their native conformations only through interactions with the energy-dependent molecular machinery of living cells, in particular, the translation system and chaperones. Accordingly, protein folding should be modeled as it occurs in vivo, that is, as a non-equilibrium, active, energy-dependent process.


Asunto(s)
Conformación Proteica , Pliegue de Proteína , Proteínas/química , Termodinámica , Algoritmos , Cinética , Modelos Moleculares , Modelos Teóricos , Replegamiento Proteico , Estabilidad Proteica , Proteínas/síntesis química , Proteoma , Proteómica/métodos , Proteínas Recombinantes/química , Solubilidad , Especificidad de la Especie
9.
Arch Virol ; 166(9): 2633-2648, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34231026

RESUMEN

This article reports the changes to virus taxonomy approved and ratified by the International Committee on Taxonomy of Viruses (ICTV) in March 2021. The entire ICTV was invited to vote on 290 taxonomic proposals approved by the ICTV Executive Committee at its meeting in October 2020, as well as on the proposed revision of the International Code of Virus Classification and Nomenclature (ICVCN). All proposals and the revision were ratified by an absolute majority of the ICTV members. Of note, ICTV mandated a uniform rule for virus species naming, which will follow the binomial 'genus-species' format with or without Latinized species epithets. The Study Groups are requested to convert all previously established species names to the new format. ICTV has also abolished the notion of a type species, i.e., a species chosen to serve as a name-bearing type of a virus genus. The remit of ICTV has been clarified through an official definition of 'virus' and several other types of mobile genetic elements. The ICVCN and ICTV Statutes have been amended to reflect these changes.


Asunto(s)
Clasificación/métodos , Filogenia , Virus no Clasificados/clasificación , Virus/clasificación , Cooperación Internacional , Viroides/clasificación , Virus/genética , Virus/aislamiento & purificación , Virus no Clasificados/genética , Virus no Clasificados/aislamiento & purificación
10.
Arch Virol ; 165(2): 519-525, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31797129

RESUMEN

The Executive Committee of the International Committee on Taxonomy of Viruses (ICTV) recognizes the need for a standardized nomenclature for virus species. This article sets out the case for establishing a binomial nomenclature and presents the advantages and disadvantages of different naming formats. The Executive Committee understands that adopting a binomial system would have major practical consequences, and invites comments from the virology community before making any decisions to change the existing nomenclature. The Executive Committee will take account of these comments in deciding whether to approve a standardized binomial system at its next meeting in October 2020. Note that this system would relate only to the formal names of virus species and not to the names of viruses.


Asunto(s)
Clasificación/métodos , Terminología como Asunto , Virus/clasificación
11.
Arch Virol ; 165(11): 2737-2748, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32816125

RESUMEN

This article reports the changes to virus classification and taxonomy approved and ratified by the International Committee on Taxonomy of Viruses (ICTV) in March 2020. The entire ICTV was invited to vote on 206 taxonomic proposals approved by the ICTV Executive Committee at its meeting in July 2019, as well as on the proposed revision of the ICTV Statutes. All proposals and the revision of the Statutes were approved by an absolute majority of the ICTV voting membership. Of note, ICTV has approved a proposal that extends the previously established realm Riboviria to encompass nearly all RNA viruses and reverse-transcribing viruses, and approved three separate proposals to establish three realms for viruses with DNA genomes.


Asunto(s)
Clasificación/métodos , Virus/clasificación , Terminología como Asunto , Virología/organización & administración , Virus/aislamiento & purificación
12.
Arch Virol ; 165(5): 1263-1264, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32065315

RESUMEN

The article Binomial nomenclature for virus species: a consultation, written by Stuart G. Siddell, Peter J. Walker, Elliot J. Lefkowitz, Arcady R. Mushegian, Bas E. Dutilh.

13.
BMC Bioinformatics ; 20(1): 435, 2019 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-31438841

RESUMEN

BACKGROUND: Gene and protein interaction data are often represented as interaction networks, where nodes stand for genes or gene products and each edge stands for a relationship between a pair of gene nodes. Commonly, that relationship within a pair is specified by high similarity between profiles (vectors) of experimentally defined interactions of each of the two genes with all other genes in the genome; only gene pairs that interact with similar sets of genes are linked by an edge in the network. The tight groups of genes/gene products that work together in a cell can be discovered by the analysis of those complex networks. RESULTS: We show that the choice of the similarity measure between pairs of gene vectors impacts the properties of networks and of gene modules detected within them. We re-analyzed well-studied data on yeast genetic interactions, constructed four genetic networks using four different similarity measures, and detected gene modules in each network using the same algorithm. The four networks induced different numbers of putative functional gene modules, and each similarity measure induced some unique modules. In an example of a putative functional connection suggested by comparing genetic interaction vectors, we predict a link between SUN-domain proteins and protein glycosylation in the endoplasmic reticulum. CONCLUSIONS: The discovery of molecular modules in genetic networks is sensitive to the way of measuring similarity between profiles of gene interactions in a cell. In the absence of a formal way to choose the "best" measure, it is advisable to explore the measures with different mathematical properties, which may identify different sets of connections between genes.


Asunto(s)
Biología Computacional/métodos , Epistasis Genética , Algoritmos , Redes Reguladoras de Genes , Genes Fúngicos , Glicosilación , Anotación de Secuencia Molecular , Dominios Proteicos , Saccharomyces cerevisiae/genética , Estadística como Asunto
14.
Arch Virol ; 164(3): 943-946, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30663020

RESUMEN

This article reports the changes to virus taxonomy approved and ratified by the International Committee on Taxonomy of Viruses (ICTV) in October 2018. Of note, the ICTV has approved, by an absolute majority, the creation of additional taxonomical ranks above those recognized previously. A total of 15 ranks (realm, subrealm, kingdom, subkingdom, phylum, subphylum, class, subclass, order, suborder, family, subfamily, genus, subgenus, and species) are now available to encompass the entire spectrum of virus diversity. Classification at ranks above genus is not obligatory but can be used by the authors of new taxonomic proposals when scientific justification is provided.


Asunto(s)
Virus/clasificación , Filogenia , Virología/organización & administración , Virus/genética , Virus/aislamiento & purificación
15.
Arch Virol ; 164(9): 2417-2429, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31187277

RESUMEN

This article reports the changes to virus taxonomy approved and ratified by the International Committee on Taxonomy of Viruses (ICTV) in February 2019. Of note, in addition to seven new virus families, the ICTV has approved, by an absolute majority, the creation of the realm Riboviria, a likely monophyletic group encompassing all viruses with positive-strand, negative-strand and double-strand genomic RNA that use cognate RNA-directed RNA polymerases for replication.


Asunto(s)
Virología/organización & administración , Virus/clasificación , Miembro de Comité , ARN Viral/genética , Terminología como Asunto , Virología/normas , Virus/genética , Virus/aislamiento & purificación
16.
Syst Biol ; 66(3): 463-473, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-27798405

RESUMEN

Botanical, mycological, zoological, and prokaryotic species names follow the Linnaean format, consisting of an italicized Latinized binomen with a capitalized genus name and a lower case species epithet (e.g., Homo sapiens). Virus species names, however, do not follow a uniform format, and, even when binomial, are not Linnaean in style. In this thought exercise, we attempted to convert all currently official names of species included in the virus family Arenaviridae and the virus order Mononegavirales to Linnaean binomials, and to identify and address associated challenges and concerns. Surprisingly, this endeavor was not as complicated or time-consuming as even the authors of this article expected when conceiving the experiment. [Arenaviridae; binomials; ICTV; International Committee on Taxonomy of Viruses; Mononegavirales; virus nomenclature; virus taxonomy.].


Asunto(s)
Clasificación , Virus , Terminología como Asunto
17.
Arch Virol ; 163(9): 2601-2631, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29754305

RESUMEN

This article lists the changes to virus taxonomy approved and ratified by the International Committee on Taxonomy of Viruses in February 2018. A total of 451 species, 69 genera, 11 subfamilies, 9 families and one new order were added to the taxonomy. The current totals at each taxonomic level now stand at 9 orders, 131 families, 46 subfamilies, 803 genera and 4853 species. A change was made to the International Code of Virus Classification and Nomenclature to allow the use of the names of people in taxon names under appropriate circumstances. An updated Master Species List incorporating the approved changes was released in March 2018 ( https://talk.ictvonline.org/taxonomy/ ).


Asunto(s)
Virus/clasificación , Terminología como Asunto , Virología/organización & administración , Virus/genética , Virus/aislamiento & purificación
20.
Arch Virol ; 162(5): 1441-1446, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28078475

RESUMEN

We mark the 50th anniversary of the International Committee on Taxonomy of Viruses (ICTV) by presenting a brief history of the organization since its foundation, showing how it has adapted to advancements in our knowledge of virus diversity and the methods used to characterize it. We also outline recent developments, supported by a grant from the Wellcome Trust (UK), that are facilitating substantial changes in the operations of the ICTV and promoting dialogue with the virology community. These developments will generate improved online resources, including a freely available and regularly updated ICTV Virus Taxonomy Report. They also include a series of meetings between the ICTV and the broader community focused on some of the major challenges facing virus taxonomy, with the outcomes helping to inform the future policy and practice of the ICTV.


Asunto(s)
Virus/clasificación , Virus/genética , Biología Computacional , Historia del Siglo XX , Historia del Siglo XXI , Metagenómica , Filogenia , Sociedades Científicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA