Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Biomacromolecules ; 25(7): 4087-4094, 2024 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-38828905

RESUMEN

Living cells, especially eukaryotic ones, use multicompartmentalization to regulate intra- and extracellular activities, featuring membrane-bound and membraneless organelles. These structures govern numerous biological and chemical processes spatially and temporally. Synthetic cell models, primarily utilizing lipidic and polymeric vesicles, have been developed to carry out cascade reactions within their compartments. However, these reconstructions often segregate membrane-bound and membraneless organelles, neglecting their collaborative role in cellular regulation. To address this, we propose a structural design incorporating microfluidic-produced liposomes housing synthetic membrane-bound organelles made from self-assembled poly(ethylene glycol)-block-poly(trimethylene carbonate) nanovesicles and synthetic membraneless organelles formed via temperature-sensitive elastin-like polypeptide phase separation. This architecture mirrors natural cellular organization, facilitating a detailed examination of the interactions for a comprehensive understanding of cellular dynamics.


Asunto(s)
Células Artificiales , Liposomas , Orgánulos , Células Artificiales/química , Orgánulos/metabolismo , Orgánulos/química , Liposomas/química , Polietilenglicoles/química , Membrana Celular/metabolismo , Membrana Celular/química
2.
Biomacromolecules ; 25(9): 5454-5467, 2024 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-39196319

RESUMEN

The fundamental building block of living organisms is the cell, which is the universal biological base of all living entities. This micrometric mass of cytoplasm and the membrane border have fascinated scientists due to the highly complex and multicompartmentalized structure. This specific organization enables numerous metabolic reactions to occur simultaneously and in segregated spaces, without disturbing each other, but with a promotion of inter- and intracellular communication of biomolecules. At present, artificial nano- and microcompartments, whether as single components or self-organized in multicompartment architectures, hold significant value in the study of life development and advanced functional materials and in the fabrication of molecular devices for medical applications. These artificial compartments also possess the properties to encapsulate, protect, and control the release of bio(macro)molecules through selective transport processes, and they are capable of embedding or being connected with other types of compartments. The self-assembly mechanism of specific synthetic compartments and thus the fabrication of a simulated organelle membrane are some of the major aspects to gain insight. Considerable efforts have now been devoted to design various nano- and microcompartments and understand their functionality for precise control over properties. Of particular interest is the use of polymeric vesicles for communication in synthetic cells and colloidal systems to reinitiate chemical and biological communication and thus close the gap toward biological functions. Multicompartment systems can now be effectively created with a high level of hierarchical control. In this way, these structures can not only be explored to deepen our understanding of the functional organization of living cells, but also pave the way for many more exciting developments in the biomedical field.


Asunto(s)
Células Artificiales , Polímeros , Células Artificiales/química , Células Artificiales/metabolismo , Polímeros/química , Humanos
3.
Langmuir ; 38(26): 7945-7955, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35731957

RESUMEN

Nanoprecipitation is a facile and efficient approach to the assembly of loaded polymer nanoparticles (NPs) for applications in bioimaging and targeted drug delivery. Their successful use in clinics requires reproducible and scalable synthesis, for which microfluidics appears as an attractive technique. However, in the case of nanoprecipitation, particle formation depends strongly on mixing. Here, we compare 5 different types of microfluidic mixers with respect to the formation and properties of poly(d-l-lactide-co-glycolide) (PLGA) and poly(methyl methacrylate) NPs loaded with a fluorescent dye salt: a cross-shaped mixer, a multilamination mixer, a split and recombine mixer, two herringbone mixers, and two impact jet mixers. Size and fluorescence properties of the NPs obtained with these mixers are evaluated. All mixers, except the cross-shaped one, yield NPs at least as small and fluorescent as those obtained manually. Notably in the case of impact jet mixers operated at high flow speeds, the size of the NPs could be strongly reduced from >50 nm down to <20 nm. Surprisingly, the fluorescence quantum yield of NPs obtained with these mixers also depends strongly on the flow speed, increasing, in the case of PLGA, from 30 to >70%. These results show the importance of precisely controlling the assembly conditions for loaded polymer NPs. The present work further provides guidance for choosing the optimal microfluidic setup for production of nanomaterials for biomedical applications.


Asunto(s)
Nanopartículas , Polímeros , Sistemas de Liberación de Medicamentos , Colorantes Fluorescentes , Microfluídica/métodos , Tamaño de la Partícula
4.
Int J Mol Sci ; 23(4)2022 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-35216181

RESUMEN

Resistance to antifungal therapy of Candida albicans and non-albicans Candida strains, frequently associated with oral candidosis, is on the rise. In this context, host-defense peptides have emerged as new promising candidates to overcome antifungal resistance. Thus, the aim of this study was to assess the effectiveness against Candida species of different Catestatin-derived peptides, as well as the combined effect with serum albumin. Among Catestatin-derived peptides, the most active against sensitive and resistant strains of C. albicans, C. tropicalis and C. glabrata was the D-isomer of Cateslytin (D-bCtl) whereas the efficiency of the L-isomer (L-bCtl) significantly decreases against C. glabrata strains. Images obtained by transmission electron microscopy clearly demonstrated fungal membrane lysis and the leakage of the intracellular material induced by the L-bCtl and D-bCtl peptides. The possible synergistic effect of albumin on Catestatin-derived peptides activity was investigated too. Our finding showed that bovine serum albumin (BSA) when combined with the L- isomer of Catestatin (L-bCts) had a synergistic effect against Candida albicans especially at low concentrations of BSA; however, no synergistic effect was detected when BSA interacted with L-bCtl, suggesting the importance of the C-terminal end of L-bCts (GPGLQL) for the interaction with BSA. In this context in vitro D-bCtl, as well as the combination of BSA with L-bCts are potential candidates for the development of new antifungal drugs for the treatment of oral candidosis due to Candida and non-Candida albicans, without detrimental side effects.


Asunto(s)
Candidiasis Bucal/tratamiento farmacológico , Cromogranina A/farmacología , Fragmentos de Péptidos/farmacología , Péptidos/farmacología , Animales , Antifúngicos/farmacología , Candida/efectos de los fármacos , Candida/metabolismo , Candidiasis Bucal/metabolismo , Bovinos , Farmacorresistencia Fúngica/efectos de los fármacos , Humanos , Albúmina Sérica Bovina/metabolismo
5.
Mater Today Bio ; 28: 101168, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39221202

RESUMEN

Postoperative infections are the most common complications faced by surgeons after implant surgery. To address this issue, an emerging and promising approach is to develop antimicrobial coatings using antibiotic substitutes. We investigated the use of polycationic homopolypeptides in a layer-by-layer coating combined with hyaluronic acid (HA) to produce an effective antimicrobial shield. The three peptide-based polycations used to make the coatings, poly(l-arginine) (PAR), poly(l-lysine), and poly(l-ornithine), provided an efficient antibacterial barrier by a contact-killing mechanism against Gram-positive, Gram-negative, and antibiotic-resistant bacteria. Moreover, this activity was higher for homopolypeptides containing 30 amino-acid residues per polycation chain, emphasizing the impact of the polycation chain length and its mobility in the coatings to deploy its contact-killing antimicrobial properties. However, the PAR-containing coating emerged as the best candidate among the three selected polycations, as it promoted cell adhesion and epithelial monolayer formation. It also stimulated nitric oxide production in endothelial cells, thereby facilitating angiogenesis and subsequent tissue regeneration. More interestingly, bacteria did not develop a resistance to PAR and (PAR/HA) also inhibited the proliferation of eukaryotic pathogens, such as yeasts. Furthermore, in vivo investigations on a (PAR/HA)-coated hernia mesh implanted on a rabbit model confirmed that the coating had antibacterial properties without causing chronic inflammation. These impressive synergistic activities highlight the strong potential of PAR/HA coatings as a key tool in combating bacteria, including those resistant to conventional antibiotics and associated to medical devices.

6.
Int J Pharm ; 642: 123157, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37348574

RESUMEN

The self-assembly of poly(ethylene glycol)-block-poly(trimethylene carbonate) PEG-b-PTMC copolymers into vesicles, also referred as polymersomes, was evaluated by solvent displacement using microfluidic systems. Two microfluidic chips with different flow regimes (micromixer and Herringbone) were used and the impact of process conditions on vesicle formation was evaluated. As polymersomes are sensitive to osmotic variations, their preparation under conditions allowing their direct use in biological medium is of major importance. We therefore developed a solvent exchange approach from DMSO (Dimethylsulfoxide) to aqueous media with an osmolarity of 300 mOsm L-1, allowing their direct use for biological evaluation. We evidenced that the organic/aqueous solvent ratio does not impact vesicle size, but the total flow rate and copolymer concentration have been observed to influence the size of polymersomes. Finally, nanoparticles with diameters ranging from 76 nm to 224 nm were confirmed to be vesicles through the use of multi-angle light scattering in combination with cryo-TEM (Cryo-Transmission Electron Microscopy) characterization.


Asunto(s)
Microfluídica , Nanopartículas , Microscopía por Crioelectrón , Microscopía Electrónica de Transmisión , Solventes , Polietilenglicoles
7.
RSC Adv ; 13(3): 2190-2201, 2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36712617

RESUMEN

Developing new biomaterials is an active research area owing to their applications in regenerative medicine, tissue engineering and drug delivery. Elastin-like polypeptides (ELPs) are good candidates for these applications because they are biosourced, biocompatible and biodegradable. With the aim of developing ELP-based micelles for drug delivery applications we have synthesized 15 acyl-ELP compounds by conjugating myristic, palmitic, stearic, oleic or linoleic acid to the N-terminus of three ELPs differing in molar mass. The ELP-fatty acid conjugates have interesting solution behavior. They form micelles at low temperatures and aggregate above the cloud point temperature (Tcp). The critical micelle concentration depends on the fatty acid nature while the micelle size is mainly determined by the ELP block length. We were able to show that ELPs were better hydrated in the micelles than in their individual state in solution. The micelles are stable in phosphate-buffered saline at temperatures below the Tcp, which can vary between 20 °C and 38 °C depending on the length or hydrophilicity of the ELP. Acyl-ELP micelles were loaded with the small hydrophobic molecule Nile red. The encapsulation efficiency and release kinetics showed that the best loading conditions were achieved with the largest ELP conjugated to stearic acid.

8.
Sci Rep ; 11(1): 15615, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34341386

RESUMEN

Chromogranin A (CgA) is the precursor of several antimicrobial peptides, such as Catestatin (Cts, bovine CgA344-364), initially described as a potent inhibitor of catecholamines. This peptide displays direct antimicrobial activities and contributes to immune system regulation. The aim of the present study is to investigate a designed peptide based on Cts to fight infections against superbugs and more particularly Staphylococcus aureus. In addition to Cateslytin (Ctl, bovine CgA344-358), the active domain of Catestatin, several peptides including dimers, D-isomer and the new designed peptide DOPA-K-DOPA-K-DOPA-TLRGGE-RSMRLSFRARGYGFR (Dopa5T-Ctl) were prepared and tested. Cateslytin is resistant to bacterial degradation and does not induce bacterial resistance. The interaction of Catestatin with immune dermal cells (dendritic cells DC1a, dermal macrophages CD14 and macrophages) was analyzed by using confocal microscopy and cytokine release assay. The dimers and D-isomer of Ctl were tested against a large variety of bacteria showing the potent antibacterial activity of the D-isomer. The peptide Dopa5T-Ctl is able to induce the self-killing of S. aureus after release of Ctl by the endoprotease Glu-C produced by this pathogen. It permits localized on-demand delivery of the antimicrobial drug directly at the infectious site.


Asunto(s)
Antiinfecciosos , Inmunidad Innata , Péptidos , Staphylococcus aureus , Animales , Bovinos , Humanos
9.
J Colloid Interface Sci ; 604: 575-583, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34280755

RESUMEN

Membrane structuration of Large Hybrid Unilamellar Polymer/Lipid Vesicle (LHUV) is an important parameter on the optimization of their properties and thus their valuation in various fields. However, this kind of information is hardly accessible. In this work, we will focus on the development of LHUV obtained from the self-assembly of diblock poly(dimethylsiloxane)-b-poly(ethylene oxide) (PDMS-b-PEO) of different molar masses combined with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) at 15% and 25% w/w content. The hybrid character of the resulting vesicles as well as their membrane structure are characterized by the mean of different techniques such as small-angle neutron scattering (SANS) and cryo-transmission electron microscopy (cryo-TEM). We show that hybrid vesicles with homogeneous membrane structure are obtained whatever the molar mass of the block copolymer (from 2500 to 4000 g/mol), with of a small number of tubular structures observed with the higher molar mass. We also demonstrate that the permeability of the LHUV, evaluated through controlled release experiments of fluorescein loaded in LHUV, is essentially controlled by the lipid/polymer composition.


Asunto(s)
Polímeros , Liposomas Unilamelares , Membrana Dobles de Lípidos , Peso Molecular , Permeabilidad , Polietilenglicoles
10.
Mater Sci Eng C Mater Biol Appl ; 104: 109898, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31499960

RESUMEN

Surface of the implantable devices is the root cause of several complications such as infections, implant loosening and chronic inflammation. There is an urgent need for multifunctional coatings that can address these shortcomings simultaneously in a manner similar to the structures of extracellular matrix. Herein, we developed a coating system composed of ECM components and a naturally derived polypeptide. The interactions between the coating components create an environment that enables incorporation of an antimicrobial/angiogenic polypeptide. The film composition is based gelatin and hyaluronic acid modified with aldehyde groups (HA-Ald) that can react with poly (arginine) (PAR) through transient interactions. Nanoplasmon measurements demonstrated a significantly higher loading of PAR in films containing HA-Ald with longer retention of PAR in the structure. The presence of PAR not only provides to the film surface antimicrobial (contact-killing) properties but also increased endothelial cell-cell contacts (PECAM) and VEGFA gene expression and secretion by human vascular endothelial cells. This multifunctional coating can be easily applied to surface of implants where it can enact on several problems simultaneously.


Asunto(s)
Materiales Biocompatibles Revestidos/farmacología , Gelatina/farmacología , Ácido Hialurónico/farmacología , Péptidos/farmacología , Polímeros/farmacología , Prótesis e Implantes , Animales , Antibacterianos/farmacología , Bovinos , Matriz Extracelular/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Factor A de Crecimiento Endotelial Vascular/metabolismo
11.
ACS Appl Mater Interfaces ; 10(39): 33545-33555, 2018 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-30192508

RESUMEN

Antibiotic resistance in bacterial cells has motivated the scientific community to design new and efficient (bio)materials with targeted bacteriostatic and/or bactericide properties. In this work, a series of polyelectrolyte multilayer films differing in terms of polycation-polyanion combinations are constructed according to the layer-by-layer deposition method. Their capacities to host T4 and φx174 phage particles and maintain their infectivity and bacteriolytic activity are thoroughly examined. It is found that the macroscopic physicochemical properties of the films, which includes film thickness, swelling ratio, or mechanical stiffness (as derived by atomic force microscopy and spectroscopy measurements), do not predominantly control the selectivity of the films for hosting infective phages. Instead, it is evidenced that the intimate electrostatic interactions locally operational between the loaded phages and the polycationic and polyanionic PEM components may lead to phage activity reduction and preservation/enhancement, respectively. It is argued that the underlying mechanism involves the screening of the phage capsid receptors (operational in cell recognition/infection processes) because of the formation of either polymer-phage hetero-assemblies or polymer coating surrounding the bioactive phage surface.


Asunto(s)
Bacteriófagos/patogenicidad , Materiales Biocompatibles/química , Bioensayo/métodos , Polímeros/química , Dispersión Dinámica de Luz , Microscopía de Fuerza Atómica , Polielectrolitos
12.
Biomed Mater ; 13(1): 015015, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-28855425

RESUMEN

For in-dwelling implants, controlling the biological interface is a crucial parameter to promote tissue integration and prevent implant failure. For this purpose, one possibility is to facilitate the establishment of the interface with cell-laden hydrogels fixed to the implant. However, for proper functioning, the stability of the hydrogel on the implant should be ensured. Modification of implant surfaces with an adhesive represents a promising strategy to promote the adhesion of a cell-laden hydrogel on an implant. Herein, we developed a peptidic adhesive based on mussel foot protein (L-DOPA-L-lysine)2-L-DOPA that can be applied directly on the surface of an implant. At physiological pH, unoxidized (L-DOPA-L-lysine)2-L-DOPA was supposed to strongly adhere to metallic surfaces but it only formed a very thin coating (less than 1 nm). Once oxidized at physiological pH, (L-DOPA-L-lysine)2-L-DOPA forms an adhesive coating about 20 nm thick. In oxidized conditions, L-lysine can adhere to metallic substrates via electrostatic interaction. Oxidized L-DOPA allows the formation of a coating through self-polymerization and can react with amines so that this adhesive can be used to fix extra-cellular matrix based materials on implant surfaces through the reaction of quinones with amino groups. Hence, a stable interface between a soft gelatin hydrogel and metallic surfaces was achieved and the strength of adhesion was investigated. We have shown that the adhesive is non-cytotoxic to encapsulated cells and enabled the adhesion of gelatin soft hydrogels for 21 days on metallic substrates in liquid conditions. The adhesion properties of this anchoring peptide was quantified by a 180° peeling test with a more than 60% increase in peel strength in the presence of the adhesive. We demonstrated that by using a biomimetic adhesive, for the application of cell-laden hydrogels to metallic implant surfaces, the hydrogel/implant interface can be ensured without relying on the properties of the deposited biomaterials.


Asunto(s)
Materiales Biocompatibles/química , Materiales Biomiméticos/química , Hidrogeles/química , Metales/química , Diseño de Prótesis/métodos , Células 3T3 , Adhesivos , Animales , Bivalvos , Adhesión Celular , Dihidroxifenilalanina/química , Fibroblastos/química , Fibroblastos/metabolismo , Gelatina/química , Humanos , Concentración de Iones de Hidrógeno , Lisina/química , Ratones , Péptidos/química , Prótesis e Implantes , Quinonas/química , Transglutaminasas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA