Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Nature ; 617(7959): 200-207, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37020024

RESUMEN

In all species, ribosomes synthesize proteins by faithfully decoding messenger RNA (mRNA) nucleotide sequences using aminoacyl-tRNA substrates. Current knowledge of the decoding mechanism derives principally from studies on bacterial systems1. Although key features are conserved across evolution2, eukaryotes achieve higher-fidelity mRNA decoding than bacteria3. In human, changes in decoding fidelity are linked to ageing and disease and represent a potential point of therapeutic intervention in both viral and cancer treatment4-6. Here we combine single-molecule imaging and cryogenic electron microscopy methods to examine the molecular basis of human ribosome fidelity to reveal that the decoding mechanism is both kinetically and structurally distinct from that of bacteria. Although decoding is globally analogous in both species, the reaction coordinate of aminoacyl-tRNA movement is altered on the human ribosome and the process is an order of magnitude slower. These distinctions arise from eukaryote-specific structural elements in the human ribosome and in the elongation factor eukaryotic elongation factor 1A (eEF1A) that together coordinate faithful tRNA incorporation at each mRNA codon. The distinct nature and timing of conformational changes within the ribosome and eEF1A rationalize how increased decoding fidelity is achieved and potentially regulated in eukaryotic species.


Asunto(s)
Bacterias , Biosíntesis de Proteínas , Humanos , Bacterias/genética , Bacterias/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Aminoacil-ARN de Transferencia/genética , Aminoacil-ARN de Transferencia/metabolismo , Imagen Individual de Molécula , Microscopía por Crioelectrón , Ribosomas/genética , Ribosomas/metabolismo
2.
Nature ; 601(7893): 460-464, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34937942

RESUMEN

Maintaining a healthy proteome is fundamental for the survival of all organisms1. Integral to this are Hsp90 and Hsp70, molecular chaperones that together facilitate the folding, remodelling and maturation of the many 'client proteins' of Hsp902. The glucocorticoid receptor (GR) is a model client protein that is strictly dependent on Hsp90 and Hsp70 for activity3-7. Chaperoning GR involves a cycle of inactivation by Hsp70; formation of an inactive GR-Hsp90-Hsp70-Hop 'loading' complex; conversion to an active GR-Hsp90-p23 'maturation' complex; and subsequent GR release8. However, to our knowledge, a molecular understanding of this intricate chaperone cycle is lacking for any client protein. Here we report the cryo-electron microscopy structure of the GR-loading complex, in which Hsp70 loads GR onto Hsp90, uncovering the molecular basis of direct coordination by Hsp90 and Hsp70. The structure reveals two Hsp70 proteins, one of which delivers GR and the other scaffolds the Hop cochaperone. Hop interacts with all components of the complex, including GR, and poises Hsp90 for subsequent ATP hydrolysis. GR is partially unfolded and recognized through an extended binding pocket composed of Hsp90, Hsp70 and Hop, revealing the mechanism of GR loading and inactivation. Together with the GR-maturation complex structure9, we present a complete molecular mechanism of chaperone-dependent client remodelling, and establish general principles of client recognition, inhibition, transfer and activation.


Asunto(s)
Proteínas HSP70 de Choque Térmico , Proteínas HSP90 de Choque Térmico , Proteínas de Homeodominio , Pliegue de Proteína , Receptores de Glucocorticoides , Microscopía por Crioelectrón , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Unión Proteica , Receptores de Glucocorticoides/metabolismo
3.
Nature ; 595(7869): 741-745, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34234344

RESUMEN

Peptide-chain elongation during protein synthesis entails sequential aminoacyl-tRNA selection and translocation reactions that proceed rapidly (2-20 per second) and with a low error rate (around 10-3 to 10-5 at each step) over thousands of cycles1. The cadence and fidelity of ribosome transit through mRNA templates in discrete codon increments is a paradigm for movement in biological systems that must hold for diverse mRNA and tRNA substrates across domains of life. Here we use single-molecule fluorescence methods to guide the capture of structures of early translocation events on the bacterial ribosome. Our findings reveal that the bacterial GTPase elongation factor G specifically engages spontaneously achieved ribosome conformations while in an active, GTP-bound conformation to unlock and initiate peptidyl-tRNA translocation. These findings suggest that processes intrinsic to the pre-translocation ribosome complex can regulate the rate of protein synthesis, and that energy expenditure is used later in the translocation mechanism than previously proposed.


Asunto(s)
Factor G de Elongación Peptídica/metabolismo , Biosíntesis de Proteínas , Aminoacil-ARN de Transferencia/genética , Ribosomas/metabolismo , Codón , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , ARN Mensajero/genética
4.
Nature ; 600(7887): 153-157, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34819673

RESUMEN

Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase (RTK) that regulates important functions in the central nervous system1,2. The ALK gene is a hotspot for chromosomal translocation events that result in several fusion proteins that cause a variety of human malignancies3. Somatic and germline gain-of-function mutations in ALK were identified in paediatric neuroblastoma4-7. ALK is composed of an extracellular region (ECR), a single transmembrane helix and an intracellular tyrosine kinase domain8,9. ALK is activated by the binding of ALKAL1 and ALKAL2 ligands10-14 to its ECR, but the lack of structural information for the ALK-ECR or for ALKAL ligands has limited our understanding of ALK activation. Here we used cryo-electron microscopy, nuclear magnetic resonance and X-ray crystallography to determine the atomic details of human ALK dimerization and activation by ALKAL1 and ALKAL2. Our data reveal a mechanism of RTK activation that allows dimerization by either dimeric (ALKAL2) or monomeric (ALKAL1) ligands. This mechanism is underpinned by an unusual architecture of the receptor-ligand complex. The ALK-ECR undergoes a pronounced ligand-induced rearrangement and adopts an orientation parallel to the membrane surface. This orientation is further stabilized by an interaction between the ligand and the membrane. Our findings highlight the diversity in RTK oligomerization and activation mechanisms.


Asunto(s)
Quinasa de Linfoma Anaplásico/química , Quinasa de Linfoma Anaplásico/metabolismo , Quinasa de Linfoma Anaplásico/ultraestructura , Sitios de Unión , Membrana Celular/química , Membrana Celular/metabolismo , Microscopía por Crioelectrón , Cristalografía por Rayos X , Citocinas/química , Citocinas/metabolismo , Citocinas/ultraestructura , Activación Enzimática , Humanos , Ligandos , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Dominios Proteicos , Multimerización de Proteína
5.
Mol Cell ; 69(5): 816-827.e4, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29499136

RESUMEN

Transcriptional pausing by RNA polymerases (RNAPs) is a key mechanism to regulate gene expression in all kingdoms of life and is a prerequisite for transcription termination. The essential bacterial transcription factor NusA stimulates both pausing and termination of transcription, thus playing a central role. Here, we report single-particle electron cryo-microscopy reconstructions of NusA bound to paused E. coli RNAP elongation complexes with and without a pause-enhancing hairpin in the RNA exit channel. The structures reveal four interactions between NusA and RNAP that suggest how NusA stimulates RNA folding, pausing, and termination. An asymmetric translocation intermediate of RNA and DNA converts the active site of the enzyme into an inactive state, providing a structural explanation for the inhibition of catalysis. Comparing RNAP at different stages of pausing provides insights on the dynamic nature of the process and the role of NusA as a regulatory factor.


Asunto(s)
ARN Polimerasas Dirigidas por ADN , Proteínas de Escherichia coli , Escherichia coli , Pliegue del ARN , ARN Bacteriano , Terminación de la Transcripción Genética , Factores de Elongación Transcripcional , Dominio Catalítico , ADN Bacteriano/química , ADN Bacteriano/metabolismo , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , ARN Bacteriano/biosíntesis , ARN Bacteriano/química , Factores de Elongación Transcripcional/química , Factores de Elongación Transcripcional/metabolismo
6.
Mol Cell ; 63(2): 206-217, 2016 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-27373335

RESUMEN

mRNA translation initiation in eukaryotes requires the cooperation of a dozen eukaryotic initiation factors (eIFs) forming several complexes, which leads to mRNA attachment to the small ribosomal 40S subunit, mRNA scanning for start codon, and accommodation of initiator tRNA at the 40S P site. eIF3, composed of 13 subunits, 8 core (a, c, e, f, h, l, k, and m) and 5 peripheral (b, d, g, i, and j), plays a central role during this process. Here we report a cryo-electron microscopy structure of a mammalian 48S initiation complex at 5.8 Å resolution. It shows the relocation of subunits eIF3i and eIF3g to the 40S intersubunit face on the GTPase binding site, at a late stage in initiation. On the basis of a previous study, we demonstrate the relocation of eIF3b to the 40S intersubunit face, binding below the eIF2-Met-tRNAi(Met) ternary complex upon mRNA attachment. Our analysis reveals the deep rearrangement of eIF3 and unravels the molecular mechanism underlying eIF3 function in mRNA scanning and timing of ribosomal subunit joining.


Asunto(s)
Codón Iniciador , Factor 3 de Iniciación Eucariótica/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Ribosomas/metabolismo , Animales , Sitios de Unión , Factor 1 Eucariótico de Iniciación/química , Factor 1 Eucariótico de Iniciación/metabolismo , Factor 2 Eucariótico de Iniciación/química , Factor 2 Eucariótico de Iniciación/metabolismo , Factor 3 de Iniciación Eucariótica/química , Humanos , Modelos Moleculares , Complejos Multiproteicos , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica , Subunidades de Proteína , ARN Mensajero/química , ARN Mensajero/genética , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Conejos , Ribosomas/química , Relación Estructura-Actividad , Globinas beta/química , Globinas beta/metabolismo
7.
Nature ; 551(7681): 472-477, 2017 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-29143818

RESUMEN

Chemical modifications of human ribosomal RNA (rRNA) are introduced during biogenesis and have been implicated in the dysregulation of protein synthesis, as is found in cancer and other diseases. However, their role in this phenomenon is unknown. Here we visualize more than 130 individual rRNA modifications in the three-dimensional structure of the human ribosome, explaining their structural and functional roles. In addition to a small number of universally conserved sites, we identify many eukaryote- or human-specific modifications and unique sites that form an extended shell in comparison to bacterial ribosomes, and which stabilize the RNA. Several of the modifications are associated with the binding sites of three ribosome-targeting antibiotics, or are associated with degenerate states in cancer, such as keto alkylations on nucleotide bases reminiscent of specialized ribosomes. This high-resolution structure of the human 80S ribosome paves the way towards understanding the role of epigenetic rRNA modifications in human diseases and suggests new possibilities for designing selective inhibitors and therapeutic drugs.


Asunto(s)
Microscopía por Crioelectrón , ARN Ribosómico/química , ARN Ribosómico/ultraestructura , Ribosomas/química , Ribosomas/ultraestructura , Sitios de Unión , Epistasis Genética , Células HeLa , Humanos , Ligandos , Modelos Moleculares , Estabilidad del ARN , ARN Ribosómico/biosíntesis , ARN Ribosómico/clasificación , Subunidades Ribosómicas Grandes de Eucariotas/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , Ribosomas/efectos de los fármacos , Ribosomas/genética
8.
RNA ; 26(6): 715-723, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32144191

RESUMEN

Macrolides are one of the most successful and widely used classes of antibacterials, which kill or stop the growth of pathogenic bacteria by binding near the active site of the ribosome and interfering with protein synthesis. Dirithromycin is a derivative of the prototype macrolide erythromycin with additional hydrophobic side chain. In our recent study, we have discovered that the side chain of dirithromycin forms lone pair-π stacking interaction with the aromatic imidazole ring of the His69 residue in ribosomal protein uL4 of the Thermus thermophilus 70S ribosome. In the current work, we found that neither the presence of the side chain, nor the additional contact with the ribosome, improve the binding affinity of dirithromycin to the ribosome. Nevertheless, we found that dirithromycin is a more potent inhibitor of in vitro protein synthesis in comparison with its parent compound, erythromycin. Using high-resolution cryo-electron microscopy, we determined the structure of the dirithromycin bound to the translating Escherichia coli 70S ribosome, which suggests that the better inhibitory properties of the drug could be rationalized by the side chain of dirithromycin pointing into the lumen of the nascent peptide exit tunnel, where it can interfere with the normal passage of the growing polypeptide chain.


Asunto(s)
Antibacterianos/química , Eritromicina/análogos & derivados , Inhibidores de la Síntesis de la Proteína/química , Ribosomas/química , Antibacterianos/farmacología , Microscopía por Crioelectrón , Eritromicina/química , Eritromicina/farmacología , Escherichia coli/genética , Modelos Moleculares , Biosíntesis de Proteínas/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína/farmacología , ARN Ribosómico 23S/química
9.
Nucleic Acids Res ; 48(5): 2723-2732, 2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-31989172

RESUMEN

Post-transcriptional ribosomal RNA (rRNA) modifications are present in all organisms, but their exact functional roles and positions are yet to be fully characterized. Modified nucleotides have been implicated in the stabilization of RNA structure and regulation of ribosome biogenesis and protein synthesis. In some instances, rRNA modifications can confer antibiotic resistance. High-resolution ribosome structures are thus necessary for precise determination of modified nucleotides' positions, a task that has previously been accomplished by X-ray crystallography. Here, we present a cryo-electron microscopy (cryo-EM) structure of the Escherichia coli 50S subunit at an average resolution of 2.2 Å as an additional approach for mapping modification sites. Our structure confirms known modifications present in 23S rRNA and additionally allows for localization of Mg2+ ions and their coordinated water molecules. Using our cryo-EM structure as a testbed, we developed a program for assessment of cryo-EM map quality. This program can be easily used on any RNA-containing cryo-EM structure, and an associated Coot plugin allows for visualization of validated modifications, making it highly accessible.


Asunto(s)
Microscopía por Crioelectrón , Escherichia coli/metabolismo , Escherichia coli/ultraestructura , Nucleótidos/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/ultraestructura , Modelos Moleculares , Péptidos/metabolismo , Peptidil Transferasas/metabolismo , Reproducibilidad de los Resultados , Solventes , Electricidad Estática
10.
Nature ; 520(7549): 640-5, 2015 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-25901680

RESUMEN

Ribosomes are translational machineries that catalyse protein synthesis. Ribosome structures from various species are known at the atomic level, but obtaining the structure of the human ribosome has remained a challenge; efforts to address this would be highly relevant with regard to human diseases. Here we report the near-atomic structure of the human ribosome derived from high-resolution single-particle cryo-electron microscopy and atomic model building. The structure has an average resolution of 3.6 Å, reaching 2.9 Å resolution in the most stable regions. It provides unprecedented insights into ribosomal RNA entities and amino acid side chains, notably of the transfer RNA binding sites and specific molecular interactions with the exit site tRNA. It reveals atomic details of the subunit interface, which is seen to remodel strongly upon rotational movements of the ribosomal subunits. Furthermore, the structure paves the way for analysing antibiotic side effects and diseases associated with deregulated protein synthesis.


Asunto(s)
Microscopía por Crioelectrón , Ribosomas/química , Ribosomas/ultraestructura , Sitios de Unión , Electrones , Humanos , Modelos Moleculares , ARN Ribosómico/química , ARN Ribosómico/metabolismo , ARN Ribosómico/ultraestructura , ARN de Transferencia/química , ARN de Transferencia/metabolismo , ARN de Transferencia/ultraestructura , Proteínas Ribosómicas/química , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/ultraestructura , Subunidades Ribosómicas/química , Subunidades Ribosómicas/metabolismo , Subunidades Ribosómicas/ultraestructura , Ribosomas/metabolismo
11.
Int J Mol Sci ; 22(11)2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34200244

RESUMEN

Ribosome biogenesis is a highly coordinated and complex process that requires numerous assembly factors that ensure prompt and flawless maturation of ribosomal subunits. Despite the increasing amount of data collected, the exact role of most assembly factors and mechanistic details of their operation remain unclear, mainly due to the shortage of high-resolution structural information. Here, using cryo-electron microscopy, we characterized 30S ribosomal particles isolated from an Escherichia coli strain with a deleted gene for the RbfA factor. The cryo-EM maps for pre-30S subunits were divided into six classes corresponding to consecutive assembly intermediates: from the particles with a completely unresolved head domain and unfolded central pseudoknot to almost mature 30S subunits with well-resolved body, platform, and head domains and partially distorted helix 44. The structures of two predominant 30S intermediates belonging to most populated classes obtained at 2.7 Å resolutions indicate that RbfA acts at two distinctive 30S assembly stages: early formation of the central pseudoknot including folding of the head, and positioning of helix 44 in the decoding center at a later stage. Additionally, it was shown that the formation of the central pseudoknot may promote stabilization of the head domain, likely through the RbfA-dependent maturation of the neck helix 28. An update to the model of factor-dependent 30S maturation is proposed, suggesting that RfbA is involved in most of the subunit assembly process.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiología , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/fisiología , Ribosomas/metabolismo , Sitios de Unión , Microscopía por Crioelectrón/métodos , Proteínas de Escherichia coli/genética , Modelos Moleculares , Unión Proteica , Proteínas Ribosómicas/genética , Subunidades Ribosómicas Pequeñas Bacterianas/ultraestructura , Ribosomas/ultraestructura
12.
J Struct Biol ; 202(3): 191-199, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29337113

RESUMEN

A current bottleneck in structure determination of macromolecular complexes by cryo electron microscopy (cryo-EM) is the large amount of data needed to obtain high-resolution 3D reconstructions, including through sorting into different conformations and compositions with advanced image processing. Additionally, it may be difficult to visualize small ligands that bind in sub-stoichiometric levels. Volta phase plates (VPP) introduce a phase shift in the contrast transfer and drastically increase the contrast of the recorded low-dose cryo-EM images while preserving high frequency information. Here we present a comparative study to address the behavior of different data sets during image processing and quantify important parameters during structure refinement. The automated data collection was done from the same human ribosome sample either as a conventional defocus range dataset or with a Volta phase plate close to focus (cfVPP) or with a small defocus (dfVPP). The analysis of image processing parameters shows that dfVPP data behave more robustly during cryo-EM structure refinement because particle alignments, Euler angle assignments and 2D & 3D classifications behave more stably and converge faster. In particular, less particle images are required to reach the same resolution in the 3D reconstructions. Finally, we find that defocus range data collection is also applicable to VPP. This study shows that data processing and cryo-EM map interpretation, including atomic model refinement, are facilitated significantly by performing VPP cryo-EM, which will have an important impact on structural biology.


Asunto(s)
Microscopía por Crioelectrón/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Sustancias Macromoleculares/química , Recolección de Datos , Humanos , Ligandos , Sustancias Macromoleculares/ultraestructura , Ribosomas/química , Ribosomas/ultraestructura
13.
Biol Cell ; 109(2): 81-93, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27730650

RESUMEN

After gradually moving away from preparation methods prone to artefacts such as plastic embedding and negative staining for cell sections and single particles, the field of cryo electron microscopy (cryo-EM) is now heading off at unprecedented speed towards high-resolution analysis of biological objects of various sizes. This 'revolution in resolution' is happening largely thanks to new developments of new-generation cameras used for recording the images in the cryo electron microscope which have much increased sensitivity being based on complementary metal oxide semiconductor devices. Combined with advanced image processing and 3D reconstruction, the cryo-EM analysis of nucleoprotein complexes can provide unprecedented insights at molecular and atomic levels and address regulatory mechanisms in the cell. These advances reinforce the integrative role of cryo-EM in synergy with other methods such as X-ray crystallography, fluorescence imaging or focussed-ion beam milling as exemplified here by some recent studies from our laboratory on ribosomes, viruses, chromatin and nuclear receptors. Such multi-scale and multi-resolution approaches allow integrating molecular and cellular levels when applied to purified or in situ macromolecular complexes, thus illustrating the trend of the field towards cellular structural biology.


Asunto(s)
Microscopía por Crioelectrón , Animales , Cristalografía por Rayos X , Humanos , Sustancias Macromoleculares/ultraestructura , Modelos Moleculares , Conformación Molecular , Imagen Individual de Molécula , Tomografía
14.
Nucleic Acids Res ; 43(1): 618-28, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25520190

RESUMEN

Using sedimentation and cryo electron tomography techniques, the conformations of eukaryotic polyribosomes formed in a long-term cell-free translation system were analyzed over all the active system lifetime (20-30 translation rounds during 6-8 h in wheat germ extract at 25°C). Three distinct types of the conformations were observed: (i) circular polyribosomes, varying from ring-shaped forms to circles collapsed into double rows, (ii) linear polyribosomes, tending to acquire planar zigzag-like forms and (iii) densely packed 3D helices. At the start, during the first two rounds of translation mostly the circular (ring-shaped and double-row) polyribosomes and the linear (free-shaped and zigzag-like) polyribosomes were formed ('juvenile phase'). The progressive loading of the polyribosomes with translating ribosomes induced the opening of the circular polyribosomes and the transformation of a major part of the linear polyribosomes into the dense 3D helices ('transitional phase'). After 2 h from the beginning (about 8-10 rounds of translation) this compact form of polyribosomes became predominant, whereas the circular and linear polyribosome fractions together contained less than half of polysomal ribosomes ('steady-state phase'). The latter proportions did not change for several hours. Functional tests showed a reduced translational activity in the fraction of the 3D helical polyribosomes.


Asunto(s)
Polirribosomas/química , Biosíntesis de Proteínas , Sistema Libre de Células , Microscopía por Crioelectrón , Modelos Moleculares , ARN Mensajero/química
15.
Nucleic Acids Res ; 42(14): 9461-9, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25016525

RESUMEN

The polyribosomes newly formed on recombinant GFP-encoding mRNAs in a wheat germ cell-free translation system were analyzed using cryo-electron tomography, with sub-tomogram averaging of polysomal ribosomes and reconstruction of 3D structures of individual polyribosomes. The achieved level of resolution in the reconstructed polyribosomes allowed deducing the mRNA path by connecting adjacent exit and entry sites at the ribosomes inside each polyribosome. In this way, the circularity of a significant fraction (about 50%) of translating polyribosomes was proved in the case of the capped poly(A)-tailed mRNA, in agreement with the existing paradigm of the circularization via interaction of cap-bound initiation factor eIF4F with poly(A)-binding protein. However, translation of the capped mRNA construct without poly(A) tail, but with unspecific 3'-UTR derived from non-coding plasmid sequence, also led to the formation of circular polyribosomes in similar proportion (40%). Moreover, the polyribosomes formed on the uncapped non-polyadenylated mRNA with non-synergistic 5'- and 3'-UTRs proved to be circular as well, and appeared in the same proportion as in the previous cases. Thus, the formation of circular polyribosomes was found to be virtually independent of the presence of cap structure and poly(A) tail in mRNA, in contrast to the longstanding paradigm in the field.


Asunto(s)
Polirribosomas/ultraestructura , ARN Mensajero/ultraestructura , Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Poli A/química , Polirribosomas/química , Polirribosomas/metabolismo , Caperuzas de ARN/química , ARN Mensajero/química , ARN Mensajero/metabolismo
16.
Nucleic Acids Res ; 42(6): e49, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24452798

RESUMEN

Ribosomes are key macromolecular protein synthesis machineries in the cell. Human ribosomes have so far not been studied to atomic resolution because of their particularly complex structure as compared with other eukaryotic or prokaryotic ribosomes, and they are difficult to prepare to high homogeneity, which is a key requisite for high-resolution structural work. We established a purification protocol for human 80S ribosomes isolated from HeLa cells that allows obtaining large quantities of homogenous samples as characterized by biophysical methods using analytical ultracentrifugation and multiangle laser light scattering. Samples prepared under different conditions were characterized by direct single particle imaging using cryo electron microscopy, which helped optimizing the preparation protocol. From a small data set, a 3D reconstruction at subnanometric resolution was obtained showing all prominent structural features of the human ribosome, and revealing a salt concentration dependence of the presence of the exit site tRNA, which we show is critical for obtaining crystals. With these well-characterized samples first human 80S ribosome crystals were obtained from several crystallization conditions in capillaries and sitting drops, which diffract to 26 Å resolution at cryo temperatures and for which the crystallographic parameters were determined, paving the way for future high-resolution work.


Asunto(s)
Ribosomas/química , Fraccionamiento Celular/métodos , Microscopía por Crioelectrón , Cristalografía por Rayos X , Células HeLa , Humanos , Modelos Moleculares , Ribosomas/ultraestructura
17.
Proc Natl Acad Sci U S A ; 110(39): 15656-61, 2013 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-24029017

RESUMEN

Translation initiation factor 2 (IF2) promotes 30S initiation complex (IC) formation and 50S subunit joining, which produces the 70S IC. The architecture of full-length IF2, determined by small angle X-ray diffraction and cryo electron microscopy, reveals a more extended conformation of IF2 in solution and on the ribosome than in the crystal. The N-terminal domain is only partially visible in the 30S IC, but in the 70S IC, it stabilizes interactions between IF2 and the L7/L12 stalk of the 50S, and on its deletion, proper N-formyl-methionyl(fMet)-tRNA(fMet) positioning and efficient transpeptidation are affected. Accordingly, fast kinetics and single-molecule fluorescence data indicate that the N terminus promotes 70S IC formation by stabilizing the productive sampling of the 50S subunit during 30S IC joining. Together, our data highlight the dynamics of IF2-dependent ribosomal subunit joining and the role played by the N terminus of IF2 in this process.


Asunto(s)
Factor 2 Procariótico de Iniciación/química , Factor 2 Procariótico de Iniciación/metabolismo , Subunidades Ribosómicas/metabolismo , Thermus thermophilus/metabolismo , Microscopía por Crioelectrón , Modelos Moleculares , Proteínas Mutantes/metabolismo , Iniciación de la Cadena Peptídica Traduccional , Factor 2 Procariótico de Iniciación/ultraestructura , Unión Proteica , Estructura Terciaria de Proteína , Subunidades Ribosómicas Grandes Bacterianas , Subunidades Ribosómicas Pequeñas Bacterianas , Dispersión del Ángulo Pequeño , Relación Estructura-Actividad , Difracción de Rayos X
18.
Nature ; 455(7211): 416-20, 2008 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-18758445

RESUMEN

Translation initiation, the rate-limiting step of the universal process of protein synthesis, proceeds through sequential, tightly regulated steps. In bacteria, the correct messenger RNA start site and the reading frame are selected when, with the help of initiation factors IF1, IF2 and IF3, the initiation codon is decoded in the peptidyl site of the 30S ribosomal subunit by the fMet-tRNA(fMet) anticodon. This yields a 30S initiation complex (30SIC) that is an intermediate in the formation of the 70S initiation complex (70SIC) that occurs on joining of the 50S ribosomal subunit to the 30SIC and release of the initiation factors. The localization of IF2 in the 30SIC has proved to be difficult so far using biochemical approaches, but could now be addressed using cryo-electron microscopy and advanced particle separation techniques on the basis of three-dimensional statistical analysis. Here we report the direct visualization of a 30SIC containing mRNA, fMet-tRNA(fMet) and initiation factors IF1 and GTP-bound IF2. We demonstrate that the fMet-tRNA(fMet) is held in a characteristic and precise position and conformation by two interactions that contribute to the formation of a stable complex: one involves the transfer RNA decoding stem which is buried in the 30S peptidyl site, and the other occurs between the carboxy-terminal domain of IF2 and the tRNA acceptor end. The structure provides insights into the mechanism of 70SIC assembly and rationalizes the rapid activation of GTP hydrolysis triggered on 30SIC-50S joining by showing that the GTP-binding domain of IF2 would directly face the GTPase-activated centre of the 50S subunit.


Asunto(s)
Complejos Multiproteicos/química , Complejos Multiproteicos/ultraestructura , Iniciación de la Cadena Peptídica Traduccional , Ribosomas/metabolismo , Ribosomas/ultraestructura , Thermus thermophilus/enzimología , Thermus thermophilus/ultraestructura , Microscopía por Crioelectrón , Cristalografía por Rayos X , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Modelos Moleculares , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Factor 1 Procariótico de Iniciación/química , Factor 1 Procariótico de Iniciación/genética , Factor 1 Procariótico de Iniciación/metabolismo , Factor 1 Procariótico de Iniciación/ultraestructura , Factor 2 Procariótico de Iniciación/química , Factor 2 Procariótico de Iniciación/genética , Factor 2 Procariótico de Iniciación/metabolismo , Factor 2 Procariótico de Iniciación/ultraestructura , Conformación Proteica , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Transferencia de Metionina/química , ARN de Transferencia de Metionina/genética , ARN de Transferencia de Metionina/metabolismo , ARN de Transferencia de Metionina/ultraestructura , Subunidades Ribosómicas/química , Subunidades Ribosómicas/metabolismo , Subunidades Ribosómicas/ultraestructura , Ribosomas/química , Thermus thermophilus/genética
19.
FEBS Lett ; 598(5): 537-547, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38395592

RESUMEN

Here, we present the high-resolution structure of the Gallus gallus 80S ribosome obtained from cold-treated chicken embryos. The translationally inactive ribosome complex contains elongation factor eEF2 with GDP, SERPINE1 mRNA binding protein 1 (SERBP1) and deacylated tRNA in the P/E position, showing common features with complexes already described in mammals. Modeling of most expansion segments of G. gallus 28S ribosomal RNA allowed us to identify specific features in their structural organization and to describe areas where a marked difference between mammalian and avian ribosomes could shed light on the evolution of the expansion segments. This study provides the first structure of an avian ribosome, establishing a model for future structural and functional studies on the translational machinery in Aves.


Asunto(s)
ARN de Transferencia , Ribosomas , Embrión de Pollo , Animales , Microscopía por Crioelectrón , Modelos Moleculares , Ribosomas/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/química , Mamíferos/metabolismo
20.
Nat Struct Mol Biol ; 30(9): 1380-1392, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37550453

RESUMEN

The ribosome is a major target for clinically used antibiotics, but multidrug resistant pathogenic bacteria are making our current arsenal of antimicrobials obsolete. Here we present cryo-electron-microscopy structures of 17 distinct compounds from six different antibiotic classes bound to the bacterial ribosome at resolutions ranging from 1.6 to 2.2 Å. The improved resolution enables a precise description of antibiotic-ribosome interactions, encompassing solvent networks that mediate multiple additional interactions between the drugs and their target. Our results reveal a high structural conservation in the binding mode between antibiotics with the same scaffold, including ordered water molecules. Water molecules are visualized within the antibiotic binding sites that are preordered, become ordered in the presence of the drug and that are physically displaced on drug binding. Insight into RNA-ligand interactions will facilitate development of new antimicrobial agents, as well as other RNA-targeting therapies.


Asunto(s)
Antibacterianos , Ribosomas , Antibacterianos/farmacología , Antibacterianos/química , Ribosomas/metabolismo , Bacterias/metabolismo , Sitios de Unión , ARN/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA