Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Ther ; 25(7): 1616-1627, 2017 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-28434868

RESUMEN

Hypoxia promotes vascularization by stabilization and activation of the hypoxia inducible factor 1α (HIF-1α), which constitutes a target for angiogenic gene therapy. However, gene therapy is hampered by low gene delivery efficiency and non-specific side effects. Here, we developed a gene transfer technique based on magnetic targeting of magnetic nanoparticle-lentivirus (MNP-LV) complexes allowing site-directed gene delivery to individual wounds in the dorsal skin of mice. Using this technique, we were able to control HIF-1α dependent wound healing angiogenesis in vivo via site-specific modulation of the tyrosine phosphatase activity of SHP-2. We thus uncover a novel physiological role of SHP-2 in protecting HIF-1α from proteasomal degradation via a Src kinase dependent mechanism, resulting in HIF-1α DNA-binding and transcriptional activity in vitro and in vivo. Excitingly, using targeting of MNP-LV complexes, we achieved simultaneous expression of constitutively active as well as inactive SHP-2 mutant proteins in separate wounds in vivo and hereby specifically and locally controlled HIF-1α activity as well as the angiogenic wound healing response in vivo. Therefore, magnetically targeted lentiviral induced modulation of SHP-2 activity may be an attractive approach for controlling patho-physiological conditions relying on hypoxic vessel growth at specific sites.


Asunto(s)
Portadores de Fármacos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Nanopartículas de Magnetita/administración & dosificación , Neovascularización Fisiológica , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Cicatrización de Heridas/genética , Animales , Línea Celular , Células Endoteliales/citología , Células Endoteliales/metabolismo , Regulación de la Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Hipoxia/genética , Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Lentivirus/genética , Lentivirus/metabolismo , Nanopartículas de Magnetita/química , Ratones , Terapia Molecular Dirigida , Complejo de la Endopetidasa Proteasomal/metabolismo , Estabilidad Proteica , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Proteolisis , Piel/lesiones , Piel/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Familia-src Quinasas/genética , Familia-src Quinasas/metabolismo
2.
Biochem Biophys Res Commun ; 482(4): 796-801, 2017 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-27888105

RESUMEN

Recently, chemically modified mRNA (cmRNA) therapeutics have been the subject of extensive application-oriented research in both academia and industry as a safer alternative for gene and recombinant protein therapies. However, the lack of an efficient delivery system hinders widespread application. Here we used ∼100-nm lipoplexes and magnetic lipoplexes that can protect cmRNA from RNases and efficiently deliver it into muscle and fat tissues as well as to the endothelium of the carotid artery. Establishing magnetofection for ex vivo cmRNA delivery for the first time, we suggest this method for potential enhanced and targeted delivery of cmRNA. This study introduces optimal cmRNA complexes with high ex vivo efficiency as good candidates for further in vivo cmRNA delivery.


Asunto(s)
Lípidos/química , Magnetismo/métodos , Nanopartículas de Magnetita/química , ARN Mensajero/administración & dosificación , ARN Mensajero/química , Transfección/métodos , Tejido Adiposo/metabolismo , Animales , Células Endoteliales/metabolismo , Liposomas/química , Ratones , Músculos/metabolismo , Células 3T3 NIH , ARN Mensajero/genética , Ovinos , Porcinos
3.
Angew Chem Int Ed Engl ; 55(33): 9591-5, 2016 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-27376704

RESUMEN

The development of chemically modified mRNA holds great promise as a new class of biologic therapeutics. However, the intracellular delivery and endosomal escape of mRNA encapsulated in nanoparticles has not been systematically investigated. Here, we synthesized a diverse set of cationic polymers and lipids from a series of oligoalkylamines and subsequently characterized their mRNA delivery capability. Notably, a structure with an alternating alkyl chain length between amines showed the highest transfection efficiency, which was linked to a high buffering capacity in a narrow range of pH 6.2 to 6.5. Variation in only one methylene group resulted in enhanced mRNA delivery to both the murine liver as well as porcine lungs after systemic or aerosol administration, respectively. These findings reveal a novel fundamental structure-activity relationship for the delivery of mRNA that is independent of the class of mRNA carrier and define a promising new path of exploration in the field of mRNA therapeutics.


Asunto(s)
Aminas/química , Lípidos/química , Polímeros/química , ARN Mensajero/genética , Animales , Cationes/química , Ratones , Células 3T3 NIH , Relación Estructura-Actividad , Porcinos
4.
Pharm Res ; 32(1): 103-21, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25033763

RESUMEN

PURPOSE: To explore the potential of magnetofection in delivering pDNA to primary mouse embryonic fibroblasts (PMEFs) and porcine fetal fibroblasts (PFFs) and investigate an effect of magnetic cell labeling on transfection efficacy. METHODS: The formulation and a dose of the magnetic vector were optimized. The efficacy of the procedure was quantified by vector internalization, transgene expression and cell iron loading upon specific labeling with Ab-conjugated magnetic beads or non-specific labeling with MNPs. RESULTS: Up to sixty percent of PMEF and PFF cells were transfected at low pDNA doses of 4-16 pg pDNA/cell. Specific labeling of the PMEFs with MNPs, resulted in a 3- and 2-fold increase in pDNA internalization upon magnetofection and lipofection, respectively, that yielded a 2-4-fold increase in percent of transgene-expressing cells. Non-specific cell labeling had no effect on the efficacy of the reporter expression, despite the acquisition of similar magnetic moments per cell. In PFFs, specific magnetic labeling of the cell surface receptors inhibited internalization and transfection efficacy. CONCLUSIONS: Magnetic labeling of cell-surface receptors combined with the application of an inhomogenous magnetic field (nanomagnetic activation) can affect the receptor-mediated internalization of delivery vectors and be used to control nucleic acid delivery to cells.


Asunto(s)
ADN/administración & dosificación , Portadores de Fármacos/administración & dosificación , Fibroblastos/metabolismo , Campos Magnéticos , Nanopartículas de Magnetita/administración & dosificación , Transfección/métodos , Animales , Células Cultivadas , ADN/genética , Portadores de Fármacos/química , Nanopartículas de Magnetita/química , Ratones , Microscopía Electrónica de Transmisión , Plásmidos , Cultivo Primario de Células , Coloración y Etiquetado , Propiedades de Superficie , Porcinos
5.
Blood ; 117(16): e171-81, 2011 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-21357765

RESUMEN

Research applications and cell therapies involving genetically modified cells require reliable, standardized, and cost-effective methods for cell manipulation. We report a novel nanomagnetic method for integrated cell separation and gene delivery. Gene vectors associated with magnetic nanoparticles are used to transfect/transduce target cells while being passaged and separated through a high gradient magnetic field cell separation column. The integrated method yields excellent target cell purity and recovery. Nonviral and lentiviral magselectofection is efficient and highly specific for the target cell population as demonstrated with a K562/Jurkat T-cell mixture. Both mouse and human enriched hematopoietic stem cell pools were effectively transduced by lentiviral magselectofection, which did not affect the hematopoietic progenitor cell number determined by in vitro colony assays. Highly effective reconstitution of T and B lymphocytes was achieved by magselectofected murine wild-type lineage-negative Sca-1(+) cells transplanted into Il2rg(-/-) mice, stably expressing GFP in erythroid, myeloid, T-, and B-cell lineages. Furthermore, nonviral, lentiviral, and adenoviral magselectofection yielded high transfection/transduction efficiency in human umbilical cord mesenchymal stem cells and was fully compatible with their differentiation potential. Upscaling to a clinically approved automated cell separation device was feasible. Hence, once optimized, validated, and approved, the method may greatly facilitate the generation of genetically engineered cells for cell therapies.


Asunto(s)
Separación Celular/métodos , Técnicas de Transferencia de Gen , Vectores Genéticos/administración & dosificación , Células Madre Hematopoyéticas/citología , Células Madre Mesenquimatosas/citología , Animales , Antígenos Ly/genética , Vectores Genéticos/química , Células Madre Hematopoyéticas/metabolismo , Humanos , Subunidad gamma Común de Receptores de Interleucina/genética , Células Jurkat , Células K562 , Magnetismo , Proteínas de la Membrana/genética , Células Madre Mesenquimatosas/metabolismo , Ratones , Nanopartículas/química , Transfección
6.
Pharm Res ; 29(5): 1219-31, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22207207

RESUMEN

PURPOSE: To target adenoviral vectors to cells of the vasculature and shielding vectors from inactivation by the immune system. METHODS: Complexes of reporter gene expressing adenoviral vectors with positively charged magnetic nanoparticles were formed by electrostatic interaction in presence or absence of additional negatively charged poly(ethylene glycol)-based polymer. Transduction of HUVEC was analyzed in vitro under flow. Protection from inactivation by the immune system was analyzed by pre-incubation of AdV and complexes with neutralizing antibodies and subsequent reporter protein analysis of infected cells. RESULTS: Physical association of AdV with MNP and polymers was demonstrated by radioactive labelling of components and co-sedimentation in a magnetic field. Ad-MNP+/-polymer resulted in efficient transduction of HUVEC, depending on MOI and flow rate in presence of magnetic field, whereas no transduction was observed without complex formation with MNP or in absence of magnetic field. Association with MNP did result in protection from neutralizing antibodies, with slightly increased protection provided by the polymer. CONCLUSIONS: Complex formation of AdV with MNP is a viable means for targeting of vectors to areas of magnetic field gradient. Additional coating with polymer might proof useful in protection from inactivation by the immune system.


Asunto(s)
Adenoviridae/genética , Células Endoteliales/fisiología , Magnetismo , Nanopartículas , Transducción Genética/métodos , Adenoviridae/química , Células Endoteliales/química , Células Endoteliales/virología , Eritrocitos/química , Eritrocitos/metabolismo , Vectores Genéticos/química , Vectores Genéticos/genética , Humanos , Nanopartículas/química , Polietilenglicoles/química , Electricidad Estática
7.
Pharm Res ; 29(5): 1255-69, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22274554

RESUMEN

PURPOSE: Targeting of specific cells and tissues is of great interest for clinical relevant gene- and cell-based therapies. We use magnetic nanoparticles (MNPs) with a ferrimagnetic core (Fe(3)O(4)) with different coatings to optimize MNP-assisted lentiviral gene transfer with focus on different endothelial cell lines. METHODS: Lentiviral vector (LV)/MNP binding was characterized for various MNPs by different methods (e.g. magnetic responsiveness measurement). Transduced cells were analyzed by flow cytometry, fluorescence microscopy and iron recovery. Cell transduction and cell positioning under physiological flow conditions were performed using different in vitro and ex vivo systems. RESULTS: Analysis of diverse MNPs with different coatings resulted in identification of nanoparticles with improved LV association and enhanced transduction properties of complexes in several endothelial cell lines. The magnetic moments of LV/MNP complexes are high enough to achieve local gene targeting of perfused endothelial cells. Perfusion of a mouse aorta with LV/MNP transduced cells under clinically relevant flow conditions led to local cell attachment at the intima of the vessel. CONCLUSION: MNP-guided lentiviral transduction of endothelial cells can be significantly enhanced and localized by using optimized MNPs.


Asunto(s)
Células Endoteliales/metabolismo , Técnicas de Transferencia de Gen , Lentivirus/genética , Magnetismo , Nanopartículas , Animales , Bovinos , Línea Celular , Supervivencia Celular , Relación Dosis-Respuesta a Droga , Vectores Genéticos/genética , Humanos , Ratones , Transgenes
8.
Pharm Res ; 29(5): 1282-94, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22274557

RESUMEN

PURPOSE: Site specific vascular gene delivery is a promising tool for treatment of cardiovascular diseases. By combining ultrasound mediated microbubble destruction with site specific magnetic targeting of lentiviruses, we aimed to develop a technique suitable for systemic application. METHODS: The magnetic nanoparticle coupling to lipid microbubbles was confirmed by absorbance measurements. Association of fluorescent lentivirus to magnetic microbubbles (MMB) was determined by microscopy and flow cytometry. Functionality and efficiency of GFP-encoding lentiviral MMB transduction was evaluated by endothelial (HMEC) GFP expression and cytotoxicity was measured by MTT reduction. RESULTS: Microbubbles with a mean diameter of 4.3 ± 0.04 µm were stable for 2 days, readily magnetizable and magnetically steerable in vitro and efficiently associated with lentivirus. Exposure of eGFP-encoding lentiviral MMB to human endothelial cells followed by application of an external static magnetic field (30 min) and ultrasonic destruction of the microbubbles did not markedly affect cellular viability. Finally, this combination led to a 30-fold increase in transduction efficiency compared to application of naked virus alone. CONCLUSIONS: By associating microbubbles with magnetic iron nanoparticles, these function as carriers for lentiviruses achieving tissue specific deposition at the site of interest.


Asunto(s)
Células Endoteliales/metabolismo , Técnicas de Transferencia de Gen , Vectores Genéticos/genética , Lentivirus/genética , Magnetismo , Microburbujas , Ultrasonido , Supervivencia Celular , Sistemas de Liberación de Medicamentos , Células Endoteliales/citología , Citometría de Flujo , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Tamaño de la Partícula
9.
Pharm Res ; 29(5): 1308-18, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22271050

RESUMEN

PURPOSE: Targeted delivery of aerosols could not only improve efficacy of inhaled drugs but also reduce side effects resulting from their accumulation in healthy tissue. Here we investigated the impact of magnetized aerosols on model drug accumulation and transgene expression in magnetically targeted lung regions of unanesthetized mice. METHODS: Solutions containing superparamagnetic iron oxide nanoparticles (SPIONs) and model drugs (fluorescein or complexed plasmid DNA) were nebulized to unanesthetized mice under the influence of an external magnetic gradient directed to the lungs. Drug accumulation and transgene expression was subsequently measured at different time points. RESULTS: We could demonstrate 2-3 fold higher accumulation of the model drug fluorescein and specific transgene expression in lung regions of mice which had been exposed to an external magnetic gradient during nebulization compared to the control mice without any exposure to magnetic gradient. CONCLUSIONS: Magnetized aerosols present themselves as an efficient approach for targeted pulmonary delivery of drugs and gene therapeutic agents in order to treat localized diseases of the deeper airways.


Asunto(s)
Aerosoles/química , Sistemas de Liberación de Medicamentos , Compuestos Férricos , Técnicas de Transferencia de Gen , Pulmón/metabolismo , Magnetismo , Nanopartículas del Metal , Animales , Femenino , Fluoresceína/farmacocinética , Fluoresceína/farmacología , Regulación de la Expresión Génica , Vectores Genéticos/genética , Ratones , Ratones Endogámicos BALB C , Plásmidos/genética , Transgenes/genética
10.
Pharm Res ; 29(5): 1242-54, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22231984

RESUMEN

PURPOSE: The combination of magnetic nanoparticles (MNPs) with a magnetic field is a powerful approach to enable cell positioning and/or local gene therapy. Because physical requirements for MNPs differ between these two applications we have explored whether the use of different MNPs can provide site-specific positioning combined with efficient viral transduction of endothelial cells (ECs). METHODS: A variety of MNPs was screened for magnetic cell labeling and lentivirus binding. Then two different MNPs were chosen and their combined application was evaluated regarding EC magnetization and transduction efficiency. RESULTS: The combined use of PEI-Mag2 and NDT-Mag1 particles provided both efficient lentiviral transduction and high magnetic responsiveness of ECs that could be even retained within the vascular wall under flow conditions. The use of these MNPs did not affect biological characteristics of ECs like surface marker expression and vascular network formation. Importantly, with this method we could achieve an efficient functional overexpression of endothelial nitric oxide synthase in ECs. CONCLUSIONS: The application of two different MNPs provides optimal results for magnetic labeling of ECs in combination with viral transduction. This novel approach could be very useful for targeted gene therapy ex vivo and site-specific cell replacement in the vascular system.


Asunto(s)
Células Endoteliales/metabolismo , Lentivirus/genética , Magnetismo , Nanopartículas/química , Transducción Genética , Animales , Western Blotting , Bovinos , Células Cultivadas , Femenino , Terapia Genética , Inmunohistoquímica , Ratones , Reacción en Cadena de la Polimerasa
11.
Pharm Res ; 29(5): 1344-65, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22222384

RESUMEN

PURPOSE: To optimize silica-iron oxide magnetic nanoparticles with surface phosphonate groups decorated with 25-kD branched polyethylenimine (PEI) for gene delivery. METHODS: Surface composition, charge, colloidal stabilities, associations with adenovirus, magneto-tranduction efficiencies, cell internalizations, in vitro toxicities and MRI relaxivities were tested for the particles decorated with varying amounts of PEI. RESULTS: Moderate PEI-decoration of MNPs results in charge reversal and destabilization. Analysis of space and time resolved concentration changes during centrifugation clearly revealed that at >5% PEI loading flocculation gradually decreases and sufficient stabilization is achieved at >10%. The association with adenovirus occurred efficiently at levels over 5% PEI, resulting in the complexes stable in 50% FCS at a PEI-to-iron w/w ratio of ≥7%; the maximum magneto-transduction efficiency was achieved at 9-12% PEI. Primary silica iron oxide nanoparticles and those with 11.5% PEI demonstrated excellent r(2)* relaxivity values (>600 s(-1)(mM Fe)(-1)) for the free and cell-internalized particles. CONCLUSIONS: Surface decoration of the silica-iron oxide nanoparticles with a PEI-to-iron w/w ratio of 10-12% yields stable aqueous suspensions, allows for efficient viral gene delivery and labeled cell detection by MRI.


Asunto(s)
Compuestos Férricos/química , Técnicas de Transferencia de Gen , Vectores Genéticos/química , Magnetismo , Nanopartículas/química , Dióxido de Silicio/química , Adenoviridae/genética , Animales , Línea Celular , Coloides/química , Estabilidad de Medicamentos , Vectores Genéticos/genética , Humanos , Lentivirus/genética , Imagen por Resonancia Magnética , Ratones , Microscopía Electrónica de Transmisión , Modelos Moleculares , Polietileneimina/química , Ratas , Propiedades de Superficie , Difracción de Rayos X
12.
Nanomedicine ; 8(8): 1309-18, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22480917

RESUMEN

Site specific vascular gene delivery for therapeutic implications is favorable because of reduction of possible side effects. Yet this technology faces numerous hurdles that result in low transfection rates because of suboptimal delivery. Combining ultrasonic microbubble technology with magnetic nanoparticle enhanced gene transfer could make it possible to use the systemic vasculature as the route of application and to magnetically trap these compounds at the target of interest. In this study we show that magnetic nanoparticle-coated microbubbles bind plasmid DNA and successfully deliver it to endothelial cells in vitro and more importantly transport their cargo through the vascular system and specifically deliver it to the vascular wall in vivo at sites where microbubbles are retained by magnetic force and burst by local ultrasound application. This resulted in a significant enhancement in site specific gene delivery compared with the conventional microbubble technique. Thus, this technology may have promising therapeutic potential. FROM THE CLINICAL EDITOR: This work focuses on combining ultrasonic microbubble technology with magnetic nanoparticle enhanced gene transfer to enable targeted gene delivery via the systemic vasculature and magnetic trapping of these compounds at the target of interest.


Asunto(s)
Sistemas de Liberación de Medicamentos , Técnicas de Transferencia de Gen , Nanopartículas de Magnetita , Microburbujas , Células Endoteliales , Terapia Genética , Humanos , Nanopartículas de Magnetita/administración & dosificación , Nanopartículas de Magnetita/química , Plásmidos , Ultrasonido
13.
J Cell Mol Med ; 14(3): 587-99, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19040418

RESUMEN

Adenoviral transduction of the VEGF gene in an oversized skin flap increases flap survival and perfusion. In this study, we investigated the potential of magnetofection of magnetic lipospheres containing VEGF(165)-cDNA on survival and perfusion of ischemic skin flaps and evaluated the method with respect to the significance of applied magnetic field and ultrasound. We prepared perfluoropropane-filled magnetic lipospheres ('magnetobubbles') from Tween60-coated magnetic nanoparticles, Metafectene, soybean-oil and cDNA and studied the effect in an oversized random-pattern-flap model in the rats (n= 46). VEGF-cDNA-magnetobubbles were administered under a magnetic field with simultaneously applied ultrasound, under magnetic field alone and with applied ultrasound alone. Therapy was conducted 7 days pre-operative. Flap survival and necrosis were measured 7 days post-operatively. Flap perfusion, VEGF-protein concentration in target and surrounding tissue, formation and appearance of new vessels were analysed additionally. Magnetofection with VEGF-cDNA-magnetobubbles presented an increased flap survival of 50% and increased flap perfusion (P < 0.05). Without ultrasound and without magnetic field, the effect is weakened. VEGF concentration in target tissue was elevated (P < 0.05), while underlying muscle was not affected. Our results demonstrate the successful VEGF gene therapy by means of magnetobubble magnetofection. Here, the method of magnetofection of magnetic lipospheres is equally efficient as adenoviral transduction, but has a presumable superior safety profile.


Asunto(s)
Terapia Genética/métodos , Supervivencia de Injerto/fisiología , Transfección/métodos , Factores de Crecimiento Endotelial Vascular/fisiología , Animales , Procedimientos Quirúrgicos Dermatologicos , Ensayo de Inmunoadsorción Enzimática , Lípidos/química , Magnetismo , Masculino , Microesferas , Microvasos/fisiología , Modelos Animales , Músculos/metabolismo , Ratas , Ratas Sprague-Dawley , Piel/metabolismo , Trasplante de Piel , Colgajos Quirúrgicos/irrigación sanguínea , Ultrasonido , Factores de Crecimiento Endotelial Vascular/genética , Factores de Crecimiento Endotelial Vascular/metabolismo
14.
J Gene Med ; 12(9): 747-54, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20821745

RESUMEN

BACKGROUND: Lentiviral (LV) vectors are able to only slowly and inefficiently transduce nondividing cells such as those of the airway epithelium. To address this issue, we have exploited the magnetofection technique in in vitro models of airway epithelium. METHODS: Magnetofectins were formed by noncovalent interaction between LV particles and polycation-coated iron oxide nanoparticles. Efficiency of LV-mediated transduction (as evaluated through green fluorescent protein (GFP) expression by cytofluorimetric analysis) was measured in bronchial epithelial cells in the presence or absence of a magnetic field. Cytotoxicity was evaluated by lactate dehydrogenase (LDH) release; cell monolayer integrity by measurement of transepithelial resistance (TER) and evaluation of correct zonula occludens-1 (ZO-1) localization at tight junctions (TJs) by immunofluorescence and confocal microscopy. RESULTS: In nonpolarized cells, magnetofectins enhanced LV-mediated transduction at multiplicity of infection (MOI) of 50 up to 3.9-fold upon a 24-h incubation, to levels that approached those achieved at MOI of 200 for LV alone, in the presence or absence of the magnetic field. Magnetofection significantly increased the percentage of transduced cells up to 186-fold already after 15 min of incubation. In polarized cells, magnetofection increased GFP+ cells up to 24-fold compared to LV alone. Magnetofection did not enhance LDH release and slightly altered TER but not ZO-1 localization at the TJs. CONCLUSIONS: We conclude that magnetofection can facilitate in vitro LV-mediated transduction of airway epithelial cells, in the absence of overt cytotoxicity and maintaining epithelial integrity, by lowering the necessary vector dose and reducing the incubation time required to achieve efficient transduction.


Asunto(s)
Células Epiteliales/metabolismo , Técnicas de Transferencia de Gen , Lentivirus/genética , Magnetismo , Mucosa Respiratoria/metabolismo , Polaridad Celular , Supervivencia Celular , Células Cultivadas , Vectores Genéticos/administración & dosificación , Proteínas Fluorescentes Verdes/metabolismo , Humanos , L-Lactato Deshidrogenasa/metabolismo , Proteínas de la Membrana/metabolismo , Fosfoproteínas/metabolismo , Proteína de la Zonula Occludens-1
15.
Mol Pharm ; 7(4): 1069-89, 2010 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-20550160

RESUMEN

Oncolytic adenoviruses rank among the most promising innovative agents in cancer therapy. We examined the potential of boosting the efficacy of the oncolytic adenovirus dl520 by associating it with magnetic nanoparticles and magnetic-field-guided infection in multidrug-resistant (MDR) cancer cells in vitro and upon intratumoral injection in vivo. The virus was complexed by self-assembly with core-shell nanoparticles having a magnetite core of about 10 nm and stabilized by a shell containing 68 mass % lithium 3-[2-(perfluoroalkyl)ethylthio]propionate) and 32 mass % 25 kDa branched polyethylenimine. Optimized virus binding, sufficiently stable in 50% fetal calf serum, was found at nanoparticle-to-virus ratios of 5 fg of Fe per physical virus particle (VP) and above. As estimated from magnetophoretic mobility measurements, 3,600 to 4,500 magnetite nanocrystallites were associated per virus particle. Ultrastructural analysis by electron and atomic force microscopy showed structurally intact viruses surrounded by magnetic particles that occasionally bridged several virus particles. Viral uptake into cells at a given virus dose was enhanced 10-fold compared to nonmagnetic virus when infections were carried out under the influence of a magnetic field. Increased virus internalization resulted in a 10-fold enhancement of the oncolytic potency in terms of the dose required for killing 50% of the target cells (IC(50) value) and an enhancement of 4 orders of magnitude in virus progeny formation at equal input virus doses compared to nonmagnetic viruses. Furthermore, the full oncolytic effect developed within two days postinfection compared with six days in a nonmagnetic virus as a reference. Plotting target cell viability versus internalized virus particles for magnetic and nonmagnetic virus showed that the inherent oncolytic productivity of the virus remained unchanged upon association with magnetic nanoparticles. Hence, we conclude that the mechanism of boosting the oncolytic effect by magnetic force is mainly due to the improved internalization of magnetic virus complexes resulting in potentiated virus progeny formation. Upon intratumoral injection and application of a gradient magnetic field in a murine xenograft model, magnetic virus complexes exhibited a stronger oncolytic effect than adenovirus alone. We propose that this approach would be useful during in vivo administration to tumor-feeding blood vessels to boost the efficacy of the primary infection cycle within the tumor. For systemic application, further modification of magnetic adenovirus complexes for shielding and retargeting of the whole magnetic virus complex entity is needed.


Asunto(s)
Adenoviridae/fisiología , Magnetismo , Nanopartículas , Virus Oncolíticos/fisiología , Neoplasias Pancreáticas/terapia , Adenoviridae/genética , Animales , Southern Blotting , Línea Celular Tumoral , Resistencia a Antineoplásicos , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Microscopía Electrónica de Transmisión , Virus Oncolíticos/genética , Neoplasias Pancreáticas/genética , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Methods Mol Biol ; 487: 111-46, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19301645

RESUMEN

This chapter describes how to design and conduct experiments to deliver siRNA to adherent mammalian cells in vitro by magnetic force-assisted transfection using self-assembled complexes of small interfering RNA (siRNA) and cationic lipids or polymers that are associated with magnetic nanoparticles. These magnetic complexes are targeted to the cell surface by the application of a magnetic gradient field. In this chapter, first we describe the synthesis of magnetic nanoparticles for magnetofection and the association of siRNA with the magnetic components of the transfection complex. Second, a simple protocol is described in order to evaluate magnetic responsiveness of the magnetic siRNA transfection complexes and estimate the complex loading with magnetic nanoparticles. Third, protocols are provided for the preparation of magnetic lipoplexes and polyplexes of siRNA, magnetofection, downregulation of gene expression, and the determination of cell viability. The addition of INF-7 peptide, a fusogenic peptide, to the magnetic transfection triplexes improved gene silencing in HeLa cells. The described protocols are also valuable for screening vector compositions and novel magnetic nanoparticle preparations to optimize siRNA transfection by magnetofection in every cell type.


Asunto(s)
Técnicas de Transferencia de Gen , Magnetismo , Péptidos/metabolismo , ARN Interferente Pequeño/administración & dosificación , Transfección/métodos , Carcinoma Papilar/metabolismo , Carcinoma Papilar/terapia , Línea Celular Tumoral , Proliferación Celular , Silenciador del Gen , Terapia Genética/métodos , Vectores Genéticos , Proteínas Fluorescentes Verdes/administración & dosificación , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Técnicas In Vitro , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/terapia , Nanopartículas/química , Péptidos/antagonistas & inhibidores , Péptidos/genética , ARN Interferente Pequeño/genética
17.
Methods Mol Biol ; 1943: 253-290, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30838622

RESUMEN

Targeted gene or drug delivery aims to locally accumulate the active agent and achieve the maximum local therapeutic effect at the target site while reducing unwanted effects at nontarget sites. A further development of the magnetic drug-targeting concept is combining it with an ultrasound-triggered delivery using magnetic microbubbles as a carrier for gene or drug delivery. For this purpose, selected magnetic nanoparticles (MNPs), phospholipids, and nucleic acid are assembled in the presence of perfluorocarbon gas into flexible formulations of magnetic lipospheres or microbubbles. This chapter describes the protocols for preparation of magnetic lipospheres and microbubbles for nucleic acid delivery, and it also describes the procedures for labeling the components of the bubbles (lipids, MNPs, and nucleic acids) for the visualization of the vectors and their characterization, such as magnetic responsiveness and ultrasound contrast effects. Protocols are given for the transfection procedure in adherent cells, evaluation of the association of the magnetic vectors with the cells, reporter gene expression analysis, and cell viability assessment.


Asunto(s)
Nanopartículas de Magnetita/química , Nanosferas/química , Transfección/métodos , Animales , Línea Celular , Supervivencia Celular/genética , Genes Reporteros/genética , Humanos , Campos Magnéticos , Ratones , Microburbujas , Ácidos Nucleicos/genética , Fosfolípidos/química , Ondas Ultrasónicas
18.
J Control Release ; 305: 155-164, 2019 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-31121282

RESUMEN

Anti-angiogenic therapies are promising options for diseases with enhanced vessel formation such as tumors or retinopathies. In most cases, a site-specific local effect on vessel growth is required, while the current focus on systemic distribution of angiogenesis inhibitors may cause severe unwanted side-effects. Therefore, in the current study we have developed an approach for the local inhibition of vascularization, using complexes of lentivirus and magnetic nanoparticles in combination with magnetic fields. Using this strategy in the murine embryonic stem cell (ESC) system, we were able to site-specifically downregulate the protein tyrosine phosphatase SHP2 by RNAi technology in areas with active vessel formation. This resulted in a reduction of vessel development, as shown by reduced vascular tube length, branching points and vascular loops. The anti-angiogenic effect could also be recapitulated in the dorsal skinfold chamber of mice in vivo. Here, site-specific downregulation of SHP2 reduced re-vascularization after wound induction. Thus, we have developed a magnet-assisted, RNAi-based strategy for the efficient local inhibition of angiogenesis in ESCs in vitro and also in vivo.


Asunto(s)
Regulación hacia Abajo , Vectores Genéticos/genética , Lentivirus/genética , Células Madre Embrionarias de Ratones/metabolismo , Neovascularización Fisiológica , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Animales , Línea Celular , Vectores Genéticos/administración & dosificación , Imanes/química , Ratones , Neovascularización Patológica/genética , Neovascularización Patológica/terapia , Interferencia de ARN , Transducción Genética/métodos
19.
Curr Opin Mol Ther ; 10(5): 493-505, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18830925

RESUMEN

Magnetofection is defined as the magnetically enhanced delivery of nucleic acids associated with magnetic nanoparticles and has been utilized to deliver synthetic siRNAs to cultured cells. Certain magnetic nanomaterials associate with siRNAs and are suitable for siRNA delivery, either alone or in combination with cationic polymers or cationic lipid enhancers; these complexes are targeted to the cell surface by application of a gradient magnetic field. In this review methods are described to examine siRNA incorporation into magnetic complexes, to evaluate their magnetic responsiveness and to characterize their association with, and uptake into cells. These methods can be utilized to screen magnetic siRNA complexes for their suitability in functional siRNA delivery. Data, obtained since the first description of magnetofection in 2000, and novel results on the characterization of magnetic complexes containing synthetic siRNA are described. In addition, the benefits of siRNA delivery in vitro via magnetofection compared with standard non-magnetic methods of transfection using lipoplexes and polyplexes are highlighted.


Asunto(s)
Magnetismo , ARN Interferente Pequeño , Transfección/métodos , Animales , Humanos
20.
Biomaterials ; 155: 176-190, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29179133

RESUMEN

Cell replacement in the heart is considered a promising strategy for the treatment of post-infarct heart failure. Direct intramyocardial injection of cells proved to be the most effective application route, however, engraftment rates are very low (<5%) strongly hampering its efficacy. Herein we combine magnetic nanoparticle (MNP) loading of EGFP labeled embryonic cardiomyocytes (eCM) and embryonic stem cell-derived cardiomyocytes (ES-CM) with application of custom designed magnets to enhance their short and long-term engraftment. To optimize cellular MNP uptake and magnetic force within the infarct area, first numerical simulations and experiments were performed in vitro. All tested cell types could be loaded efficiently with SOMag5-MNP (200 pg/cell) without toxic side effects. Application of a 1.3 T magnet at 5 mm distance from the heart for 10 min enhanced engraftment of both eCM and ES-CM by approximately 7 fold at 2 weeks and 3.4 fold (eCM) at 8 weeks after treatment respectively and also strongly improved left ventricular function at all time points. As underlying mechanisms we found that application of the magnetic field prevented the initial dramatic loss of cells via the injection channel. In addition, grafted eCM displayed higher proliferation and lower apoptosis rates. Electron microscopy revealed better differentiation of engrafted eCM, formation of cell to cell contacts and more physiological matrix formation in magnet-treated grafts. These results were corroborated by gene expression data. Thus, combination of MNP-loaded cells and magnet-application strongly increases long-term engraftment of cells addressing a major shortcoming of cardiomyoplasty.


Asunto(s)
Infarto del Miocardio/terapia , Miocitos Cardíacos/citología , Animales , Nanopartículas de Magnetita/efectos adversos , Trasplante de Células Madre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA