Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Mol Cell ; 82(2): 304-314, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-35063098

RESUMEN

Owing to their unique abilities to manipulate, label, and image individual molecules in vitro and in cellulo, single-molecule techniques provide previously unattainable access to elementary biological processes. In imaging, single-molecule fluorescence resonance energy transfer (smFRET) and protein-induced fluorescence enhancement in vitro can report on conformational changes and molecular interactions, single-molecule pull-down (SiMPull) can capture and analyze the composition and function of native protein complexes, and single-molecule tracking (SMT) in live cells reveals cellular structures and dynamics. In labeling, the abilities to specifically label genomic loci, mRNA, and nascent polypeptides in cells have uncovered chromosome organization and dynamics, transcription and translation dynamics, and gene expression regulation. In manipulation, optical tweezers, integration of single-molecule fluorescence with force measurements, and single-molecule force probes in live cells have transformed our mechanistic understanding of diverse biological processes, ranging from protein folding, nucleic acids-protein interactions to cell surface receptor function.


Asunto(s)
Genómica/tendencias , Imagen Molecular/tendencias , Imagen Óptica/tendencias , Imagen Individual de Molécula/tendencias , Animales , Difusión de Innovaciones , Transferencia Resonante de Energía de Fluorescencia/tendencias , Humanos , Microscopía Fluorescente/tendencias , Proteómica/tendencias
2.
Mol Cell ; 82(5): 969-985.e11, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35182479

RESUMEN

Poly(ADP-ribose) (PAR) is an RNA-like polymer that regulates an increasing number of biological processes. Dysregulation of PAR is implicated in neurodegenerative diseases characterized by abnormal protein aggregation, including amyotrophic lateral sclerosis (ALS). PAR forms condensates with FUS, an RNA-binding protein linked with ALS, through an unknown mechanism. Here, we demonstrate that a strikingly low concentration of PAR (1 nM) is sufficient to trigger condensation of FUS near its physiological concentration (1 µM), which is three orders of magnitude lower than the concentration at which RNA induces condensation (1 µM). Unlike RNA, which associates with FUS stably, PAR interacts with FUS transiently, triggering FUS to oligomerize into condensates. Moreover, inhibition of a major PAR-synthesizing enzyme, PARP5a, diminishes FUS condensation in cells. Despite their structural similarity, PAR and RNA co-condense with FUS, driven by disparate modes of interaction with FUS. Thus, we uncover a mechanism by which PAR potently seeds FUS condensation.


Asunto(s)
Esclerosis Amiotrófica Lateral , Poli Adenosina Difosfato Ribosa , Esclerosis Amiotrófica Lateral/genética , Humanos , Poli Adenosina Difosfato Ribosa/metabolismo , ARN/genética , Proteína FUS de Unión a ARN/metabolismo
3.
Nature ; 603(7899): 124-130, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35197626

RESUMEN

A hallmark pathological feature of the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is the depletion of RNA-binding protein TDP-43 from the nucleus of neurons in the brain and spinal cord1. A major function of TDP-43 is as a repressor of cryptic exon inclusion during RNA splicing2-4. Single nucleotide polymorphisms in UNC13A are among the strongest hits associated with FTD and ALS in human genome-wide association studies5,6, but how those variants increase risk for disease is unknown. Here we show that TDP-43 represses a cryptic exon-splicing event in UNC13A. Loss of TDP-43 from the nucleus in human brain, neuronal cell lines and motor neurons derived from induced pluripotent stem cells resulted in the inclusion of a cryptic exon in UNC13A mRNA and reduced UNC13A protein expression. The top variants associated with FTD or ALS risk in humans are located in the intron harbouring the cryptic exon, and we show that they increase UNC13A cryptic exon splicing in the face of TDP-43 dysfunction. Together, our data provide a direct functional link between one of the strongest genetic risk factors for FTD and ALS (UNC13A genetic variants), and loss of TDP-43 function.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Esclerosis Amiotrófica Lateral/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Exones/genética , Demencia Frontotemporal/metabolismo , Estudio de Asociación del Genoma Completo , Humanos , Neuronas Motoras/patología , Proteínas del Tejido Nervioso
4.
Mol Cell ; 78(2): 193-194, 2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32302539

RESUMEN

Heterochromatin protein 1 (HP1) has been proposed to drive heterochromatin formation by liquid-liquid phase separation. In this issue of Molecular Cell, however, Erdel et al. establish that heterochromatin can adopt digital compaction states that are independent of HP1 phase separation.


Asunto(s)
Proteínas Cromosómicas no Histona , Heterocromatina , Animales , Ensamble y Desensamble de Cromatina , Homólogo de la Proteína Chromobox 5 , ADN , Ratones
5.
Mol Cell ; 80(4): 666-681.e8, 2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-33159856

RESUMEN

The RNA-binding protein fused in sarcoma (FUS) can form pathogenic inclusions in neurodegenerative diseases like amyotrophic lateral sclerosis (ALS) and frontotemporal lobar dementia (FTLD). Over 70 mutations in Fus are linked to ALS/FTLD. In patients, all Fus mutations are heterozygous, indicating that the mutant drives disease progression despite the presence of wild-type (WT) FUS. Here, we demonstrate that ALS/FTLD-linked FUS mutations in glycine (G) strikingly drive formation of droplets that do not readily interact with WT FUS, whereas arginine (R) mutants form mixed condensates with WT FUS. Remarkably, interactions between WT and G mutants are disfavored at the earliest stages of FUS nucleation. In contrast, R mutants physically interact with the WT FUS such that WT FUS recovers the mutant defects by reducing droplet size and increasing dynamic interactions with RNA. This result suggests disparate molecular mechanisms underlying ALS/FTLD pathogenesis and differing recovery potential depending on the type of mutation.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Demencia Frontotemporal/patología , Glicina/metabolismo , Mutación , Neuroblastoma/patología , Proteína FUS de Unión a ARN/química , Proteína FUS de Unión a ARN/metabolismo , ARN/metabolismo , Esclerosis Amiotrófica Lateral/genética , Demencia Frontotemporal/genética , Glicina/química , Glicina/genética , Humanos , Cuerpos de Inclusión , Neuroblastoma/genética , Neuroblastoma/metabolismo , Conformación Proteica , ARN/química , ARN/genética , Proteína FUS de Unión a ARN/genética , Células Tumorales Cultivadas
6.
Mol Cell ; 77(1): 82-94.e4, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31630970

RESUMEN

FUS is a nuclear RNA-binding protein, and its cytoplasmic aggregation is a pathogenic signature of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). It remains unknown how the FUS-RNA interactions contribute to phase separation and whether its phase behavior is affected by ALS-linked mutations. Here we demonstrate that wild-type FUS binds single-stranded RNA stoichiometrically in a length-dependent manner and that multimers induce highly dynamic interactions with RNA, giving rise to small and fluid condensates. In contrast, mutations in arginine display a severely altered conformation, static binding to RNA, and formation of large condensates, signifying the role of arginine in driving proper RNA interaction. Glycine mutations undergo rapid loss of fluidity, emphasizing the role of glycine in promoting fluidity. Strikingly, the nuclear import receptor Karyopherin-ß2 reverses the mutant defects and recovers the wild-type FUS behavior. We reveal two distinct mechanisms underpinning potentially disparate pathogenic pathways of ALS-linked FUS mutants.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Demencia Frontotemporal/genética , Mutación/genética , Proteína FUS de Unión a ARN/genética , ARN/genética , Transporte Activo de Núcleo Celular/genética , Glicina/genética , Humanos
7.
Mol Cell ; 69(5): 787-801.e8, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29499134

RESUMEN

MicroRNA-mediated gene silencing is a fundamental mechanism in the regulation of gene expression. It remains unclear how the efficiency of RNA silencing could be influenced by RNA-binding proteins associated with the microRNA-induced silencing complex (miRISC). Here we report that fused in sarcoma (FUS), an RNA-binding protein linked to neurodegenerative diseases including amyotrophic lateral sclerosis (ALS), interacts with the core miRISC component AGO2 and is required for optimal microRNA-mediated gene silencing. FUS promotes gene silencing by binding to microRNA and mRNA targets, as illustrated by its action on miR-200c and its target ZEB1. A truncated mutant form of FUS that leads its carriers to an aggressive form of ALS, R495X, impairs microRNA-mediated gene silencing. The C. elegans homolog fust-1 also shares a conserved role in regulating the microRNA pathway. Collectively, our results suggest a role for FUS in regulating the activity of microRNA-mediated silencing.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Silenciador del Gen , MicroARNs/metabolismo , ARN de Helminto/metabolismo , Proteína FUS de Unión a ARN/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Células HEK293 , Humanos , Ratones , MicroARNs/genética , ARN de Helminto/genética , Proteína FUS de Unión a ARN/genética
8.
Nucleic Acids Res ; 52(4): 1763-1778, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38153143

RESUMEN

BG4 is a single-chain variable fragment antibody shown to bind various G-quadruplex (GQ) topologies with high affinity and specificity, and to detect GQ in cells, including GQ structures formed within telomeric TTAGGG repeats. Here, we used ELISA and single-molecule pull-down (SiMPull) detection to test how various lengths and GQ destabilizing base modifications in telomeric DNA constructs alter BG4 binding. We observed high-affinity BG4 binding to telomeric GQ independent of telomere length, although three telomeric repeat constructs that cannot form stable intramolecular GQ showed reduced affinity. A single guanine substitution with 8-aza-7-deaza-G, T, A, or C reduced affinity to varying degrees depending on the location and base type, whereas two G substitutions in the telomeric construct dramatically reduced or abolished binding. Substitution with damaged bases 8-oxoguanine and O6-methylguanine failed to prevent BG4 binding although affinity was reduced depending on lesion location. SiMPull combined with FRET revealed that BG4 binding promotes folding of telomeric GQ harboring a G to T substitution or 8-oxoguanine. Atomic force microscopy revealed that BG4 binds telomeric GQ with a 1:1 stoichiometry. Collectively, our data suggest that BG4 can recognize partially folded telomeric GQ structures and promote telomeric GQ stability.


Asunto(s)
G-Cuádruplex , ADN/genética , ADN/química , Telómero/genética , Anticuerpos/genética
9.
Proc Natl Acad Sci U S A ; 120(19): e2215068120, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37126687

RESUMEN

Poly(ADP-ribose) (PAR) is a homopolymer of adenosine diphosphate ribose that is added to proteins as a posttranslational modification to regulate numerous cellular processes. PAR also serves as a scaffold for protein binding in macromolecular complexes, including biomolecular condensates. It remains unclear how PAR achieves specific molecular recognition. Here, we use single-molecule fluorescence resonance energy transfer (smFRET) to evaluate PAR flexibility under different cation conditions. We demonstrate that, compared to RNA and DNA, PAR has a longer persistence length and undergoes a sharper transition from extended to compact states in physiologically relevant concentrations of various cations (Na+, Mg2+, Ca2+, and spermine4+). We show that the degree of PAR compaction depends on the concentration and valency of cations. Furthermore, the intrinsically disordered protein FUS also served as a macromolecular cation to compact PAR. Taken together, our study reveals the inherent stiffness of PAR molecules, which undergo switch-like compaction in response to cation binding. This study indicates that a cationic environment may drive recognition specificity of PAR.


Asunto(s)
Adenosina Difosfato Ribosa , Poli Adenosina Difosfato Ribosa , Poli Adenosina Difosfato Ribosa/química , Poli Adenosina Difosfato Ribosa/metabolismo , Adenosina Difosfato Ribosa/química , Procesamiento Proteico-Postraduccional , Unión Proteica , Fenómenos Fisiológicos Celulares
10.
Chem Rev ; 123(14): 9065-9093, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37115110

RESUMEN

Biomolecular condensates are reversible compartments that form through a process called phase separation. Post-translational modifications like ADP-ribosylation can nucleate the formation of these condensates by accelerating the self-association of proteins. Poly(ADP-ribose) (PAR) chains are remarkably transient modifications with turnover rates on the order of minutes, yet they can be required for the formation of granules in response to oxidative stress, DNA damage, and other stimuli. Moreover, accumulation of PAR is linked with adverse phase transitions in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. In this review, we provide a primer on how PAR is synthesized and regulated, the diverse structures and chemistries of ADP-ribosylation modifications, and protein-PAR interactions. We review substantial progress in recent efforts to determine the molecular mechanism of PAR-mediated phase separation, and we further delineate how inhibitors of PAR polymerases may be effective treatments for neurodegenerative pathologies. Finally, we highlight the need for rigorous biochemical interrogation of ADP-ribosylation in vivo and in vitro to clarify the exact pathway from PARylation to condensate formation.


Asunto(s)
Poli Adenosina Difosfato Ribosa , Poli(ADP-Ribosa) Polimerasas , Poli Adenosina Difosfato Ribosa/metabolismo , Poli(ADP-Ribosa) Polimerasas/química , Poli(ADP-Ribosa) Polimerasas/metabolismo , Condensados Biomoleculares , Poli ADP Ribosilación , Procesamiento Proteico-Postraduccional
11.
Cell ; 142(4): 544-55, 2010 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-20723756

RESUMEN

Translocation of helicase-like proteins on nucleic acids underlies key cellular functions. However, it is still unclear how translocation can drive removal of DNA-bound proteins, and basic properties like the elementary step size remain controversial. Using single-molecule fluorescence analysis on a prototypical superfamily 1 helicase, Bacillus stearothermophilus PcrA, we discovered that PcrA preferentially translocates on the DNA lagging strand instead of unwinding the template duplex. PcrA anchors itself to the template duplex using the 2B subdomain and reels in the lagging strand, extruding a single-stranded loop. Static disorder limited previous ensemble studies of a PcrA stepping mechanism. Here, highly repetitive looping revealed that PcrA translocates in uniform steps of 1 nt. This reeling-in activity requires the open conformation of PcrA and can rapidly dismantle a preformed RecA filament even at low PcrA concentrations, suggesting a mode of action for eliminating potentially deleterious recombination intermediates.


Asunto(s)
Proteínas Bacterianas/metabolismo , ADN Helicasas/metabolismo , Replicación del ADN , ADN de Cadena Simple/metabolismo , Geobacillus stearothermophilus/metabolismo , Rec A Recombinasas/metabolismo , Proteínas Bacterianas/química , ADN Helicasas/química , Fluorescencia , Geobacillus stearothermophilus/química , Cinética , Modelos Moleculares
12.
Mol Cell ; 68(1): 76-88.e6, 2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-28943314

RESUMEN

Chromatin remodelers catalyze dynamic packaging of the genome by carrying out nucleosome assembly/disassembly, histone exchange, and nucleosome repositioning. Remodeling results in evenly spaced nucleosomes, which requires probing both sides of the nucleosome, yet the way remodelers organize sliding activity to achieve this task is not understood. Here, we show that the monomeric Chd1 remodeler shifts DNA back and forth by dynamically alternating between different segments of the nucleosome. During sliding, Chd1 generates unstable remodeling intermediates that spontaneously relax to a pre-remodeled position. We demonstrate that nucleosome sliding is tightly controlled by two regulatory domains: the DNA-binding domain, which interferes with sliding when its range is limited by a truncated linking segment, and the chromodomains, which play a key role in substrate discrimination. We propose that active interplay of the ATPase motor with the regulatory domains may promote dynamic nucleosome structures uniquely suited for histone exchange and chromatin reorganization during transcription.


Asunto(s)
Proteínas de Unión al ADN/genética , ADN/genética , Histonas/genética , Nucleosomas/química , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Transcripción Genética , Secuencia de Aminoácidos , Animales , Sitios de Unión , Ensamble y Desensamble de Cromatina , Clonación Molecular , ADN/química , ADN/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Histonas/química , Histonas/metabolismo , Modelos Moleculares , Nucleosomas/metabolismo , Plásmidos/química , Plásmidos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Replegamiento Proteico , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato , Xenopus laevis/genética , Xenopus laevis/metabolismo
13.
J Biol Chem ; 299(2): 102806, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36529289

RESUMEN

Karyopherin-ß2 (Kapß2) is a nuclear-import receptor that recognizes proline-tyrosine nuclear localization signals of diverse cytoplasmic cargo for transport to the nucleus. Kapß2 cargo includes several disease-linked RNA-binding proteins with prion-like domains, such as FUS, TAF15, EWSR1, hnRNPA1, and hnRNPA2. These RNA-binding proteins with prion-like domains are linked via pathology and genetics to debilitating degenerative disorders, including amyotrophic lateral sclerosis, frontotemporal dementia, and multisystem proteinopathy. Remarkably, Kapß2 prevents and reverses aberrant phase transitions of these cargoes, which is cytoprotective. However, the molecular determinants of Kapß2 that enable these activities remain poorly understood, particularly from the standpoint of nuclear-import receptor architecture. Kapß2 is a super-helical protein comprised of 20 HEAT repeats. Here, we design truncated variants of Kapß2 and assess their ability to antagonize FUS aggregation and toxicity in yeast and FUS condensation at the pure protein level and in human cells. We find that HEAT repeats 8 to 20 of Kapß2 recapitulate all salient features of Kapß2 activity. By contrast, Kapß2 truncations lacking even a single cargo-binding HEAT repeat display reduced activity. Thus, we define a minimal Kapß2 construct for delivery in adeno-associated viruses as a potential therapeutic for amyotrophic lateral sclerosis/frontotemporal dementia, multisystem proteinopathy, and related disorders.


Asunto(s)
Chaperonas Moleculares , Fragmentos de Péptidos , Priones , Proteína FUS de Unión a ARN , beta Carioferinas , Humanos , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/terapia , beta Carioferinas/química , beta Carioferinas/genética , beta Carioferinas/metabolismo , Línea Celular , Dependovirus/metabolismo , Demencia Frontotemporal/metabolismo , Demencia Frontotemporal/terapia , Técnicas In Vitro , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Priones/química , Priones/metabolismo , Deficiencias en la Proteostasis/metabolismo , Deficiencias en la Proteostasis/terapia , Proteína FUS de Unión a ARN/química , Proteína FUS de Unión a ARN/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Unión Proteica
14.
Nature ; 558(7710): 465-469, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29899445

RESUMEN

Guanine-rich nucleic acid sequences challenge the replication, transcription, and translation machinery by spontaneously folding into G-quadruplexes, the unfolding of which requires forces greater than most polymerases can exert1,2. Eukaryotic cells contain numerous helicases that can unfold G-quadruplexes 3 . The molecular basis of the recognition and unfolding of G-quadruplexes by helicases remains poorly understood. DHX36 (also known as RHAU and G4R1), a member of the DEAH/RHA family of helicases, binds both DNA and RNA G-quadruplexes with extremely high affinity4-6, is consistently found bound to G-quadruplexes in cells7,8, and is a major source of G-quadruplex unfolding activity in HeLa cell lysates 6 . DHX36 is a multi-functional helicase that has been implicated in G-quadruplex-mediated transcriptional and post-transcriptional regulation, and is essential for heart development, haematopoiesis, and embryogenesis in mice9-12. Here we report the co-crystal structure of bovine DHX36 bound to a DNA with a G-quadruplex and a 3' single-stranded DNA segment. We show that the N-terminal DHX36-specific motif folds into a DNA-binding-induced α-helix that, together with the OB-fold-like subdomain, selectively binds parallel G-quadruplexes. Comparison with unliganded and ATP-analogue-bound DHX36 structures, together with single-molecule fluorescence resonance energy transfer (FRET) analysis, suggests that G-quadruplex binding alone induces rearrangements of the helicase core; by pulling on the single-stranded DNA tail, these rearrangements drive G-quadruplex unfolding one residue at a time.


Asunto(s)
ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/metabolismo , ADN/química , ADN/metabolismo , G-Cuádruplex , Desnaturalización de Ácido Nucleico , Secuencias de Aminoácidos , Animales , Bovinos , Cristalografía por Rayos X , ARN Helicasas DEAD-box/genética , Transferencia Resonante de Energía de Fluorescencia , Modelos Moleculares , Mutación
15.
Mol Cell ; 63(5): 865-76, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27546789

RESUMEN

DEAD box RNA helicases play central roles in RNP biogenesis. We reported earlier that LAF-1, a DEAD box RNA helicase in C. elegans, dynamically interacts with RNA and that the interaction likely contributes to the fluidity of RNP droplets. Here we investigate the molecular basis of the interaction of RNA with LAF-1 and its human homolog, DDX3X. We show that both LAF-1 and DDX3X, at low concentrations, are monomers that induce tight compaction of single-stranded RNA. At high concentrations, the proteins are multimeric and dynamically interact with RNA in an RNA length-dependent manner. The dynamic LAF-1-RNA interaction stimulates RNA annealing activity. ATP adversely affects the RNA remodeling ability of LAF-1 by suppressing the affinity, dynamics, and annealing activity of LAF-1, suggesting that ATP may promote disassembly of the RNP complex. Based on our results, we postulate a plausible molecular mechanism underlying the dynamic equilibrium of the LAF-1 RNP complex.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , ARN Helicasas DEAD-box/metabolismo , ARN/metabolismo , Ribonucleoproteínas/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Clonación Molecular , ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Humanos , Peso Molecular , Conformación de Ácido Nucleico , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , ARN/química , ARN/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/genética , Alineación de Secuencia , Homología de Secuencia de Aminoácido
17.
Nucleic Acids Res ; 50(11): 6271-6283, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35687089

RESUMEN

Human telomere overhang composed of tandem repeats of TTAGGG folds into G-quadruplex (G4). Unlike in an experimental setting in the test tube in which the entire length is allowed to fold at once, inside the cell, the overhang is expected to fold as it is synthesized directionally (5' to 3') and released segmentally by a specialized enzyme, the telomerase. To mimic such vectorial G4 folding process, we employed a superhelicase, Rep-X which can unwind DNA to release the TTAGGG repeats in 5' to 3' direction. We demonstrate that the folded conformation achieved by the refolding of full sequence is significantly different from that of the vectorial folding for two to eight TTAGGG repeats. Strikingly, the vectorially folded state leads to a remarkably higher accessibility to complementary C-rich strand and the telomere binding protein POT1, reflecting a less stably folded state resulting from the vectorial folding. Importantly, our study points to an inherent difference between the co-polymerizing and post-polymerized folding of telomere overhang that can impact telomere architecture and downstream processes.


Asunto(s)
G-Cuádruplex , Telómero , ADN/química , Humanos , Conformación de Ácido Nucleico , Complejo Shelterina , Telomerasa/metabolismo , Telómero/química , Telómero/genética , Proteínas de Unión a Telómeros/metabolismo
18.
Methods ; 197: 74-81, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33610691

RESUMEN

Biomolecular condensates often consist of intrinsically disordered protein and RNA molecules, which together promote the formation of membraneless organelles in cells. The nucleation, condensation, and maturation of condensates is a critical yet poorly understood process. Here, we present single-molecule and accompanying ensemble methods to quantify these processes more comprehensively. In particular, we focus on how to properly design and execute a single-molecule nucleation assay, in which we detect signals arising from individual units of fluorescently labeled RNA-binding proteins associating with an RNA substrate. The analysis of this data allows one to determine the kinetics involved with each step of nucleation. Complemented with meso-scale techniques that measure the biophysical properties of ribonucleoprotein condensates, the methods described herein are powerful tools that can be adopted for studying any protein-RNA interactions that promote phase separation.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Ribonucleoproteínas , Proteínas Intrínsecamente Desordenadas/química , Cinética , ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteínas/metabolismo
20.
Nucleic Acids Res ; 49(21): 12377-12393, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34850123

RESUMEN

Human telomeres are protected by shelterin proteins, but how telomeres maintain a dynamic structure remains elusive. Here, we report an unexpected activity of POT1 in imparting conformational dynamics of the telomere overhang, even at a monomer level. Strikingly, such POT1-induced overhang dynamics is greatly enhanced when TRF2 engages with the telomere duplex. Interestingly, TRF2, but not TRF2ΔB, recruits POT1-bound overhangs to the telomere ds/ss junction and induces a discrete stepwise movement up and down the axis of telomere duplex. The same steps are observed regardless of the length of the POT1-bound overhang, suggesting a tightly regulated conformational dynamic coordinated by TRF2 and POT1. TPP1 and TIN2 which physically connect POT1 and TRF2 act to generate a smooth movement along the axis of the telomere duplex. Our results suggest a plausible mechanism wherein telomeres maintain a dynamic structure orchestrated by shelterin.


Asunto(s)
Proteínas Recombinantes/metabolismo , Complejo Shelterina/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Telómero/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Transferencia Resonante de Energía de Fluorescencia/métodos , Colorantes Fluorescentes/química , Colorantes Fluorescentes/metabolismo , Humanos , Microscopía Fluorescente/métodos , Unión Proteica , Complejo Shelterina/genética , Telómero/genética , Proteínas de Unión a Telómeros/genética , Proteína 2 de Unión a Repeticiones Teloméricas/genética , Tripeptidil Peptidasa 1/genética , Tripeptidil Peptidasa 1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA