Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Glob Chang Biol ; 29(6): 1606-1617, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36451586

RESUMEN

Despite growing interest in predicting plant phenological shifts, advanced spring phenology by global climate change remains debated. Evidence documenting either small or large advancement of spring phenology to rising temperature over the spatio-temporal scales implies a potential existence of a thermal threshold in the responses of forests to global warming. We collected a unique data set of xylem cell-wall-thickening onset dates in 20 coniferous species covering a broad mean annual temperature (MAT) gradient (-3.05 to 22.9°C) across the Northern Hemisphere (latitudes 23°-66° N). Along the MAT gradient, we identified a threshold temperature (using segmented regression) of 4.9 ± 1.1°C, above which the response of xylem phenology to rising temperatures significantly decline. This threshold separates the Northern Hemisphere conifers into cold and warm thermal niches, with MAT and spring forcing being the primary drivers for the onset dates (estimated by linear and Bayesian mixed-effect models), respectively. The identified thermal threshold should be integrated into the Earth-System-Models for a better understanding of spring phenology in response to global warming and an improved prediction of global climate-carbon feedbacks.


Asunto(s)
Tracheophyta , Teorema de Bayes , Bosques , Frío , Temperatura , Cambio Climático , Estaciones del Año
2.
Proc Natl Acad Sci U S A ; 117(34): 20645-20652, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32759218

RESUMEN

Wood formation consumes around 15% of the anthropogenic CO2 emissions per year and plays a critical role in long-term sequestration of carbon on Earth. However, the exogenous factors driving wood formation onset and the underlying cellular mechanisms are still poorly understood and quantified, and this hampers an effective assessment of terrestrial forest productivity and carbon budget under global warming. Here, we used an extensive collection of unique datasets of weekly xylem tissue formation (wood formation) from 21 coniferous species across the Northern Hemisphere (latitudes 23 to 67°N) to present a quantitative demonstration that the onset of wood formation in Northern Hemisphere conifers is primarily driven by photoperiod and mean annual temperature (MAT), and only secondarily by spring forcing, winter chilling, and moisture availability. Photoperiod interacts with MAT and plays the dominant role in regulating the onset of secondary meristem growth, contrary to its as-yet-unquantified role in affecting the springtime phenology of primary meristems. The unique relationships between exogenous factors and wood formation could help to predict how forest ecosystems respond and adapt to climate warming and could provide a better understanding of the feedback occurring between vegetation and climate that is mediated by phenology. Our study quantifies the role of major environmental drivers for incorporation into state-of-the-art Earth system models (ESMs), thereby providing an improved assessment of long-term and high-resolution observations of biogeochemical cycles across terrestrial biomes.


Asunto(s)
Tracheophyta/crecimiento & desarrollo , Madera/crecimiento & desarrollo , Xilema/crecimiento & desarrollo , Clima , Cambio Climático , Ecosistema , Bosques , Calentamiento Global , Modelos Biológicos , Fotoperiodo , Estaciones del Año , Temperatura , Tracheophyta/genética , Árboles/crecimiento & desarrollo
3.
Glob Chang Biol ; 25(3): 1089-1105, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30536724

RESUMEN

The phenology of wood formation is a critical process to consider for predicting how trees from the temperate and boreal zones may react to climate change. Compared to leaf phenology, however, the determinism of wood phenology is still poorly known. Here, we compared for the first time three alternative ecophysiological model classes (threshold models, heat-sum models and chilling-influenced heat-sum models) and an empirical model in their ability to predict the starting date of xylem cell enlargement in spring, for four major Northern Hemisphere conifers (Larix decidua, Pinus sylvestris, Picea abies and Picea mariana). We fitted models with Bayesian inference to wood phenological data collected for 220 site-years over Europe and Canada. The chilling-influenced heat-sum model received most support for all the four studied species, predicting validation data with a 7.7-day error, which is within one day of the observed data resolution. We conclude that both chilling and forcing temperatures determine the onset of wood formation in Northern Hemisphere conifers. Importantly, the chilling-influenced heat-sum model showed virtually no spatial bias whichever the species, despite the large environmental gradients considered. This suggests that the spring onset of wood formation is far less affected by local adaptation than by environmentally driven plasticity. In a context of climate change, we therefore expect rising winter-spring temperature to exert ambivalent effects on the spring onset of wood formation, tending to hasten it through the accumulation of forcing temperature, but imposing a higher forcing temperature requirement through the lower accumulation of chilling.


Asunto(s)
Modelos Biológicos , Temperatura , Tracheophyta/crecimiento & desarrollo , Madera/crecimiento & desarrollo , Teorema de Bayes , Canadá , Cambio Climático , Europa (Continente) , Estaciones del Año , Xilema/crecimiento & desarrollo
5.
New Phytol ; 215(3): 977-991, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28586137

RESUMEN

The tree root-mycorhizosphere plays a key role in resource uptake, but also in the adaptation of forests to changing environments. The adaptive foraging mechanisms of ectomycorrhizal (EcM) and fine roots of Picea abies, Pinus sylvestris and Betula pendula were evaluated along a gradient from temperate to subarctic boreal forest (38 sites between latitudes 48°N and 69°N) in Europe. Variables describing tree resource uptake structures and processes (absorptive fine root biomass and morphology, nitrogen (N) concentration in absorptive roots, extramatrical mycelium (EMM) biomass, community structure of root-associated EcM fungi, soil and rhizosphere bacteria) were used to analyse relationships between root system functional traits and climate, soil and stand characteristics. Absorptive fine root biomass per stand basal area increased significantly from temperate to boreal forests, coinciding with longer and thinner root tips with higher tissue density, smaller EMM biomass per root length and a shift in soil microbial community structure. The soil carbon (C) : N ratio was found to explain most of the variability in absorptive fine root and EMM biomass, root tissue density, N concentration and rhizosphere bacterial community structure. We suggest a concept of absorptive fine root foraging strategies involving both qualitative and quantitative changes in the root-mycorrhiza-bacteria continuum along climate and soil C : N gradients.


Asunto(s)
Adaptación Fisiológica , Raíces de Plantas/fisiología , Taiga , Bacterias/metabolismo , Betula/microbiología , Biomasa , Carbono/análisis , Europa (Continente) , Geografía , Modelos Biológicos , Micelio/fisiología , Micorrizas/fisiología , Nitrógeno/análisis , Raíces de Plantas/anatomía & histología , Raíces de Plantas/microbiología , Rizosfera , Microbiología del Suelo
6.
Plant Cell Environ ; 39(2): 233-44, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25808847

RESUMEN

The quantification of cambial growth over short time periods has been hampered by problems to discern between growth and the swelling and shrinking of a tree stem. This paper presents a model, which separates cambial growth and reversible water-potential induced diurnal changes from simultaneously measured whole stem and xylem radial variations, from field-measured Scots pine trees in Finland. The modelled growth, which includes osmotic concentration changes, was compared with (direct) dendrometer measurements and microcore samples. In addition, the relationship of modelled growth and dendrometer measurements to environmental factors was analysed. The results showed that the water-potential induced changes of tree radius were successfully separated from stem growth. Daily growth predicted by the model exhibited a high correlation with the modelled daily changes of osmotic concentration in phloem, and a temperature dependency in early summer. Late-summer growth saw higher dependency on water availability and temperature. Evaluation of the model against dendrometer measurements showed that the latter masked a true environmental signal in stem growth due to water-potential induced changes. The model provides better understanding of radial growth physiology and offers potential to examine growth dynamics and changes due to osmotic concentration, and how the environment affects growth.


Asunto(s)
Cámbium/crecimiento & desarrollo , Ósmosis , Tallos de la Planta/fisiología , Agua/fisiología , Ambiente , Fotones , Fotosíntesis , Tallos de la Planta/crecimiento & desarrollo , Presión , Lluvia , Análisis de Regresión , Estaciones del Año , Temperatura , Xilema/fisiología
7.
Glob Chang Biol ; 22(11): 3804-3813, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27082838

RESUMEN

The interaction between xylem phenology and climate assesses forest growth and productivity and carbon storage across biomes under changing environmental conditions. We tested the hypothesis that patterns of wood formation are maintained unaltered despite the temperature changes across cold ecosystems. Wood microcores were collected weekly or biweekly throughout the growing season for periods varying between 1 and 13 years during 1998-2014 and cut in transverse sections for assessing the onset and ending of the phases of xylem differentiation. The data set represented 1321 trees belonging to 10 conifer species from 39 sites in the Northern Hemisphere and covering an interval of mean annual temperature exceeding 14 K. The phenological events and mean annual temperature of the sites were related linearly, with spring and autumnal events being separated by constant intervals across the range of temperature analysed. At increasing temperature, first enlarging, wall-thickening and mature tracheids appeared earlier, and last enlarging and wall-thickening tracheids occurred later. Overall, the period of wood formation lengthened linearly with the mean annual temperature, from 83.7 days at -2 °C to 178.1 days at 12 °C, at a rate of 6.5 days °C-1 . April-May temperatures produced the best models predicting the dates of wood formation. Our findings demonstrated the uniformity of the process of wood formation and the importance of the environmental conditions occurring at the time of growth resumption. Under warming scenarios, the period of wood formation might lengthen synchronously in the cold biomes of the Northern Hemisphere.


Asunto(s)
Frío , Tracheophyta , Xilema , Ecosistema , Desarrollo de la Planta , Estaciones del Año , Árboles
8.
Curr Biol ; 34(6): 1161-1167.e3, 2024 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-38325374

RESUMEN

Wood growth is key to understanding the feedback of forest ecosystems to the ongoing climate warming. An increase in spatial synchrony (i.e., coincident changes in distant populations) of spring phenology is one of the most prominent climate responses of forest trees. However, whether temperature variability contributes to an increase in the spatial synchrony of spring phenology and its underlying mechanisms remains largely unknown. Here, we analyzed an extensive dataset of xylem phenology observations of 20 conifer species from 75 sites over the Northern Hemisphere. Along the gradient of increase in temperature variability in the 75 sites, we observed a convergence in the onset of cell enlargement roughly toward the 5th of June, with a convergence in the onset of cell wall thickening toward the summer solstice. The increase in rainfall since the 5th of June is favorable for cell division and expansion, and as the most hours of sunlight are received around the summer solstice, it allows the optimization of carbon assimilation for cell wall thickening. Hence, the convergences can be considered as the result of matching xylem phenological activities to favorable conditions in regions with high temperature variability. Yet, forest trees relying on such consistent seasonal cues for xylem growth could constrain their ability to respond to climate warming, with consequences for the potential growing season length and, ultimately, forest productivity and survival in the future.


Asunto(s)
Tracheophyta , Temperatura , Ecosistema , Cambio Climático , Xilema , Estaciones del Año , Árboles
9.
Nat Commun ; 15(1): 6169, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103349

RESUMEN

As major terrestrial carbon sinks, forests play an important role in mitigating climate change. The relationship between the seasonal uptake of carbon and its allocation to woody biomass remains poorly understood, leaving a significant gap in our capacity to predict carbon sequestration by forests. Here, we compare the intra-annual dynamics of carbon fluxes and wood formation across the Northern hemisphere, from carbon assimilation and the formation of non-structural carbon compounds to their incorporation in woody tissues. We show temporally coupled seasonal peaks of carbon assimilation (GPP) and wood cell differentiation, while the two processes are substantially decoupled during off-peak periods. Peaks of cambial activity occur substantially earlier compared to GPP, suggesting the buffer role of non-structural carbohydrates between the processes of carbon assimilation and allocation to wood. Our findings suggest that high-resolution seasonal data of ecosystem carbon fluxes, wood formation and the associated physiological processes may reduce uncertainties in carbon source-sink relationships at different spatial scales, from stand to ecosystem levels.


Asunto(s)
Secuestro de Carbono , Carbono , Cambio Climático , Bosques , Estaciones del Año , Tracheophyta , Madera , Carbono/metabolismo , Madera/metabolismo , Madera/química , Tracheophyta/metabolismo , Biomasa , Ecosistema , Ciclo del Carbono , Árboles/metabolismo
10.
Clim Dyn ; 56(11-12): 3817-3833, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34776646

RESUMEN

Holocene climate variability is punctuated by episodic climatic events such as the Little Ice Age (LIA) predating the industrial-era warming. Their dating and forcing mechanisms have however remained controversial. Even more crucially, it is uncertain whether earlier events represent climatic regimes similar to the LIA. Here we produce and analyse a new 7500-year long palaeoclimate record tailored to detect LIA-like climatic regimes from northern European tree-ring data. In addition to the actual LIA, we identify LIA-like ca. 100-800 year periods with cold temperatures combined with clear sky conditions from 540 CE, 1670 BCE, 3240 BCE and 5450 BCE onwards, these LIA-like regimes covering 20% of the study period. Consistent with climate modelling, the LIA-like regimes originate from a coupled atmosphere-ocean-sea ice North Atlantic-Arctic system and were amplified by volcanic activity (multiple eruptions closely spaced in time), tree-ring evidence pointing to similarly enhanced LIA-like regimes starting after the eruptions recorded in 1627 BCE, 536/540 CE and 1809/1815 CE. Conversely, the ongoing decline in Arctic sea-ice extent is mirrored in our data which shows reversal of the LIA-like conditions since the late nineteenth century, our record also correlating highly with the instrumentally recorded Northern Hemisphere and global temperatures over the same period. Our results bridge the gaps between low- and high-resolution, precisely dated proxies and demonstrate the efficacy of slow and fast components of the climate system to generate LIA-like climate regimes. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00382-021-05669-0.

11.
Tree Physiol ; 30(10): 1235-52, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20660493

RESUMEN

Cambial growth was modelled as a function of detailed levelled physiological processes for cell enlargement and water and sugar transport to the cambium. Cambial growth was described at the cell level where local sugar concentration and turgor pressure induce irreversible cell expansion and cell wall synthesis. It was demonstrated how transpiration and photosynthesis rates, metabolic and physiological processes and structural features of a tree mediate their effects directly on the local water and sugar status and influence cambial growth. Large trees were predicted to be less sensitive to changes in the transient water and sugar status, compared with smaller ones, as they have more water and sugar storage and were, therefore, less coupled to short-term changes in the environment. Modelling the cambial dynamics at the individual cell level turned out to be a complex task as the radial short-distance transport of water and sugars and control signals determining cell division and cessation of cell enlargement and cell wall synthesis had to be described simultaneously.


Asunto(s)
Cámbium/crecimiento & desarrollo , Árboles/fisiología , Cámbium/fisiología , Pared Celular/fisiología , Modelos Biológicos , Floema/metabolismo , Fotosíntesis , Transpiración de Plantas/fisiología , Árboles/crecimiento & desarrollo , Madera/fisiología , Xilema/fisiología
12.
Tree Physiol ; 30(1): 103-15, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19955191

RESUMEN

We studied experimentally the effects of water availability on height and radial increment as well as wood density and tracheid properties of Norway spruce (Picea abies (L.) Karst.). The study was carried out in two long-term N-fertilization experiments in Southern Finland (Heinola and Sahalahti). At each site, one fertilized and one control plot was covered with an under-canopy roof preventing rainwater from reaching the soil. Two uncovered plots were monitored at each site. The drought treatment was initiated in the beginning of growing season and lasted for 60-75 days each year. The treatment was repeated for four to five consecutive years depending on the site. Altogether, 40 sample trees were harvested and discs sampled at breast height. From the discs, ring width and wood density were measured by X-ray densitometry. Tracheid properties were analysed by reflected-light microscopy and image analysis. Reduced soil water potential during the growing season decreased annual radial and height increment and had a small influence on tracheid properties and wood density. No statistically significant differences were found in the average tracheid diameter between the drought-treated and control trees. The average cell wall thickness was somewhat higher (7-10%) for the drought treatment than for the control, but the difference was statistically significant only in Sahalahti. An increased cell wall thickness was found in both early- and latewood tracheids, but the increase was much greater in latewood. In drought-treated trees, cell wall proportion within an annual ring increased, consequently increasing wood density. No interaction between the N fertilization and drought treatment was found in wood density. After the termination of the drought treatment, trees rapidly recovered from the drought stress. According to our results, severe drought due to the predicted climate change may reduce Norway spruce growth but is unlikely to result in large changes in wood properties.


Asunto(s)
Sequías , Picea/crecimiento & desarrollo , Madera/análisis , Agricultura/métodos , Altitud , Silicatos de Aluminio , Arcilla , Fertilización , Picea/fisiología , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/fisiología , Densidad de Población , Lluvia , Dióxido de Silicio , Temperatura
13.
Tree Physiol ; 29(3): 445-56, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19203968

RESUMEN

Variations in ectomycorrhizal (EcM) short root tips of Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.) in 16 stands throughout Finland were studied, and their relationships with latitude, organic layer C:N ratio, temperature sum and foliage biomass were determined. There were no significant differences in EcM root tip frequency (number per milligram of fine roots) or root tip mass between tree species or between northern and southern sites. The EcM root tip number per unit area of the organic layer plus the 0-30 cm mineral soil layer varied between 0.8 and 2.4 million per m(2) for Norway spruce and between 0.7 and 2.9 million per m(2) for Scots pine, and it was higher in the northern Scots pine stands than in the southern Scots pine stands. Over 80% of the EcM root tips of both species were in the organic layer and the upper 0-10 cm mineral soil layer. We related EcM root tips to foliage mass because these two components are the most important functional units in boreal tree physiology. Both species, especially the Scots pine trees, had more EcM root tips in relation to foliage mass in northern Finland than in southern Finland. Scots pine trees had more EcM root tips in relation to foliage mass than Norway spruce in the same climatic region. The EcM root tip:foliage biomass ratio of Norway spruce was positively related to the C:N ratio in the organic layer, whereas that of Scots pine was negatively related to the temperature sum. The number of EcM root tips per milligram of fine root biomass was constant, implying that trees of both species increase nutrient uptake by increasing fine root production and hence their total number of EcM tips and the area of soil occupied by mycelia. Both tree species responded to nitrogen (N) deficiency by maintaining more EcM tips per foliage unit, and this may be related to a higher proportion of N uptake in an organic form.


Asunto(s)
Biomasa , Micorrizas , Nitrógeno/metabolismo , Picea/microbiología , Pinus sylvestris/microbiología , Clima Frío , Finlandia , Micorrizas/metabolismo , Picea/metabolismo , Pinus sylvestris/metabolismo , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Suelo/análisis , Especificidad de la Especie
14.
Sci Total Environ ; 407(10): 3365-71, 2009 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-19269680

RESUMEN

We studied the chemical changes in forest soil and the effects on Scots pine trees caused by continuous sprinkling infiltration over a period of two years, followed by a recovery period of two years. Infiltration increased the water input onto the forest soil by a factor of approximately 1000. After one year of infiltration, the pH of the organic layer had risen from about 4.0 to 6.7. The NH(4)-N concentration in the organic layer increased, most probably due to the NH(4) ions in the infiltration water, as the net N mineralization rate did not increase. Sprinkling infiltration initiated nitrification in the mineral soil. Macronutrient concentrations generally increased in the organic layer and mineral soil. An exception, however, was the concentration of extractable phosphorus, which decreased strongly during the infiltration period and did not show a recovery within two years. The NO(3)-N and K concentrations had reverted back to their initial level during the two-year recovery period, while the concentrations of Ca, Mg and NH(4)-N were still elevated. Nutrient concentrations in the pine needles increased on the infiltrated plots. However, the needle P concentration increased, despite the decrease in plant-available P in the soil. Despite the increase in the nutrient status, there were some visible signs of chlorosis in the current-year needles after two years of infiltration. The radial growth of the pines more than doubled on the infiltrated plots, which suggests that the very large increase in the water input onto the forest floor had no adverse effect on the functioning of the trees. However, a monitoring period of four years is not sufficient for detecting potential long term detrimental effects on forest trees.


Asunto(s)
Conservación de los Recursos Naturales , Pinus/fisiología , Árboles , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Abastecimiento de Agua , Biodegradación Ambiental , Filtración , Suelo/análisis , Movimientos del Agua , Contaminantes Químicos del Agua/análisis
15.
Sci Rep ; 8(1): 1339, 2018 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-29358711

RESUMEN

The large volcanic eruptions of AD 536 and 540 led to climate cooling and contributed to hardships of Late Antiquity societies throughout Eurasia, and triggered a major environmental event in the historical Roman Empire. Our set of stable carbon isotope records from subfossil tree rings demonstrates a strong negative excursion in AD 536 and 541-544. Modern data from these sites show that carbon isotope variations are driven by solar radiation. A model based on sixth century isotopes reconstruct an irradiance anomaly for AD 536 and 541-544 of nearly three standard deviations below the mean value based on modern data. This anomaly can be explained by a volcanic dust veil reducing solar radiation and thus primary production threatening food security over a multitude of years. We offer a hypothesis that persistently low irradiance contributed to remarkably simultaneous outbreaks of famine and Justinianic plague in the eastern Roman Empire with adverse effects on crop production and photosynthesis of the vitamin D in human skin and thus, collectively, human health. Our results provide a hitherto unstudied proxy for exploring the mechanisms of 'volcanic summers' to demonstrate the post-eruption deficiencies in sunlight and to explain the human consequences during such calamity years.


Asunto(s)
Isótopos de Carbono/análisis , Árboles/química , Erupciones Volcánicas/historia , Polvo , Monitoreo del Ambiente , Abastecimiento de Alimentos , Fósiles , Historia Medieval , Humanos
16.
Tree Physiol ; 27(10): 1493-504, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17669739

RESUMEN

Variations in fine root biomass of trees and understory in 16 stands throughout Finland were examined and relationships to site and stand characteristics determined. Norway spruce fine root biomass varied between 184 and 370 g m(-2), and that of Scots pine ranged between 149 and 386 g m(-2). In northern Finland, understory roots and rhizomes (< 2 mm diameter) accounted for up to 50% of the stand total fine root biomass. Therefore, the fine root biomass of trees plus understory was larger in northern Finland in stands of both tree species, resulting in a negative relationship between fine root biomass and the temperature sum and a positive relationship between fine root biomass and the carbon:nitrogen ratio of the soil organic layer. The foliage:fine root ratio varied between 2.1 and 6.4 for Norway spruce and between 0.8 and 2.2 for Scots pine. The ratio decreased for both Norway spruce and Scots pine from south to north, as well as from fertile to more infertile site types. The foliage:fine root ratio of Norway spruce was related to basal area and stem surface area. The strong positive correlations of these three parameters with fine root nitrogen concentration implies that more fine roots are needed to maintain a certain amount of foliage when nutrient availability is low. No significant relationships were found between stand parameters and fine root biomass at the stand level, but the relationships considerably improved when both fine root biomass and stand parameters were calculated for the mean tree in the stand. When the northern and southern sites were analyzed separately, fine root biomass per tree of both species was significantly correlated with basal area and stem surface area per tree. Basal area, stem surface area and stand density can be estimated accurately and easily. Thus, our results may have value in predicting fine root biomass at the tree and stand level in boreal Norway spruce and Scots pine forests.


Asunto(s)
Biomasa , Ecosistema , Picea/fisiología , Pinus sylvestris/fisiología , Raíces de Plantas/fisiología , Finlandia
17.
PLoS One ; 12(6): e0180042, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28662166

RESUMEN

We collected relevant observational and measured annual-resolution time series dealing with climate in northern Europe, focusing in Finland. We analysed these series for the reliability of their temperature signal at annual and seasonal resolutions. Importantly, we analysed all of the indicators within the same statistical framework, which allows for their meaningful comparison. In this framework, we employed a cross-validation procedure designed to reduce the adverse effects of estimation bias that may inflate the reliability of various temperature indicators, especially when several indicators are used in a multiple regression model. In our data sets, timing of phenological observations and ice break-up were connected with spring, tree ring characteristics (width, density, carbon isotopic composition) with summer and ice formation with autumn temperatures. Baltic Sea ice extent and the duration of ice cover in different watercourses were good indicators of winter temperatures. Using combinations of various temperature indicator series resulted in reliable temperature signals for each of the four seasons, as well as a reliable annual temperature signal. The results hence demonstrated that we can obtain reliable temperature information over different seasons, using a careful selection of indicators, combining the results with regression analysis, and by determining the reliability of the obtained indicator.


Asunto(s)
Clima , Temperatura , Europa (Continente) , Reproducibilidad de los Resultados , Estaciones del Año , Árboles/clasificación
18.
Nat Plants ; 1: 15160, 2015 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-27251531

RESUMEN

Wood is the main terrestrial biotic reservoir for long-term carbon sequestration(1), and its formation in trees consumes around 15% of anthropogenic carbon dioxide emissions each year(2). However, the seasonal dynamics of woody biomass production cannot be quantified from eddy covariance or satellite observations. As such, our understanding of this key carbon cycle component, and its sensitivity to climate, remains limited. Here, we present high-resolution cellular based measurements of wood formation dynamics in three coniferous forest sites in northeastern France, performed over a period of 3 years. We show that stem woody biomass production lags behind stem-girth increase by over 1 month. We also analyse more general phenological observations of xylem tissue formation in Northern Hemisphere forests and find similar time lags in boreal, temperate, subalpine and Mediterranean forests. These time lags question the extension of the equivalence between stem size increase and woody biomass production to intra-annual time scales(3, 4, 5, 6). They also suggest that these two growth processes exhibit differential sensitivities to local environmental conditions. Indeed, in the well-watered French sites the seasonal dynamics of stem-girth increase matched the photoperiod cycle, whereas those of woody biomass production closely followed the seasonal course of temperature. We suggest that forecasted changes in the annual cycle of climatic factors(7) may shift the phase timing of stem size increase and woody biomass production in the future.

19.
Tree Physiol ; 23(14): 959-68, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12952782

RESUMEN

The progress of xylem formation in Norway spruce (Picea abies (L.) Karst.) was measured during one growing season in southern Finland. Stem radius was monitored continuously with band dendrometers, and the formation of new tracheids was determined by examination of small increment cores taken twice weekly. Tracheid production started in June and ceased in August. Xylem formation was fastest in early July, when 0.75-1.25 new tracheids were formed per day. The rate of xylem formation was significantly correlated with mean daily temperature. Synchronous fluctuations in tracheid and lumen diameters were observed at the same relative positions within each annual ring, but no relationship existed between the diameters and weather variables. The timing of changes in stem radius differed from the timing of actual xylem formation. Stem radius increased in April and May, and the fastest daily increments were recorded in June. Increases in stem radius slowed in July, but small increases were measured more than a month after xylem formation had ceased. Daily changes in stem radius were correlated with daily precipitation, reflecting changes in stem water content. Therefore, dendrometers are of dubious value for measuring the timing of actual xylem formation. Small increment cores proved to be useful in assessing actual xylem formation, but the method is laborious.


Asunto(s)
Picea/fisiología , Tallos de la Planta/fisiología , Árboles/fisiología , Finlandia , Picea/anatomía & histología , Picea/crecimiento & desarrollo , Tallos de la Planta/anatomía & histología , Tallos de la Planta/crecimiento & desarrollo , Lluvia , Estaciones del Año , Temperatura , Árboles/anatomía & histología , Árboles/crecimiento & desarrollo
20.
Tree Physiol ; 33(11): 1145-55, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24169103

RESUMEN

In the Nordic countries, growth of Norway spruce (Picea abies (L.) Karst.) is generally limited by low availability of nutrients, especially nitrogen. Optimizing forest management requires better insight on how growth responds to the environmental conditions and their manipulation. The aim of this study was to analyse the effects of nutrient optimization on timing and the rate of tracheid formation of Norway spruce and to follow the differentiation of newly formed tracheids. The study was performed during two growing seasons in a long-term nutrient optimization experiment in northern Sweden, where all essential macro- and micronutrients were supplied in irrigation water every second day from mid-June to mid-August. The control plots were without additional nutrients and water. Tracheid formation in the stem was monitored throughout the growing season by weekly sampling of microcores at breast height. The onset of xylogenesis occurred in early June, but in early summer there were no significant between-treatment differences in the onset and relative rate of tracheid formation. In both treatments, the onset of secondary cell wall formation occurred in mid-June. The maximum rate of tracheid formation occurred close to the summer solstice and 50% of the tracheids had been accumulated in early July. Optimized nutrition resulted in the formation of ∼50% more tracheids and delayed the cessation of tracheid formation, which extended the tracheid formation period by 20-50%, compared with control trees. The increased growth was mainly an effect of enhanced tracheid formation rate during the mid- and later-part of the growing season. In the second year, the increased growth rate also resulted in 11% wider tracheids. We conclude that the onset and rate of tracheid formation and differentiation during summer is primarily controlled by photoperiod, temperature and availability of nutrients, rather than supply of carbohydrates.


Asunto(s)
Nitrógeno/fisiología , Picea/crecimiento & desarrollo , Diferenciación Celular , Pared Celular , Nitrógeno/análisis , Noruega , Fenotipo , Fotoperiodo , Picea/anatomía & histología , Picea/efectos de la radiación , Tallos de la Planta/anatomía & histología , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/efectos de la radiación , Estaciones del Año , Temperatura , Árboles , Madera/anatomía & histología , Madera/crecimiento & desarrollo , Madera/efectos de la radiación , Xilema/anatomía & histología , Xilema/crecimiento & desarrollo , Xilema/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA