RESUMEN
In the wild, bacteria are predominantly associated with surfaces as opposed to existing as free-swimming, isolated organisms. They are thus subject to surface-specific mechanics, including hydrodynamic forces, adhesive forces, the rheology of their surroundings, and transport rules that define their encounters with nutrients and signaling molecules. Here, we highlight the effects of mechanics on bacterial behaviors on surfaces at multiple length scales, from single bacteria to the development of multicellular bacterial communities such as biofilms.
Asunto(s)
Escherichia coli/fisiología , Pseudomonas aeruginosa/fisiología , Adhesión Bacteriana , Biopelículas , Transporte Biológico , Fenómenos Biomecánicos , Escherichia coli/citología , Locomoción , Pseudomonas aeruginosa/citologíaRESUMEN
Biofilms are a widely observed growth mode in which microbial communities are spatially structured and embedded in a polymeric extracellular matrix. Here, we focus on the model bacterium Vibrio cholerae and summarize the current understanding of biofilm formation, including initial attachment, matrix components, community dynamics, social interactions, molecular regulation, and dispersal. The regulatory network that orchestrates the decision to form and disperse from biofilms coordinates various environmental inputs. These cues are integrated by several transcription factors, regulatory RNAs, and second-messenger molecules, including bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP). Through complex mechanisms, V. cholerae weighs the energetic cost of forming biofilms against the benefits of protection and social interaction that biofilms provide.
Asunto(s)
Biopelículas , Vibrio cholerae , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , GMP Cíclico/metabolismo , Regulación Bacteriana de la Expresión Génica , Factores de Transcripción/metabolismo , Vibrio cholerae/genética , Vibrio cholerae/fisiologíaRESUMEN
Biofilm formation, including adherence to surfaces and secretion of extracellular matrix, is common in the microbial world, but we often do not know how interaction at the cellular spatial scale translates to higher-order biofilm community ecology. Here we explore an especially understudied element of biofilm ecology, namely predation by the bacterium Bdellovibrio bacteriovorus. This predator can kill and consume many different Gram-negative bacteria, including Vibrio cholerae and Escherichia coli. V. cholerae can protect itself from predation within densely packed biofilm structures that it creates, whereas E. coli biofilms are highly susceptible to B. bacteriovorus. We explore how predator-prey dynamics change when V. cholerae and E. coli are growing in biofilms together. We find that in dual-species prey biofilms, E. coli survival under B. bacteriovorus predation increases, whereas V. cholerae survival decreases. E. coli benefits from predator protection when it becomes embedded within expanding groups of highly packed V. cholerae. But we also find that the ordered, highly packed, and clonal biofilm structure of V. cholerae can be disrupted if V. cholerae cells are directly adjacent to E. coli cells at the start of biofilm growth. When this occurs, the two species become intermixed, and the resulting disordered cell groups do not block predator entry. Because biofilm cell group structure depends on initial cell distributions at the start of prey biofilm growth, the surface colonization dynamics have a dramatic impact on the eventual multispecies biofilm architecture, which in turn determines to what extent both species survive exposure to B. bacteriovorus.
Asunto(s)
Bdellovibrio bacteriovorus , Escherichia coli , Animales , Conducta Predatoria , Biopelículas , EcologíaRESUMEN
Numerous ecological interactions among microbes-for example, competition for space and resources, or interaction among phages and their bacterial hosts-are likely to occur simultaneously in multispecies biofilm communities. While biofilms formed by just a single species occur, multispecies biofilms are thought to be more typical of microbial communities in the natural environment. Previous work has shown that multispecies biofilms can increase, decrease, or have no measurable impact on phage exposure of a host bacterium living alongside another species that the phages cannot target. The reasons underlying this variability are not well understood, and how phage-host encounters change within multispecies biofilms remains mostly unexplored at the cellular spatial scale. Here, we study how the cellular scale architecture of model 2-species biofilms impacts cell-cell and cell-phage interactions controlling larger scale population and community dynamics. Our system consists of dual culture biofilms of Escherichia coli and Vibrio cholerae under exposure to T7 phages, which we study using microfluidic culture, high-resolution confocal microscopy imaging, and detailed image analysis. As shown previously, sufficiently mature biofilms of E. coli can protect themselves from phage exposure via their curli matrix. Before this stage of biofilm structural maturity, E. coli is highly susceptible to phages; however, we show that these bacteria can gain lasting protection against phage exposure if they have become embedded in the bottom layers of highly packed groups of V. cholerae in co-culture. This protection, in turn, is dependent on the cell packing architecture controlled by V. cholerae biofilm matrix secretion. In this manner, E. coli cells that are otherwise susceptible to phage-mediated killing can survive phage exposure in the absence of de novo resistance evolution. While co-culture biofilm formation with V. cholerae can confer phage protection to E. coli, it comes at the cost of competing with V. cholerae and a disruption of normal curli-mediated protection for E. coli even in dual species biofilms grown over long time scales. This work highlights the critical importance of studying multispecies biofilm architecture and its influence on the community dynamics of bacteria and phages.
Asunto(s)
Bacteriófagos , Vibrio cholerae , Escherichia coli , Biopelículas , Matriz Extracelular de Sustancias PoliméricasRESUMEN
Biofilm formation is an important and ubiquitous mode of growth among bacteria. Central to the evolutionary advantage of biofilm formation is cell-cell and cell-surface adhesion achieved by a variety of factors, some of which are diffusible compounds that may operate as classical public goods-factors that are costly to produce but may benefit other cells. An outstanding question is how diffusible matrix production, in general, can be stable over evolutionary timescales. In this work, using Vibrio cholerae as a model, we show that shared diffusible biofilm matrix proteins are indeed susceptible to cheater exploitation and that the evolutionary stability of producing these matrix components fundamentally depends on biofilm spatial structure, intrinsic sharing mechanisms of these components, and flow conditions in the environment. We further show that exploitation of diffusible adhesion proteins is localized within a well-defined spatial range around cell clusters that produce them. Based on this exploitation range and the spatial distribution of cell clusters, we constructed a model of costly diffusible matrix production and related these length scales to the relatedness coefficient in social evolution theory. Our results show that production of diffusible biofilm matrix components is evolutionarily stable under conditions consistent with natural biofilm habitats and host environments. We expect the mechanisms revealed in this study to be relevant to other secreted factors that operate as cooperative public goods in bacterial communities and the concept of exploitation range and the associated analysis tools to be generally applicable.
Asunto(s)
Bacterias , Matriz Extracelular de Sustancias Poliméricas , Evolución Social , Bacterias/crecimiento & desarrollo , Modelos Biológicos , Vibrio choleraeRESUMEN
Bacteria often grow into matrix-encased three-dimensional (3D) biofilm communities, which can be imaged at cellular resolution using confocal microscopy. From these 3D images, measurements of single-cell properties with high spatiotemporal resolution are required to investigate cellular heterogeneity and dynamical processes inside biofilms. However, the required measurements rely on the automated segmentation of bacterial cells in 3D images, which is a technical challenge. To improve the accuracy of single-cell segmentation in 3D biofilms, we first evaluated recent classical and deep learning segmentation algorithms. We then extended StarDist, a state-of-the-art deep learning algorithm, by optimizing the post-processing for bacteria, which resulted in the most accurate segmentation results for biofilms among all investigated algorithms. To generate the large 3D training dataset required for deep learning, we developed an iterative process of automated segmentation followed by semi-manual correction, resulting in >18,000 annotated Vibrio cholerae cells in 3D images. We demonstrate that this large training dataset and the neural network with optimized post-processing yield accurate segmentation results for biofilms of different species and on biofilm images from different microscopes. Finally, we used the accurate single-cell segmentation results to track cell lineages in biofilms and to perform spatiotemporal measurements of single-cell growth rates during biofilm development.
Asunto(s)
Aprendizaje Profundo , Linaje de la Célula , Imagenología Tridimensional/métodos , Algoritmos , Biopelículas , Bacterias , Procesamiento de Imagen Asistido por Computador/métodosRESUMEN
Pseudomonas aeruginosa is an opportunistic pathogen that forms antibiotic-resistant biofilms, which facilitate chronic infections in immunocompromised hosts. We have previously shown that P. aeruginosa secretes outer-membrane vesicles that deliver a small RNA to human airway epithelial cells (AECs), in which it suppresses the innate immune response. Here, we demonstrate that interdomain communication through small RNA-containing membrane vesicles is bidirectional and that microRNAs (miRNAs) in extracellular vesicles (EVs) secreted by human AECs regulate protein expression, antibiotic sensitivity, and biofilm formation by P. aeruginosa Specifically, human EVs deliver miRNA let-7b-5p to P. aeruginosa, which systematically decreases the abundance of proteins essential for biofilm formation, including PpkA and ClpV1-3, and increases the ability of beta-lactam antibiotics to reduce biofilm formation by targeting the beta-lactamase AmpC. Let-7b-5p is bioinformatically predicted to target not only PpkA, ClpV1, and AmpC in P. aeruginosa but also the corresponding orthologs in Burkholderia cenocepacia, another notorious opportunistic lung pathogen, suggesting that the ability of let-7b-5p to reduce biofilm formation and increase beta-lactam sensitivity is not limited to P. aeruginosa Here, we provide direct evidence for transfer of miRNAs in EVs secreted by eukaryotic cells to a prokaryote, resulting in subsequent phenotypic alterations in the prokaryote as a result of this interdomain communication. Since let-7-family miRNAs are in clinical trials to reduce inflammation and because chronic P. aeruginosa lung infections are associated with a hyperinflammatory state, treatment with let-7b-5p and a beta-lactam antibiotic in nanoparticles or EVs may benefit patients with antibiotic-resistant P. aeruginosa infections.
Asunto(s)
Antibacterianos/farmacología , Biopelículas/crecimiento & desarrollo , Vesículas Extracelulares/metabolismo , MicroARNs/metabolismo , Pseudomonas aeruginosa/fisiología , Antagomirs/farmacología , Aztreonam/farmacología , Biopelículas/efectos de los fármacos , Vesículas Extracelulares/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Humanos , MicroARNs/genética , Plancton/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/aislamiento & purificación , beta-Lactamas/farmacologíaRESUMEN
Human fungal infections may fail to respond to contemporary antifungal therapies in vivo despite in vitro fungal isolate drug susceptibility. Such a discrepancy between in vitro antimicrobial susceptibility and in vivo treatment outcomes is partially explained by microbes adopting a drug-resistant biofilm mode of growth during infection. The filamentous fungal pathogen Aspergillus fumigatus forms biofilms in vivo, and during biofilm growth it has reduced susceptibility to all three classes of contemporary antifungal drugs. Specific features of filamentous fungal biofilms that drive antifungal drug resistance remain largely unknown. In this study, we applied a fluorescence microscopy approach coupled with transcriptional bioreporters to define spatial and temporal oxygen gradients and single-cell metabolic activity within A. fumigatus biofilms. Oxygen gradients inevitably arise during A. fumigatus biofilm maturation and are both critical for, and the result of, A. fumigatus late-stage biofilm architecture. We observe that these self-induced hypoxic microenvironments not only contribute to filamentous fungal biofilm maturation but also drive resistance to antifungal treatment. Decreasing oxygen levels toward the base of A. fumigatus biofilms increases antifungal drug resistance. Our results define a previously unknown mechanistic link between filamentous fungal biofilm physiology and contemporary antifungal drug resistance. Moreover, we demonstrate that drug resistance mediated by dynamic oxygen gradients, found in many bacterial biofilms, also extends to the fungal kingdom. The conservation of hypoxic drug-resistant niches in bacterial and fungal biofilms is thus a promising target for improving antimicrobial therapy efficacy.
Asunto(s)
Antifúngicos/farmacología , Aspergillus fumigatus , Biopelículas/efectos de los fármacos , Microambiente Celular , Farmacorresistencia Fúngica , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/fisiología , Hipoxia de la Célula , Microambiente Celular/efectos de los fármacos , Microambiente Celular/fisiología , Oxígeno/farmacologíaRESUMEN
Collective behavior in spatially structured groups, or biofilms, is the norm among microbes in their natural environments. Though biofilm formation has been studied for decades, tracing the mechanistic and ecological links between individual cell morphologies and the emergent features of cell groups is still in its infancy. Here we use single-cell-resolution confocal microscopy to explore biofilms of the human pathogen Vibrio cholerae in conditions mimicking its marine habitat. Prior reports have noted the occurrence of cellular filamentation in V. cholerae, with variable propensity to filament among both toxigenic and nontoxigenic strains. Using a filamenting strain of V. cholerae O139, we show that cells with this morphotype gain a profound competitive advantage in colonizing and spreading on particles of chitin, the material many marine Vibrio species depend on for growth in seawater. Furthermore, filamentous cells can produce biofilms that are independent of primary secreted components of the V. cholerae biofilm matrix; instead, filamentous biofilm architectural strength appears to derive at least in part from the entangled mesh of cells themselves. The advantage gained by filamentous cells in early chitin colonization and growth is countered in long-term competition experiments with matrix-secreting V. cholerae variants, whose densely packed biofilm structures displace competitors from surfaces. Overall, our results reveal an alternative mode of biofilm architecture that is dependent on filamentous cell morphology and advantageous in environments with rapid chitin particle turnover. This insight provides an environmentally relevant example of how cell morphology can impact bacterial fitness.
Asunto(s)
Citoesqueleto de Actina/ultraestructura , Biopelículas/crecimiento & desarrollo , Cólera/microbiología , Vibrio cholerae/crecimiento & desarrollo , Citoesqueleto de Actina/metabolismo , Quitina/metabolismo , Humanos , Microscopía Confocal , Agua de Mar , Análisis de la Célula Individual , Propiedades de Superficie , Vibrio cholerae/patogenicidad , Vibrio cholerae/ultraestructuraRESUMEN
Pseudomonas aeruginosa strains PA14 and PAO1 are among the two best-characterized model organisms used to study the mechanisms of biofilm formation while also representing two distinct lineages of P. aeruginosa. Previous work has shown that PA14 and PAO1 use different strategies for surface colonization; they also have different extracellular matrix composition and different propensities to disperse from biofilms back into the planktonic phase surrounding them. We expand on this work here by exploring the consequences of these different biofilm production strategies during direct competition. Using differentially labeled strains and microfluidic culture methods, we show that PAO1 can outcompete PA14 in direct competition during early colonization and subsequent biofilm growth, that they can do so in constant and perturbed environments, and that this advantage is specific to biofilm growth and requires production of the Psl polysaccharide. In contrast, P. aeruginosa PA14 is better able to invade preformed biofilms and is more inclined to remain surface-associated under starvation conditions. These data together suggest that while P. aeruginosa PAO1 and PA14 are both able to effectively colonize surfaces, they do so in different ways that are advantageous under different environmental settings. IMPORTANCE Recent studies indicate that P. aeruginosa PAO1 and PA14 use distinct strategies to initiate biofilm formation. We investigated whether their respective colonization and matrix secretion strategies impact their ability to compete under different biofilm-forming regimes. Our work shows that these different strategies do indeed impact how these strains fair in direct competition: PAO1 dominates during colonization of a naive surface, while PA14 is more effective in colonizing a preformed biofilm. These data suggest that even for very similar microbes there can be distinct strategies to successfully colonize and persist on surfaces during the biofilm life cycle.
Asunto(s)
Biopelículas/crecimiento & desarrollo , Pseudomonas aeruginosa/clasificación , Pseudomonas aeruginosa/fisiología , Muerte Celular , Dispositivos Laboratorio en un Chip , Propiedades de SuperficieRESUMEN
Biofilms are microbial collectives that occupy a diverse array of surfaces. It is well known that the function and evolution of biofilms are strongly influenced by the spatial arrangement of different strains and species within them, but how spatiotemporal distributions of different genotypes in biofilm populations originate is still underexplored. Here, we study the origins of biofilm genetic structure by combining model development, numerical simulations, and microfluidic experiments using the human pathogen Vibrio cholerae. Using spatial correlation functions to quantify the differences between emergent cell lineage segregation patterns, we find that strong adhesion often, but not always, maximizes the size of clonal cell clusters on flat surfaces. Counterintuitively, our model predicts that, under some conditions, investing in adhesion can reduce rather than increase clonal group size. Our results emphasize that a complex interaction between fluid flow and cell adhesiveness can underlie emergent patterns of biofilm genetic structure. This structure, in turn, has an outsize influence on how biofilm-dwelling populations function and evolve.
Asunto(s)
Biopelículas/crecimiento & desarrollo , Modelos Biológicos , Adhesión Bacteriana/fisiología , Biología Computacional , Ingeniería Genética , Genotipo , Humanos , Hidrodinámica , Propiedades de Superficie , Vibrio cholerae/genética , Vibrio cholerae/patogenicidad , Vibrio cholerae/fisiologíaRESUMEN
Many bacterial species colonize surfaces and form dense 3D structures, known as biofilms, which are highly tolerant to antibiotics and constitute one of the major forms of bacterial biomass on Earth. Bacterial biofilms display remarkable changes during their development from initial attachment to maturity, yet the cellular architecture that gives rise to collective biofilm morphology during growth is largely unknown. Here, we use high-resolution optical microscopy to image all individual cells in Vibrio cholerae biofilms at different stages of development, including colonies that range in size from 2 to 4,500 cells. From these data, we extracted the precise 3D cellular arrangements, cell shapes, sizes, and global morphological features during biofilm growth on submerged glass substrates under flow. We discovered several critical transitions of the internal and external biofilm architectures that separate the major phases of V. cholerae biofilm growth. Optical imaging of biofilms with single-cell resolution provides a new window into biofilm formation that will prove invaluable to understanding the mechanics underlying biofilm development.
Asunto(s)
Biopelículas/crecimiento & desarrollo , Análisis de la Célula Individual , Vibrio cholerae/fisiología , Vibrio cholerae/crecimiento & desarrolloRESUMEN
Bacteria commonly grow in densely populated surface-bound communities, termed biofilms, where they gain benefits including superior access to nutrients and resistance to environmental insults. The secretion of extracellular polymeric substances (EPS), which bind bacterial collectives together, is ubiquitously associated with biofilm formation. It is generally assumed that EPS secretion is a cooperative phenotype that benefits all neighboring cells, but in fact little is known about the competitive and evolutionary dynamics of EPS production. By studying Vibrio cholerae biofilms in microfluidic devices, we show that EPS-producing cells selectively benefit their clonemates and gain a dramatic advantage in competition against an isogenic EPS-deficient strain. However, this advantage carries an ecological cost beyond the energetic requirement for EPS production: EPS-producing cells are impaired for dispersal to new locations. Our study establishes that a fundamental tradeoff between local competition and dispersal exists among bacteria. Furthermore, this tradeoff can be governed by a single phenotype.
Asunto(s)
Biopelículas , Evolución Biológica , Vibrio cholerae/fisiología , Biopolímeros/metabolismo , Espacio Extracelular/metabolismo , Movimiento , Factores de Tiempo , Vibrio cholerae/citología , Vibrio cholerae/crecimiento & desarrolloRESUMEN
Despite competition for both space and nutrients, bacterial species often coexist within structured, surface-attached communities termed biofilms. While these communities play important, widespread roles in ecosystems and are agents of human infection, understanding how multiple bacterial species assemble to form these communities and what physical processes underpin the composition of multispecies biofilms remains an active area of research. Using a model three-species community composed of Pseudomonas aeruginosa, Escherichia coli, and Enterococcus faecalis, we show with cellular-scale resolution that biased dispersal of the dominant community member, P. aeruginosa, prevents competitive exclusion from occurring, leading to the coexistence of the three species. A P. aeruginosa bqsS deletion mutant no longer undergoes periodic mass dispersal, leading to the local competitive exclusion of E. coli. Introducing periodic, asymmetric dispersal behavior into minimal models, parameterized by only maximal growth rate and local density, supports the intuition that biased dispersal of an otherwise dominant competitor can permit coexistence generally. Colonization experiments show that WT P. aeruginosa is superior at colonizing new areas, in comparison to ΔbqsS P. aeruginosa, but at the cost of decreased local competitive ability against E. coli and E. faecalis. Overall, our experiments document how one species' modulation of a competition-dispersal-colonization trade-off can go on to influence the stability of multispecies coexistence in spatially structured ecosystems.
Asunto(s)
Biopelículas , Enterococcus faecalis , Escherichia coli , Pseudomonas aeruginosa , Biopelículas/crecimiento & desarrollo , Pseudomonas aeruginosa/fisiología , Escherichia coli/fisiología , Enterococcus faecalis/fisiología , Modelos Biológicos , Ecosistema , Interacciones MicrobianasRESUMEN
Bacteria form groups comprised of cells and a secreted polymeric matrix that controls their spatial organization. These groups - termed biofilms - can act as refuges from environmental disturbances and from biotic threats, including phages. Despite the ubiquity of temperate phages and bacterial biofilms, live propagation of temperate phages within biofilms has never been characterized on cellular spatial scales. Here, we leverage several approaches to track temperate phages and distinguish between lytic and lysogenic host infections. We determine that lysogeny within E. coli biofilms initially occurs within a predictable region of cell group packing architecture on the biofilm periphery. Because lysogens are generally found on the periphery of large cell groups, where lytic viral infections also reduce local biofilm cell packing density, lysogens are predisposed to disperse into the passing liquid and are over-represented in biofilms formed from the dispersal pool of the original biofilm-phage system. Comparing our results with those for virulent phages reveals that temperate phages have previously unknown advantages in propagating over long spatial and time scales within and among bacterial biofilms.
RESUMEN
Chronic polymicrobial infections involving Pseudomonas aeruginosa and Staphylococcus aureus are prevalent, difficult to eradicate, and associated with poor health outcomes. Therefore, understanding interactions between these pathogens is important to inform improved treatment development. We previously demonstrated that P. aeruginosa is attracted to S. aureus using type IV pili (TFP)-mediated chemotaxis, but the impact of attraction on S. aureus growth and physiology remained unknown. Using live single-cell confocal imaging to visualize microcolony structure, spatial organization, and survival of S. aureus during coculture, we found that interspecies chemotaxis provides P. aeruginosa a competitive advantage by promoting invasion into and disruption of S. aureus microcolonies. This behavior renders S. aureus susceptible to P. aeruginosa antimicrobials. Conversely, in the absence of TFP motility, P. aeruginosa cells exhibit reduced invasion of S. aureus colonies. Instead, P. aeruginosa builds a cellular barrier adjacent to S. aureus and secretes diffusible, bacteriostatic antimicrobials like 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO) into the S. aureus colonies. Reduced invasion leads to the formation of denser and thicker S. aureus colonies with increased HQNO-mediated lactic acid fermentation, a physiological change that could complicate treatment strategies. Finally, we show that P. aeruginosa motility modifications of spatial structure enhance competition against S. aureus. Overall, these studies expand our understanding of how P. aeruginosa TFP-mediated interspecies chemotaxis facilitates polymicrobial interactions, highlighting the importance of spatial positioning in mixed-species communities. IMPORTANCE: The polymicrobial nature of many chronic infections makes their eradication challenging. Particularly, coisolation of Pseudomonas aeruginosa and Staphylococcus aureus from airways of people with cystic fibrosis and chronic wound infections is common and associated with severe clinical outcomes. The complex interplay between these pathogens is not fully understood, highlighting the need for continued research to improve management of chronic infections. Our study unveils that P. aeruginosa is attracted to S. aureus, invades into neighboring colonies, and secretes anti-staphylococcal factors into the interior of the colony. Upon inhibition of P. aeruginosa motility and thus invasion, S. aureus colony architecture changes dramatically, whereby S. aureus is protected from P. aeruginosa antagonism and responds through physiological alterations that may further hamper treatment. These studies reinforce accumulating evidence that spatial structuring can dictate community resilience and reveal that motility and chemotaxis are critical drivers of interspecies competition.
Asunto(s)
Quimiotaxis , Pseudomonas aeruginosa , Staphylococcus aureus , Pseudomonas aeruginosa/fisiología , Pseudomonas aeruginosa/efectos de los fármacos , Staphylococcus aureus/fisiología , Staphylococcus aureus/efectos de los fármacos , Interacciones Microbianas , Antibiosis , Antibacterianos/farmacología , Humanos , Infecciones Estafilocócicas/microbiología , Técnicas de Cocultivo , Fimbrias Bacterianas/metabolismo , Fimbrias Bacterianas/fisiología , HidroxiquinolinasRESUMEN
Chronic polymicrobial infections involving Pseudomonas aeruginosa and Staphylococcus aureus are prevalent, difficult to eradicate, and associated with poor health outcomes. Therefore, understanding interactions between these pathogens is important to inform improved treatment development. We previously demonstrated that P. aeruginosa is attracted to S. aureus using type IV pili-mediated chemotaxis, but the impact of attraction on S. aureus growth and physiology remained unknown. Using live single-cell confocal imaging to visualize microcolony structure, spatial organization, and survival of S. aureus during coculture, we found that interspecies chemotaxis provides P. aeruginosa a competitive advantage by promoting invasion into and disruption of S. aureus microcolonies. This behavior renders S. aureus susceptible to P. aeruginosa antimicrobials. Conversely, in the absence of type IV pilus motility, P. aeruginosa cells exhibit reduced invasion of S. aureus colonies. Instead, P. aeruginosa builds a cellular barrier adjacent to S. aureus and secretes diffusible, bacteriostatic antimicrobials like 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO) into the S. aureus colonies. P. aeruginosa reduced invasion leads to the formation of denser and thicker S. aureus colonies with significantly increased HQNO-mediated lactic acid fermentation, a physiological change that could complicate the effective treatment of infections. Finally, we show that P. aeruginosa motility modifications of spatial structure enhance competition against S. aureus. Overall, these studies build on our understanding of how P. aeruginosa type IV pili-mediated interspecies chemotaxis mediates polymicrobial interactions, highlighting the importance of spatial positioning in mixed-species communities.
RESUMEN
Predators play a central role in shaping community structure, function, and stability. The degree to which bacteriophage predators (viruses that infect bacteria) evolve to be specialists with a single bacterial prey species versus generalists able to consume multiple types of prey has implications for their effect on microbial communities. The presence and abundance of multiple bacterial prey types can alter selection for phage generalists, but less is known about how interactions between prey shape predator specificity in microbial systems. Using a phenomenological mathematical model of phage and bacterial populations, we find that the dominant phage strategy depends on prey ecology. Given a fitness cost for generalism, generalist predators maintain an advantage when prey species compete, while specialists dominate when prey are obligately engaged in cross-feeding interactions. We test these predictions in a synthetic microbial community with interacting strains of Escherichia coli and Salmonella enterica by competing a generalist T5-like phage able to infect both prey against P22vir, an S. enterica-specific phage. Our experimental data conform to our modeling expectations when prey species are competing or obligately mutualistic, although our results suggest that the in vitro cost of generalism is caused by a combination of biological mechanisms not anticipated in our model. Our work demonstrates that interactions between bacteria play a role in shaping ecological selection on predator specificity in obligately lytic bacteriophages and emphasizes the diversity of ways in which fitness trade-offs can manifest. IMPORTANCE: There is significant natural diversity in how many different types of bacteria a bacteriophage can infect, but the mechanisms driving this diversity are unclear. This study uses a combination of mathematical modeling and an in vitro system consisting of Escherichia coli, Salmonella enterica, a T5-like generalist phage, and the specialist phage P22vir to highlight the connection between bacteriophage specificity and interactions between their potential microbial prey. Mathematical modeling suggests that competing bacteria tend to favor generalist bacteriophage, while bacteria that benefit each other tend to favor specialist bacteriophage. Experimental results support this general finding. The experiments also show that the optimal phage strategy is impacted by phage degradation and bacterial physiology. These findings enhance our understanding of how complex microbial communities shape selection on bacteriophage specificity, which may improve our ability to use phage to manage antibiotic-resistant microbial infections.
Asunto(s)
Bacteriófagos , Bacteriófagos/fisiología , Bacterias , Escherichia coli/fisiología , Fenómenos Fisiológicos Bacterianos , SimbiosisRESUMEN
Bacteria sense population density via the cell-cell communication system called quorum sensing (QS). Some QS-regulated phenotypes ( e.g. , secreted enzymes, chelators), are public goods exploitable by cells that stop producing them. We uncovered a phenomenon in which Vibrio cells optimize expression of the methionine and tetrahydrofolate (THF) synthesis genes via QS. Strains that are genetically 'locked' at high cell density grow slowly in minimal glucose media and suppressor mutants accumulate via inactivating-mutations in metF (methylenetetrahydrofolate reductase) and luxR (the master QS transcriptional regulator). Methionine/THF synthesis genes are repressed at low cell density when glucose is plentiful and are de-repressed by LuxR at high cell density as glucose becomes limiting. In mixed cultures, QS mutant strains initially co-exist with wild-type, but as glucose is depleted, wild-type outcompetes the QS mutants. Thus, QS regulation of methionine/THF synthesis is a fitness benefit that links private and public goods within the QS regulon, preventing accumulation of QS-defective mutants.
RESUMEN
Via strength in numbers, groups of cells can influence their environments in ways that individual cells cannot. Large-scale structural patterns and collective functions underpinning virulence, tumour growth and bacterial biofilm formation are emergent properties of coupled physical and biological processes within cell groups. Owing to the abundance of factors influencing cell group behaviour, deriving general principles about them is a daunting challenge. We argue that combining mechanistic theory with theoretical ecology and evolution provides a key strategy for clarifying how cell groups form, how they change in composition over time, and how they interact with their environments. Here, we review concepts that are critical for dissecting the complexity of cell collectives, including dimensionless parameter groups, individual-based modelling and evolutionary theory. We then use this hybrid modelling approach to provide an example analysis of the evolution of cooperative enzyme secretion in bacterial biofilms.