Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nat Chem Biol ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664588

RESUMEN

Reversible protein phosphorylation is a central signaling mechanism in eukaryotes. Although mass-spectrometry-based phosphoproteomics has become routine, identification of non-canonical phosphorylation has remained a challenge. Here we report a tailored workflow to detect and reliably assign protein pyrophosphorylation in two human cell lines, providing, to our knowledge, the first direct evidence of endogenous protein pyrophosphorylation. We manually validated 148 pyrophosphosites across 71 human proteins, the most heavily pyrophosphorylated of which were the nucleolar proteins NOLC1 and TCOF1. Detection was consistent with previous biochemical evidence relating the installation of the modification to inositol pyrophosphates (PP-InsPs). When the biosynthesis of PP-InsPs was perturbed, proteins expressed in this background exhibited no signs of pyrophosphorylation. Disruption of PP-InsP biosynthesis also significantly reduced rDNA transcription, potentially by lowering pyrophosphorylation on regulatory proteins NOLC1, TCOF1 and UBF1. Overall, protein pyrophosphorylation emerges as an archetype of non-canonical phosphorylation and should be considered in future phosphoproteomic analyses.

2.
Anal Chem ; 94(13): 5265-5272, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35290030

RESUMEN

Cross-linking mass spectrometry (XL-MS) is a powerful method for the investigation of protein-protein interactions (PPI) from highly complex samples. XL-MS combined with tandem mass tag (TMT) labeling holds the promise of large-scale PPI quantification. However, a robust and efficient TMT-based XL-MS quantification method has not yet been established due to the lack of a benchmarking dataset and thorough evaluation of various MS parameters. To tackle these limitations, we generate a two-interactome dataset by spiking in TMT-labeled cross-linked Escherichia coli lysate into TMT-labeled cross-linked HEK293T lysate using a defined mixing scheme. Using this benchmarking dataset, we assess the efficacy of cross-link identification and accuracy of cross-link quantification using different MS acquisition strategies. For identification, we compare various MS2- and MS3-based XL-MS methods, and optimize stepped higher energy collisional dissociation (HCD) energies for TMT-labeled cross-links. We observed a need for notably higher fragmentation energies compared to unlabeled cross-links. For quantification, we assess the quantification accuracy and dispersion of MS2-, MS3-, and synchronous precursor selection-MS3-based methods. We show that a stepped HCD-MS2 method with stepped collision energies 36-42-48 provides a vast number of quantifiable cross-links with high quantification accuracy. This widely applicable method paves the way for multiplexed quantitative PPI characterization from complex biological systems.


Asunto(s)
Escherichia coli , Células HEK293 , Humanos , Espectrometría de Masas/métodos
3.
PLoS Comput Biol ; 17(11): e1009515, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34735429

RESUMEN

Very high risk neuroblastoma is characterised by increased MAPK signalling, and targeting MAPK signalling is a promising therapeutic strategy. We used a deeply characterised panel of neuroblastoma cell lines and found that the sensitivity to MEK inhibitors varied drastically between these cell lines. By generating quantitative perturbation data and mathematical modelling, we determined potential resistance mechanisms. We found that negative feedbacks within MAPK signalling and via the IGF receptor mediate re-activation of MAPK signalling upon treatment in resistant cell lines. By using cell-line specific models, we predict that combinations of MEK inhibitors with RAF or IGFR inhibitors can overcome resistance, and tested these predictions experimentally. In addition, phospho-proteomic profiling confirmed the cell-specific feedback effects and synergy of MEK and IGFR targeted treatment. Our study shows that a quantitative understanding of signalling and feedback mechanisms facilitated by models can help to develop and optimise therapeutic strategies. Our findings should be considered for the planning of future clinical trials introducing MEKi in the treatment of neuroblastoma.


Asunto(s)
Retroalimentación , Modelos Biológicos , Neuroblastoma/metabolismo , Transducción de Señal , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Sistema de Señalización de MAP Quinasas , Neuroblastoma/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Receptor IGF Tipo 1/metabolismo , Receptor IGF Tipo 2/metabolismo
4.
Anal Chem ; 92(15): 10495-10503, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32643919

RESUMEN

In cross-linking mass spectrometry (XL-MS), the depth and sensitivity of cross-link detection is often limited by the low abundance of cross-links compared to non-cross-linked peptides in the digestion mixture. To improve the identification efficiency of cross-links, here, we present a gas-phase separation strategy using high-field asymmetric waveform ion mobility spectrometry (FAIMS) coupled to the Orbitrap Tribrid mass spectrometers. By enabling an additional peptide separation step in the gas phase using the FAIMS device, we increase the number of cross-link identifications by 22% for a medium complex sample and 59% for strong cation exchange-fractionated HEK293T cell lysate in XL-MS experiments using disuccinimidyl sulfoxide (DSSO) cross-linker. When disuccinimidyl suberate (DSS) cross-linker is in use, we are able to boost cross-link identification by 89% for the medium and 100% for the high complex sample compared to the analyses without FAIMS. Furthermore, we show that, for medium complex samples, FAIMS enables the collection of single-shot XL-MS data with a comparable depth to the corresponding sample fractionated by chromatography-based approaches. Altogether, we demonstrate FAIMS is highly beneficial for XL-MS studies by expanding the proteome coverage of cross-links while improving the efficiency and confidence of cross-link identification.


Asunto(s)
Espectrometría de Movilidad Iónica/métodos , Péptidos/química , Fraccionamiento Químico , Cromatografía/métodos , Células HEK293 , Humanos
5.
Proc Natl Acad Sci U S A ; 109(46): 18833-8, 2012 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-23112166

RESUMEN

The eukaryotic chaperonin containing t-complex polypeptide 1 (CCT/TRiC) is an ATP-fueled machine that assists protein folding. It consists of two back-to-back stacked rings formed by eight different subunits that are arranged in a fixed permutation. The different subunits of CCT are believed to possess unique substrate binding specificities that are still mostly unknown. Here, we used high-throughput microscopy analysis of yeast cells to determine changes in protein levels and localization as a result of a Glu to Asp mutation in the ATP binding site of subunits 3 (CCT3) or 6 (CCT6). The mutation in subunit CCT3 was found to induce cytoplasmic foci termed P-bodies where mRNAs, which are not translated, accumulate and can be degraded. Analysis of the changes in protein levels and structural modeling indicate that P-body formation in cells with the mutation in CCT3 is linked to the specific interaction of this subunit with Gln/Asn-rich segments that are enriched in many P-body proteins. An in vitro gel-shift analysis was used to show that the mutation in subunit CCT3 interferes with the ability of CCT to bind a Gln/Asn-rich protein aggregate. More generally, the strategy used in this work can be used to unravel the substrate specificities of other chaperone systems.


Asunto(s)
Chaperonina con TCP-1/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sustitución de Aminoácidos , Chaperonina con TCP-1/genética , Gránulos Citoplasmáticos/genética , Gránulos Citoplasmáticos/metabolismo , Mutación Missense , Estabilidad Proteica , Transporte de Proteínas/fisiología , Estabilidad del ARN/fisiología , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
6.
Science ; 378(6625): eabq5209, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36520888

RESUMEN

Cells respond to fluctuating nutrient supply by adaptive changes in organelle dynamics and in metabolism. How such changes are orchestrated on a cell-wide scale is unknown. We show that endosomal signaling lipid turnover by MTM1, a phosphatidylinositol 3-phosphate [PI(3)P] 3-phosphatase mutated in X-linked centronuclear myopathy in humans, controls mitochondrial morphology and function by reshaping the endoplasmic reticulum (ER). Starvation-induced endosomal recruitment of MTM1 impairs PI(3)P-dependent contact formation between tubular ER membranes and early endosomes, resulting in the conversion of ER tubules into sheets, the inhibition of mitochondrial fission, and sustained oxidative metabolism. Our results unravel an important role for early endosomal lipid signaling in controlling ER shape and, thereby, mitochondrial form and function to enable cells to adapt to fluctuating nutrient environments.


Asunto(s)
Retículo Endoplásmico , Endosomas , Mitocondrias , Dinámicas Mitocondriales , Fosfatos de Fosfatidilinositol , Fosfatidilinositoles , Proteínas Tirosina Fosfatasas no Receptoras , Humanos , Retículo Endoplásmico/metabolismo , Endosomas/metabolismo , Mitocondrias/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositoles/metabolismo , Transducción de Señal , Proteínas Tirosina Fosfatasas no Receptoras/genética , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo
7.
Nat Cancer ; 3(4): 471-485, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35484422

RESUMEN

Aberrant expression of MYC transcription factor family members predicts poor clinical outcome in many human cancers. Oncogenic MYC profoundly alters metabolism and mediates an antioxidant response to maintain redox balance. Here we show that MYCN induces massive lipid peroxidation on depletion of cysteine, the rate-limiting amino acid for glutathione (GSH) biosynthesis, and sensitizes cells to ferroptosis, an oxidative, non-apoptotic and iron-dependent type of cell death. The high cysteine demand of MYCN-amplified childhood neuroblastoma is met by uptake and transsulfuration. When uptake is limited, cysteine usage for protein synthesis is maintained at the expense of GSH triggering ferroptosis and potentially contributing to spontaneous tumor regression in low-risk neuroblastomas. Pharmacological inhibition of both cystine uptake and transsulfuration combined with GPX4 inactivation resulted in tumor remission in an orthotopic MYCN-amplified neuroblastoma model. These findings provide a proof of concept of combining multiple ferroptosis targets as a promising therapeutic strategy for aggressive MYCN-amplified tumors.


Asunto(s)
Ferroptosis , Neuroblastoma , Muerte Celular , Niño , Cisteína/uso terapéutico , Ferroptosis/genética , Glutatión/uso terapéutico , Humanos , Proteína Proto-Oncogénica N-Myc/genética , Neuroblastoma/genética
8.
STAR Protoc ; 2(1): 100277, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33490990

RESUMEN

This protocol describes an affinity enrichment approach from mammalian cell extracts to identify protein binding partners of inositol hexakisphosphate (InsP6) and 5-diphosphoinositol pentakisphosphate (5PP-InsP5), two important eukaryotic metabolites. The interactomes are annotated using mass spectrometry-based proteomics, and comparison against a control resin can uncover hundreds of protein targets. Quantitative analysis of InsP6- versus 5PP-InsP5-binding proteins highlights specific protein-ligand interactions. The approach is applicable to different cells and organisms and will contribute to a mechanistic understanding of inositol poly- and pyrophosphate signaling. For complete details on the use and execution of this protocol, please refer to Furkert et al. (2020).


Asunto(s)
Fosfatos de Inositol/metabolismo , Espectrometría de Masas , Ácido Fítico/metabolismo , Sistemas de Mensajero Secundario , Células HCT116 , Células HEK293 , Humanos
9.
Nat Commun ; 12(1): 1269, 2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33627664

RESUMEN

Telomere maintenance by telomerase activation or alternative lengthening of telomeres (ALT) is a major determinant of poor outcome in neuroblastoma. Here, we screen for ALT in primary and relapsed neuroblastomas (n = 760) and characterize its features using multi-omics profiling. ALT-positive tumors are molecularly distinct from other neuroblastoma subtypes and enriched in a population-based clinical sequencing study cohort for relapsed cases. They display reduced ATRX/DAXX complex abundance, due to either ATRX mutations (55%) or low protein expression. The heterochromatic histone mark H3K9me3 recognized by ATRX is enriched at the telomeres of ALT-positive tumors. Notably, we find a high frequency of telomeric repeat loci with a neuroblastoma ALT-specific hotspot on chr1q42.2 and loss of the adjacent chromosomal segment forming a neo-telomere. ALT-positive neuroblastomas proliferate slowly, which is reflected by a protracted clinical course of disease. Nevertheless, children with an ALT-positive neuroblastoma have dismal outcome.


Asunto(s)
Secuenciación Completa del Genoma/métodos , Western Blotting , Exones/genética , Citometría de Flujo , Humanos , Proteoma/metabolismo , Estudios Retrospectivos , Análisis de Secuencia de ARN/métodos , Telómero/genética , Telómero/metabolismo , Homeostasis del Telómero/genética , Proteína Nuclear Ligada al Cromosoma X/genética
10.
Cell Chem Biol ; 27(8): 1097-1108.e4, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32783964

RESUMEN

The inositol pyrophosphates (PP-InsPs) are a ubiquitous group of highly phosphorylated eukaryotic messengers. They have been linked to a panoply of central cellular processes, but a detailed understanding of the discrete signaling events is lacking in most cases. To create a more mechanistic picture of PP-InsP signaling, we sought to annotate the mammalian interactome of the most abundant inositol pyrophosphate 5PP-InsP5. To do so, triplexed affinity reagents were developed, in which a metabolically stable PP-InsP analog was immobilized in three different ways. Application of these triplexed reagents to mammalian lysates identified between 300 and 400 putative interacting proteins. These interactomes revealed connections between 5PP-InsP5 and central cellular regulators, such as lipid phosphatases, protein kinases, and GTPases, and identified protein domains commonly targeted by 5PP-InsP5. Both the triplexed affinity reagents, and the proteomic datasets, constitute powerful resources for the community, to launch future investigations into the multiple signaling modalities of inositol pyrophosphates.


Asunto(s)
Marcadores de Afinidad/química , GTP Fosfohidrolasas/metabolismo , Fosfatos de Inositol/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas Quinasas/metabolismo , Cromatografía Líquida de Alta Presión , GTP Fosfohidrolasas/química , Células HCT116 , Células HEK293 , Humanos , Fosfatos de Inositol/química , Monoéster Fosfórico Hidrolasas/química , Unión Proteica , Dominios Proteicos , Proteínas Quinasas/química , Proteoma/análisis , Transducción de Señal , Espectrometría de Masas en Tándem
11.
J Mol Biol ; 428(22): 4520-4527, 2016 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-27686496

RESUMEN

The chaperonin-containing t-complex polypeptide 1 (CCT, also known as TRiC) assists protein folding in an ATP-dependent manner. CCT/TRiC was mixed rapidly with different concentrations of ATP, and the amount of phosphate formed upon ATP hydrolysis was measured as a function of time using the coumarin-labeled phosphate-binding protein method. Two burst phases were observed, followed by a lag phase and then a linear steady-state phase of ATP hydrolysis. The phases were assigned by (i) determining their dependence on ATP and K+ concentrations and (ii) by measuring their sensitivity to the mutation Gly345→Asp in subunit CCT4, which decreases cooperativity in ATP binding. The values of the observed rate constants corresponding to the burst phases are found to decrease with increasing ATP and K+ concentrations, thereby indicating that the apo state of CCT/TRiC is in equilibrium between several conformations and that "conformational selection" by ATP takes place before hydrolysis. The amplitude of the lag phase, which follows, decreases with increasing ATP concentrations, thus indicating that it reflects a transition between states with low affinity for ATP and a state with high affinity for ATP that is predominant under steady-state conditions. A kinetic model based on the data is suggested, in which CCT/TRiC is in equilibrium between a relatively large number of states that are distinguished kinetically, in agreement with its proposed sequential allosteric mechanism.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Chaperonina con TCP-1/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Chaperonina con TCP-1/genética , Hidrólisis , Cinética , Potasio/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
12.
J Mol Biol ; 401(3): 532-43, 2010 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-20600117

RESUMEN

The eukaryotic cytoplasmic chaperonin-containing TCP-1 (CCT) is a complex formed by two back-to-back stacked hetero-octameric rings that assists the folding of actins, tubulins, and other proteins in an ATP-dependent manner. Here, we tested the significance of the hetero-oligomeric nature of CCT in its function by introducing, in each of the eight subunits in turn, an identical mutation at a position that is conserved in all the subunits and is involved in ATP hydrolysis, in order to establish the extent of 'individuality' of the various subunits. Our results show that these identical mutations lead to dramatically different phenotypes. For example, Saccharomyces cerevisiae yeast cells with the mutation in subunit CCT2 display heat sensitivity and cold sensitivity for growth, have an excess of actin patches, and are the only strain here generated that is pseudo-diploid. By contrast, cells with the mutation in subunit CCT7 are the only ones to accumulate juxtanuclear protein aggregates that may reflect an impaired stress response in this strain. System-level analysis of the strains using RNA microarrays reveals connections between CCT and several cellular networks, including ribosome biogenesis and TOR2, that help to explain the phenotypic variability observed.


Asunto(s)
Chaperonina con TCP-1/genética , Mutación , Actinas , Adaptación Fisiológica/genética , Proteínas de Ciclo Celular , Chaperonina con TCP-1/fisiología , Perfilación de la Expresión Génica , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Fosfatidilinositol 3-Quinasas , Subunidades de Proteína/genética , Ribosomas , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA