RESUMEN
BACKGROUND: Mucinous adenocarcinoma of the appendix (MACA) follows a complex disease course with variable survival. Large-scale predictive modeling may determine subtle yet important prognostic factors otherwise unseen in smaller cohort analyses. METHODS: Patients with MACA were identified from the Surveillance, Epidemiology, and End Results (SEER) Research Plus database (2005-2019). Primary, secondary, and tertiary outcomes were disease-specific survival (DSS), overall survival (OS), and average annual percent change (AAPC) in incidence. RESULTS: Among 4,258 included patients, MACA was most frequently diagnosed at 50 to 69 years (52.0%), with female preponderance (55.9%). MACA incidence AAPC was 3.8 (95% confidence interval [CI] 1.9-5.9). For patients with exclusive, first-diagnosis MACA included in survival analysis (3,222 patients), median DSS and OS were 118 and 88 months, respectively. In DSS-based multivariable analysis, worse prognosis was associated with non-Hispanic Black background (HR 1.36, 95% CI 1.02-1.82; p = 0.036), high grade (grade 3 HR 3.10, 95% CI 2.44-3.92; p < 0.001), lymphatic spread (HR 2.73, 95% CI 2.26-3.30; p < 0.001), and distant metastasis (HR 5.84, 95% CI 3.86-8.83; p < 0.001). In subcohort analysis of patients with rationale for cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (CRS-HIPEC, 2,387 patients), CRS-HIPEC was associated with survival benefit compared with surgery alone but only for moderate-grade tumors (median DSS/OS 138/138 vs. 116/87 months; p < 0.001). CONCLUSIONS: Mucinous adenocarcinoma of the appendix incidence is increasing in the United States. Survival rates are affected by both demographics and classical risk factors, and CRS-HIPEC-associated survival benefit predominantly occurs in moderate-grade tumors. Further exploration of biologic and clinicopathologic features may enhance risk stratification for this disease.
Asunto(s)
Adenocarcinoma Mucinoso , Neoplasias del Apéndice , Programa de VERF , Humanos , Adenocarcinoma Mucinoso/terapia , Adenocarcinoma Mucinoso/mortalidad , Adenocarcinoma Mucinoso/patología , Neoplasias del Apéndice/mortalidad , Neoplasias del Apéndice/patología , Neoplasias del Apéndice/terapia , Femenino , Masculino , Persona de Mediana Edad , Anciano , Tasa de Supervivencia , Pronóstico , Estudios de Seguimiento , Adulto , Procedimientos Quirúrgicos de Citorreducción/mortalidad , Quimioterapia Intraperitoneal Hipertérmica , IncidenciaRESUMEN
The evolutionarily conserved aryl hydrocarbon receptor (AhR) has been studied for its role in environmental chemical-induced toxicity. However, recent studies have demonstrated that the AhR may regulate the hematopoietic and immune systems during development in a cell-specific manner. These results, together with the absence of an in vitro model system enabling production of large numbers of primary human hematopoietic progenitor cells (HPs) capable of differentiating into megakaryocyte- and erythroid-lineage cells, motivated us to determine if AhR modulation could facilitate both progenitor cell expansion and megakaryocyte and erythroid cell differentiation. Using a novel, pluripotent stem cell-based, chemically-defined, serum and feeder cell-free culture system, we show that the AhR is expressed in HPs and that, remarkably, AhR activation drives an unprecedented expansion of HPs, megakaryocyte-lineage cells, and erythroid-lineage cells. Further AhR modulation within rapidly expanding progenitor cell populations directs cell fate, with chronic AhR agonism permissive to erythroid differentiation and acute antagonism favoring megakaryocyte specification. These results highlight the development of a new Good Manufacturing Practice-compliant platform for generating virtually unlimited numbers of human HPs with which to scrutinize red blood cell and platelet development, including the assessment of the role of the AhR critical cell fate decisions during hematopoiesis.
Asunto(s)
Diferenciación Celular , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Animales , Apoptosis/efectos de los fármacos , Hidrocarburo de Aril Hidroxilasas/genética , Hidrocarburo de Aril Hidroxilasas/metabolismo , Carbazoles/farmacología , Diferenciación Celular/efectos de los fármacos , Linaje de la Célula/efectos de los fármacos , Linaje de la Célula/genética , Proliferación Celular/efectos de los fármacos , Citocromo P-450 CYP1B1 , Células Eritroides/citología , Células Eritroides/efectos de los fármacos , Células Eritroides/metabolismo , Células Nutrientes/citología , Células Nutrientes/efectos de los fármacos , Células Nutrientes/metabolismo , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Genoma Humano/genética , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/enzimología , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Megacariocitos/citología , Megacariocitos/efectos de los fármacos , Megacariocitos/metabolismo , Ratones , Receptores de Hidrocarburo de Aril/agonistasRESUMEN
Adoptive cell transfer (ACT) with neoantigen-reactive T lymphocytes can mediate cancer regression. Here we isolated unique, personalized, neoantigen-reactive T cell receptors (TCRs) from tumor-infiltrating lymphocytes of patients with metastatic gastrointestinal cancers and incorporated the TCR α and ß chains into gamma retroviral vectors. We transduced autologous peripheral blood lymphocytes and adoptively transferred these cells into patients after lymphodepleting chemotherapy. In a phase 2 single-arm study, we treated seven patients with metastatic, mismatch repair-proficient colorectal cancers who had progressive disease following multiple previous therapies. The primary end point of the study was the objective response rate as measured using RECIST 1.1, and the secondary end points were safety and tolerability. There was no prespecified interim analysis defined in this study. Three patients had objective clinical responses by RECIST criteria including regressions of metastases to the liver, lungs and lymph nodes lasting 4 to 7 months. All patients received T cell populations containing ≥50% TCR-transduced cells, and all T cell populations were polyfunctional in that they secreted IFNγ, GM-CSF, IL-2 and granzyme B specifically in response to mutant peptides compared with wild-type counterparts. TCR-transduced cells were detected in the peripheral blood of five patients, including the three responders, at levels ≥10% of CD3+ cells 1 month post-ACT. In one patient who responded to therapy, ~20% of CD3+ peripheral blood lymphocytes expressed transduced TCRs more than 2 years after treatment. This study provides early results suggesting that ACT with T cells genetically modified to express personalized neoantigen-reactive TCRs can be tolerated and can mediate tumor regression in patients with metastatic colorectal cancers. ClinicalTrials.gov registration: NCT03412877 .
Asunto(s)
Neoplasias Colorrectales , Receptores de Antígenos de Linfocitos T , Humanos , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/terapia , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/genética , Femenino , Masculino , Persona de Mediana Edad , Anciano , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/genética , Antígenos de Neoplasias/inmunología , Metástasis de la Neoplasia , Inmunoterapia Adoptiva/métodos , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/trasplante , Linfocitos T/inmunología , Linfocitos T/trasplante , Traslado Adoptivo , AdultoRESUMEN
BACKGROUND: Metastatic cholangiocarcinoma (CC), a form of gastrointestinal cancer that originates from the bile ducts, cannot be cured by currently available therapies, and is associated with dismal prognosis. In a previous case report, adoptive transfer of autologous tumor infiltrating lymphocytes (TILs), the majority of which recognized a tumor-specific point mutation, led to a profound and durable cancer regression in a patient with metastatic CC. Thus, more effective treatment for patients with this disease may be developed by using TILs that target cancer-specific mutations, but also other genetic aberrations such as gene fusions. In this context, fusions that involve fibroblast growth factor receptor 2 (FGFR2) and function as oncogenes in a subset of patients with intrahepatic CC (ICC) represent particularly attractive targets for adoptive cell therapy. However, no study to date has explored whether FGFR2 fusions can be recognized by patients' T cells. METHOD: To address whether FGFR2 fusions can be recognized by patients' T cells, we tested TILs from four patients with FGFR2 fusion-positive ICC for recognition of peptides and minigenes that represented the breakpoint regions of these fusions, which were unique to each of the four patients. RESULTS: We found that CD4+ TILs from one patient specifically recognized the breakpoint region of a unique FGFR2-TDRD1 (tudor domain-containing 1) fusion, and we isolated a T-cell receptor responsible for its recognition. CONCLUSIONS: This finding suggests that FGFR2 fusion-reactive TILs can be isolated from some patients with metastatic ICC, and thus provides a rationale for future exploration of T cell-based therapy targeting FGFR2 fusions in patients with cancer. Furthermore, it augments the rationale for extending such efforts to other types of solid tumors hallmarked by oncogenic gene fusions.
Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Humanos , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/patología , Conductos Biliares Intrahepáticos/metabolismo , Conductos Biliares Intrahepáticos/patología , Colangiocarcinoma/patología , Linfocitos Infiltrantes de Tumor/metabolismo , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismoRESUMEN
Circulating T cells from peripheral blood (PBL) can provide a rich and noninvasive source for antitumor T cells. By single-cell transcriptomic profiling of 36 neoantigen-specific T cell clones from 6 metastatic cancer patients, we report the transcriptional and cell surface signatures of antitumor PBL-derived CD8+ T cells (NeoTCRPBL). Comparison of tumor-infiltrating lymphocyte (TIL)- and PBL-neoantigen-specific T cells revealed that NeoTCRPBL T cells are low in frequency and display less-dysfunctional memory phenotypes relative to their TIL counterparts. Analysis of 100 antitumor TCR clonotypes indicates that most NeoTCRPBL populations target the same neoantigens as TILs. However, NeoTCRPBL TCR repertoire is only partially shared with TIL. Prediction and testing of NeoTCRPBL signature-derived TCRs from PBL of 6 prospective patients demonstrate high enrichment of clonotypes targeting tumor mutations, a viral oncogene, and patient-derived tumor. Thus, the NeoTCRPBL signature provides an alternative source for identifying antitumor T cells from PBL of cancer patients, enabling immune monitoring and immunotherapies.
Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Humanos , Estudios Prospectivos , Antígenos de Neoplasias , Neoplasias/genética , Neoplasias/terapia , Neoplasias/metabolismo , Linfocitos Infiltrantes de Tumor , Receptores de Antígenos de Linfocitos TRESUMEN
PURPOSE: Immune checkpoint blockade (ICB) agents and adoptive cell transfer (ACT) of tumor-infiltrating lymphocytes (TIL) are prominent immunotherapies used for the treatment of advanced melanoma. Both therapies rely on activation of lymphocytes that target shared tumor antigens or neoantigens. Recent analysis of patients with metastatic melanoma who underwent treatment with TIL ACT at the NCI demonstrated decreased responses in patients previously treated with anti-PD-1 agents. We aimed to find a basis for the difference in response rates between anti-PD-1 naïve and experienced patients. PATIENTS AND METHODS: We examined the tumor mutational burden (TMB) of resected tumors and the repertoire of neoantigens targeted by autologous TIL in a cohort of 112 anti-PD-1 naïve and 69 anti-PD-1 experienced patients. RESULTS: Anti-PD-1 naïve patients were found to possess tumors with higher TMBs (352.0 vs. 213.5, P = 0.005) and received TIL reactive with more neoantigens (2 vs. 1, P = 0.003) compared with anti-PD-1 experienced patients. Among patients treated with TIL ACT, TMB and number of neoantigens identified were higher in ACT responders than ACT nonresponders in both anti-PD-1 naïve and experienced patients. Among patients with comparable TMBs and predicted neoantigen loads, treatment products administered to anti-PD-1 naïve patients were more likely to contain T cells reactive against neoantigens than treatment products for anti-PD-1 experienced patients (2.5 vs. 1, P = 0.02). CONCLUSIONS: These results indicate that decreases in TMB and targeted neoantigens partially account for the difference in response to ACT and that additional factors likely influence responses in these patients. See related commentary by Blass and Ott, p. 2980.
Asunto(s)
Melanoma , Neoplasias Primarias Secundarias , Antígenos de Neoplasias/inmunología , Humanos , Inmunoterapia Adoptiva , Linfocitos Infiltrantes de Tumor/inmunología , Melanoma/patologíaRESUMEN
The accurate identification of antitumor T cell receptors (TCRs) represents a major challenge for the engineering of cell-based cancer immunotherapies. By mapping 55 neoantigen-specific TCR clonotypes (NeoTCRs) from 10 metastatic human tumors to their single-cell transcriptomes, we identified signatures of CD8+ and CD4+ neoantigen-reactive tumor-infiltrating lymphocytes (TILs). Neoantigen-specific TILs exhibited tumor-specific expansion with dysfunctional phenotypes, distinct from blood-emigrant bystanders and regulatory TILs. Prospective prediction and testing of 73 NeoTCR signature-derived clonotypes demonstrated that half of the tested TCRs recognized tumor antigens or autologous tumors. NeoTCR signatures identified TCRs that target driver neoantigens and nonmutated viral or tumor-associated antigens, suggesting a common metastatic TIL exhaustion program. NeoTCR signatures delineate the landscape of TILs across metastatic tumors, enabling successful TCR prediction based purely on TIL transcriptomic states for use in cancer immunotherapy.
Asunto(s)
Antígenos de Neoplasias/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Metástasis de la Neoplasia , Neoplasias/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T/inmunología , Transcriptoma , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Redes Reguladoras de Genes , Humanos , Linfocitos Infiltrantes de Tumor/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , RNA-Seq , Análisis de la Célula IndividualRESUMEN
Familial transthyretin amyloidosis (ATTR) is an autosomal-dominant protein-folding disorder caused by over 100 distinct mutations in the transthyretin (TTR) gene. In ATTR, protein secreted from the liver aggregates and forms fibrils in target organs, chiefly the heart and peripheral nervous system, highlighting the need for a model capable of recapitulating the multisystem complexity of this clinically variable disease. Here, we describe the directed differentiation of ATTR patient-specific iPSCs into hepatocytes that produce mutant TTR, and the cardiomyocytes and neurons normally targeted in the disease. We demonstrate that iPSC-derived neuronal and cardiac cells display oxidative stress and an increased level of cell death when exposed to mutant TTR produced by the patient-matched iPSC-derived hepatocytes, recapitulating essential aspects of the disease in vitro. Furthermore, small molecule stabilizers of TTR show efficacy in this model, validating this iPSC-based, patient-specific in vitro system as a platform for testing therapeutic strategies.