Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 54(2): 247-258.e7, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33444549

RESUMEN

The vaccine strain against smallpox, vaccinia virus (VACV), is highly immunogenic yet causes relatively benign disease. These attributes are believed to be caused by gene loss in VACV. Using a targeted small interfering RNA (siRNA) screen, we identified a viral inhibitor found in cowpox virus (CPXV) and other orthopoxviruses that bound to the host SKP1-Cullin1-F-box (SCF) machinery and the essential necroptosis kinase receptor interacting protein kinase 3 (RIPK3). This "viral inducer of RIPK3 degradation" (vIRD) triggered ubiquitination and proteasome-mediated degradation of RIPK3 and inhibited necroptosis. In contrast to orthopoxviruses, the distantly related leporipoxvirus myxoma virus (MYXV), which infects RIPK3-deficient hosts, lacks a functional vIRD. Introduction of vIRD into VACV, which encodes a truncated and defective vIRD, enhanced viral replication in mice. Deletion of vIRD reduced CPXV-induced inflammation, viral replication, and mortality, which were reversed in RIPK3- and MLKL-deficient mice. Hence, vIRD-RIPK3 drives pathogen-host evolution and regulates virus-induced inflammation and pathogenesis.


Asunto(s)
Virus de la Viruela Vacuna/fisiología , Viruela Vacuna/inmunología , ARN Interferente Pequeño/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Virus Vaccinia/metabolismo , Proteínas Virales/metabolismo , Animales , Evolución Molecular , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Inflamación , Ratones , Ratones Noqueados , Necroptosis/genética , Orthopoxvirus , Filogenia , Proteínas Quinasas/genética , Proteolisis , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Análisis de Secuencia de ARN , Proteínas Virales/genética , Replicación Viral
2.
Immunity ; 47(4): 635-647.e6, 2017 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-29045898

RESUMEN

In the Drosophila immune response, bacterial derived diaminopimelic acid-type peptidoglycan binds the receptors PGRP-LC and PGRP-LE, which through interaction with the adaptor protein Imd leads to activation of the NF-κB homolog Relish and robust antimicrobial peptide gene expression. PGRP-LC, PGRP-LE, and Imd each contain a motif with some resemblance to the RIP Homotypic Interaction Motif (RHIM), a domain found in mammalian RIPK proteins forming functional amyloids during necroptosis. Here we found that despite sequence divergence, these Drosophila cryptic RHIMs formed amyloid fibrils in vitro and in cells. Amyloid formation was required for signaling downstream of Imd, and in contrast to the mammalian RHIMs, was not associated with cell death. Furthermore, amyloid formation constituted a regulatable step and could be inhibited by Pirk, an endogenous feedback regulator of this pathway. Thus, diverse sequence motifs are capable of forming amyloidal signaling platforms, and the formation of these platforms may present a regulatory point in multiple biological processes.


Asunto(s)
Amiloide/inmunología , Proteínas Portadoras/inmunología , Proteínas de Drosophila/inmunología , FN-kappa B/inmunología , Receptores de Superficie Celular/inmunología , Transducción de Señal/inmunología , Secuencias de Aminoácidos/genética , Secuencias de Aminoácidos/inmunología , Secuencia de Aminoácidos , Amiloide/metabolismo , Animales , Sitios de Unión/genética , Sitios de Unión/inmunología , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Línea Celular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Drosophila melanogaster/inmunología , Femenino , Expresión Génica/inmunología , Masculino , Microscopía Confocal , Modelos Inmunológicos , Mutación , FN-kappa B/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/inmunología , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido
3.
Can J Microbiol ; 60(7): 425-9, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24893133

RESUMEN

Influenza virus remains one of the most important disease-causing viruses owing to its high adaptability and even higher contagious nature. Thus, it poses a constant threat of pandemic, engulfing a large population within the smallest possible time interval. A similar threat was anticipated with the identification of the novel H7N9 virus in China on 30 March 2013. Detection of transmission of the virus between humans has caused a stir with the identification of family clusters along with sporadic infections all across China. In this review we analyze the potential of the novel H7N9 virus as a probable cause of a pandemic and the possible consequences thereof.


Asunto(s)
Brotes de Enfermedades , Subtipo H7N9 del Virus de la Influenza A , Gripe Humana/epidemiología , Animales , Aves , China/epidemiología , Humanos , Subtipo H7N9 del Virus de la Influenza A/metabolismo , Subtipo H7N9 del Virus de la Influenza A/patogenicidad , Subtipo H7N9 del Virus de la Influenza A/fisiología , Gripe Aviar/epidemiología , Gripe Aviar/transmisión , Gripe Aviar/virología , Gripe Humana/transmisión , Gripe Humana/virología , Receptores Virales/metabolismo , Especificidad de la Especie , Virulencia , Replicación Viral
4.
Cell Death Differ ; 26(1): 4-13, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30050058

RESUMEN

The primary function of the immune system is to protect the host from invading pathogens. In response, microbial pathogens have developed various strategies to evade detection and destruction by the immune system. This tug-of-war between the host and the pathogen is a powerful force that shapes organismal evolution. Regulated cell death (RCD) is a host response that limits the reservoir for intracellular pathogens such as viruses. Since pathogen-specific T cell and B cell responses typically take several days and is therefore slow-developing, RCD of infected cells during the first few days of the infection is critical for organismal survival. This innate immune response not only restricts viral replication, but also serves to promote anti-viral inflammation through cell death-associated release of damage-associated molecular patterns (DAMPs). In recent years, necroptosis has been recognized as an important response against many viruses. The central adaptor for necroptosis, RIPK3, also exerts anti-viral effects through cell death-independent activities such as promoting cytokine gene expression. Here, we will discuss recent advances on how viruses counteract this host defense mechanism and the effect of necroptosis on the anti-viral inflammatory reaction.


Asunto(s)
Interacciones Huésped-Patógeno/inmunología , Inflamación/virología , Necroptosis/inmunología , Virosis/inmunología , Citocinas/fisiología , Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/metabolismo , Humanos , Inmunidad Innata , Inflamación/inmunología , Infecciones por Poxviridae/inmunología , Infecciones por Poxviridae/metabolismo , Infecciones por Virus ARN/inmunología , Infecciones por Virus ARN/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Replicación Viral/inmunología , Virus/metabolismo
5.
FEBS J ; 281(13): 2899-914, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24802111

RESUMEN

Influenza A virus (IAV), similar to other viruses, exploits the machinery of human host cells for its survival and replication. We identified α-actinin-4, a host cytoskeletal protein, as an interacting partner of IAV nucleoprotein (NP). We confirmed this interaction using co-immunoprecipitation studies, first in a coupled in vitro transcription-translation assay and then in cells either transiently co-expressing the two proteins or infected with whole IAV. Importantly, the NP-actinin-4 interaction was observed in several IAV subtypes, including the 2009 H1N1 pandemic virus. Moreover, immunofluorescence studies revealed that both NP and actinin-4 co-localized largely around the nucleus and also in the cytoplasmic region of virus-infected A549 cells. Silencing of actinin-4 expression resulted in not only a significant decrease in NP, M2 and NS1 viral protein expression, but also a reduction of both NP mRNA and viral RNA levels, as well as viral titers, 24 h post-infection with IAV, suggesting that actinin-4 was critical for viral replication. Furthermore, actinin-4 depletion reduced the amount of NP localized in the nucleus. Treatment of infected cells with wortmannin, a known inhibitor of actinin-4, led to a decrease in NP mRNA levels and also caused the nuclear retention of NP, further strengthening our previous observations. Taken together, the results of the present study indicate that actinin-4, a novel interacting partner of IAV NP, plays a crucial role in viral replication and this interaction may participate in nuclear localization of NP and/or viral ribonucleoproteins.


Asunto(s)
Actinina/metabolismo , Virus de la Influenza A/fisiología , Proteínas de Unión al ARN/fisiología , Proteínas del Núcleo Viral/fisiología , Replicación Viral , Actinina/genética , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Proteínas de la Nucleocápside , Mapeo de Interacción de Proteínas , Transporte de Proteínas , Activación Transcripcional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA