Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 299(3): 102934, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36690273

RESUMEN

Fibrosis is mainly triggered by inflammation in various tissues, such as heart and liver tissues, and eventually leads to their subsequent dysfunction. Fibrosis is characterized by the excessive accumulation of extracellular matrix proteins (e.g., collagens) produced by myofibroblasts. The well-developed actin cytoskeleton of myofibroblasts, one of the main features differentiating them from resident fibroblasts in tissues under inflammatory conditions, contributes to maintaining their ability to produce excessive extracellular matrix proteins. However, the molecular mechanisms via which the actin cytoskeleton promotes the production of fibrosis-related genes in myofibroblasts remain unclear. In this study, we found, via single-cell analysis, that developmentally regulated brain protein (drebrin), an actin-binding protein, was specifically expressed in cardiac myofibroblasts with a well-developed actin cytoskeleton in fibrotic hearts. Moreover, our immunocytochemistry analysis revealed that drebrin promoted actin cytoskeleton formation and myocardin-related transcription factor-serum response factor signaling. Comprehensive single-cell analysis and RNA-Seq revealed that the expression of collagen triple helix repeat containing 1 (Cthrc1), a fibrosis-promoting secreted protein, was regulated by drebrin in cardiac myofibroblasts via myocardin-related transcription factor-serum response factor signaling. Furthermore, we observed the profibrotic effects of drebrin exerted via actin cytoskeleton formation and the Cthrc1 expression regulation by drebrin in liver myofibroblasts (hepatic stellate cells). Importantly, RNA-Seq demonstrated that drebrin expression levels increased in human fibrotic heart and liver tissues. In summary, our results indicated that the well-developed actin cytoskeleton and Cthrc1 expression due to drebrin in myofibroblasts promoted cardiac and hepatic fibrosis, suggesting that drebrin is a therapeutic target molecule for fibrosis.


Asunto(s)
Citoesqueleto de Actina , Proteínas de la Matriz Extracelular , Fibrosis , Miofibroblastos , Neuropéptidos , Humanos , Citoesqueleto de Actina/metabolismo , Miofibroblastos/patología , Fibrosis/fisiopatología , Análisis de Expresión Génica de una Sola Célula , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Neuropéptidos/genética , Neuropéptidos/metabolismo , Diferenciación Celular/fisiología , Transducción de Señal , Células Estrelladas Hepáticas/metabolismo , Cardiopatías/fisiopatología , Cirrosis Hepática/fisiopatología
2.
Biochem Biophys Res Commun ; 561: 180-186, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-34023784

RESUMEN

Fibrosis is a condition characterized by the overproduction of extracellular matrix (ECM) components (e.g., collagen) in the myofibroblasts, causing tissue hardening and eventual organ dysfunction. Currently, the molecular mechanisms that regulate ECM production in the myofibroblasts are still obscure. In this study, we investigated the function of GPRC5B in the cardiac and lung myofibroblasts using real-time RT-PCR and siRNA-mediated knockdown. We discovered a significantly high expression of Gprc5b in the tissues of the fibrosis mice models and confirmed that Gprc5b was consistently expressed in the myofibroblasts of fibrotic hearts and lungs. We also found that Gprc5b expression was associated and may be dependent on the actin-MRTF-SRF signaling pathway. Notably, we observed that Gprc5b knockdown reduced the expression of collagen genes in the cardiac and lung myofibroblasts. Therefore, our findings reveal that GPRC5B enhances collagen production in the myofibroblasts, which directly promotes fibrosis in the tissues.


Asunto(s)
Colágeno/metabolismo , Fibrosis/patología , Corazón/fisiopatología , Hígado/metabolismo , Pulmón/metabolismo , Miofibroblastos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Modelos Animales de Enfermedad , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Fibrosis/metabolismo , Hígado/patología , Pulmón/patología , Masculino , Ratones , Miofibroblastos/patología , Transducción de Señal
3.
Development ; 145(14)2018 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-29986870

RESUMEN

Erk5 belongs to the mitogen-activated protein kinase (MAPK) family. Following its phosphorylation by Mek5, Erk5 modulates several signaling pathways in a number of cell types. In this study, we demonstrated that Erk5 inactivation in mesenchymal cells causes abnormalities in skeletal development by inducing Sox9, an important transcription factor of skeletogenesis. We further demonstrate that Erk5 directly phosphorylates and activates Smurf2 (a ubiquitin E3 ligase) at Thr249, which promotes the proteasomal degradation of Smad proteins and phosphorylates Smad1 at Ser206 in the linker region known to trigger its proteasomal degradation by Smurf1. Smads transcriptionally activated the expression of Sox9 in mesenchymal cells. Accordingly, removal of one Sox9 allele in mesenchymal cells from Erk5-deficient mice rescued some abnormalities of skeletogenesis. These findings highlight the importance of the Mek5-Erk5-Smurf-Smad-Sox9 axis in mammalian skeletogenesis.


Asunto(s)
Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Osteogénesis , Factor de Transcripción SOX9/metabolismo , Transducción de Señal , Proteínas Smad/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Diferenciación Celular , Condrogénesis , Humanos , Mesodermo/citología , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación , Proteolisis , Cráneo/anomalías , Ubiquitina/metabolismo , Ubiquitinación
4.
FASEB J ; 34(6): 8749-8763, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32385915

RESUMEN

Leukotriene B4 receptor 1 (BLT1), a high-affinity G-protein-coupled receptor for leukotriene B4 (LTB4 ), is expressed on various inflammatory cells and plays critical roles in several inflammatory diseases. In myocardial infarction (MI), various inflammatory cells are known to be recruited to the infarcted area, but the function of BLT1 in MI is poorly understood. Here, we investigated the role of BLT1 in MI and the therapeutic effect of a BLT1 antagonist, ONO-4057, on MI. Mice with infarcted hearts showed increased BLT1 expression and LTB4 levels. BLT1-knockout mice with infarcted hearts exhibited attenuated leukocyte infiltration, proinflammatory cytokine production, and cell death, which led to reduced mortality and improved cardiac function after MI. Bone-marrow transplantation studies showed that BLT1 expressed on bone marrow-derived cells was responsible for the exacerbation of inflammation in infarcted hearts. Furthermore, ONO-4057 administration attenuated the inflammatory responses in hearts surgically treated for MI, which resulted in reduced mortality and improved cardiac function after MI. Our study demonstrated that BLT1 contributes to excessive inflammation after MI and could represent a new therapeutic target for MI.


Asunto(s)
Inflamación/metabolismo , Infarto del Miocardio/metabolismo , Receptores de Leucotrieno B4/metabolismo , Animales , Modelos Animales de Enfermedad , Leucotrieno B4/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal/fisiología
5.
Biochem Biophys Res Commun ; 529(2): 224-230, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32703415

RESUMEN

Fibrosis is attributed to excess deposition of extracellular matrix (ECM) proteins including collagen and is associated with various organ dysfunction. This excessive ECM is produced by myofibroblasts, which are differentiated from various cells by a variety of stimuli, represented by TGF-ß. However, molecular mechanisms for the regulation of ECM production in myofibroblasts remain obscure. In this study, we demonstrate that the expression of drebrin, which binds to and increases the stability of actin filament in neurons, is increased in mouse hearts and lungs upon fibrosis. Drebrin is mainly expressed in myofibroblasts in the fibrotic hearts and lungs and promotes the expression of fibrosis-related genes, such as Acta2 and Col1a1. Taken together, our study identifies drebrin as a molecule that promotes the production of fibrosis-related genes in myofibroblasts.


Asunto(s)
Pulmón/patología , Miocardio/patología , Miofibroblastos/patología , Neuropéptidos/genética , Animales , Diferenciación Celular , Células Cultivadas , Fibrosis , Pulmón/metabolismo , Ratones , Ratones Endogámicos C57BL , Miocardio/metabolismo , Miofibroblastos/metabolismo , Células 3T3 NIH , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/patología , Regulación hacia Arriba
6.
J Biol Chem ; 292(25): 10586-10599, 2017 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-28487374

RESUMEN

Dioxin and related chemicals alter the expression of a number of genes by activating the aryl hydrocarbon receptors (AHR) to produce a variety of disorders including hepatotoxicity. However, it remains largely unknown how these changes in gene expression are linked to toxicity. To address this issue, we initially examined the effect of 2,3,7,8-tetrachrolodibenzo-p-dioxin (TCDD), a most toxic dioxin, on the hepatic and serum metabolome in male pubertal rats and found that TCDD causes many changes in the level of fatty acids, bile acids, amino acids, and their metabolites. Among these findings was the discovery that TCDD increases the content of leukotriene B4 (LTB4), an inducer of inflammation due to the activation of leukocytes, in the liver of rats and mice. Further analyses suggested that an increase in LTB4 comes from a dual mechanism consisting of an induction of arachidonate lipoxygenase-5, a rate-limiting enzyme in LTB4 synthesis, and the down-regulation of LTC4 synthase, an enzyme that converts LTA4 to LTC4. The above changes required AHR activation, because the same was not observed in AHR knock-out rats. In agreement with LTB4 accumulation, TCDD caused the marked infiltration of neutrophils into the liver. However, deleting LTB4 receptors (BLT1) blocked this effect. A TCDD-produced increase in the mRNA expression of inflammatory markers, including tumor-necrosis factor and hepatic damage, was also suppressed in BLT1-null mice. The above observations focusing on metabolomic changes provide novel evidence that TCDD accumulates LTB4 in the liver by an AHR-dependent induction of LTB4 biosynthesis to cause hepatotoxicity through neutrophil activation.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Dioxinas/toxicidad , Leucotrieno B4/biosíntesis , Infiltración Neutrófila/efectos de los fármacos , Neutrófilos/metabolismo , Dibenzodioxinas Policloradas/toxicidad , Receptores de Hidrocarburo de Aril/metabolismo , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Leucotrieno B4/genética , Activación Neutrófila/efectos de los fármacos , Infiltración Neutrófila/genética , Neutrófilos/patología , Ratas , Ratas Mutantes , Receptores de Hidrocarburo de Aril/genética , Receptores de Leucotrieno B4/genética , Receptores de Leucotrieno B4/metabolismo
7.
Biochem Biophys Res Commun ; 461(2): 307-13, 2015 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-25881508

RESUMEN

G protein-coupled receptor kinases (GRKs) comprise a family of seven serine/threonine kinases that phosphorylate agonist-activated G protein-coupled receptors (GPCRs). It has recently been reported that GRKs regulate GPCR-independent signaling through the phosphorylation of intracellular proteins. To date, several intracellular substrates for GRK2 and GRK5 have been reported. However, those for GRK6 are poorly understood. Here we identified IκBα, a negative regulator of NF-κB signaling, as a substrate for GRK6. GRK6 directly phosphorylated IκBα at Ser(32)/Ser(36), and the kinase activity of GRK6 was required for the promotion of NF-κB signaling after TNF-α stimulation. Knockout of GRK6 in peritoneal macrophages remarkably attenuated the transcription of inflammatory genes after TNF-α stimulation. In addition, we developed a bioluminescence resonance energy transfer (BRET) probe to monitor GRK6 activity. Using this probe, we revealed that the conformational change of GRK6 was induced by TNF-α. In summary, our study demonstrates that TNF-α induces GRK6 activation, and GRK6 promotes inflammatory responses through the phosphorylation of IκBα.


Asunto(s)
Quinasas de Receptores Acoplados a Proteína-G/inmunología , Proteínas I-kappa B/inmunología , Inflamación/inmunología , Factor de Necrosis Tumoral alfa/inmunología , Animales , Células Cultivadas , Quinasas de Receptores Acoplados a Proteína-G/química , Quinasas de Receptores Acoplados a Proteína-G/genética , Quinasas de Receptores Acoplados a Proteína-G/metabolismo , Técnicas de Silenciamiento del Gen , Técnicas de Inactivación de Genes , Proteínas I-kappa B/química , Proteínas I-kappa B/metabolismo , Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL , Inhibidor NF-kappaB alfa , FN-kappa B/inmunología , Células 3T3 NIH , Fosforilación , Conformación Proteica
8.
Circ Res ; 112(2): 327-34, 2013 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-23212582

RESUMEN

RATIONALE: The clinical problem of loss of ß-adrenergic receptor (ß-AR) response, both in the pathogenesis of heart failure and during therapeutic application of ß-agonists, is attributable, at least in part, to desensitization, internalization, and downregulation of the receptors. In the regulation of ß-AR signaling, G protein-coupled receptor kinase 2 (GRK2) primarily phosphorylates agonist-occupied ß-ARs, and this modification promotes desensitization, internalization, and downregulation of ß-ARs. It has been demonstrated that GRK2 is inhibited by its S-nitrosylation. However, compounds that induce S-nitrosylation, such as S-nitrosoglutathione, simultaneously generate NO, which has been demonstrated to operate for cardiovascular protection. OBJECTIVE: We examine whether S-nitrosylation without NO generation inhibits desensitization of ß(2)-AR by GRK2. We thus aim to synthesize compounds that specifically induce S-nitrosylation. METHODS AND RESULTS: We have developed water-soluble N-nitrosamines that have S-nitrosylating activity but lack NO-generating activity. These compounds, at least partly, rescue ß-AR from desensitization in HEK 293 cells expressing FLAG-tagged human ß(2)-AR and in rat cardiac myocytes. They inhibit isoproterenol-dependent phosphorylation and internalization of ß(2)-AR. Indeed, they nitrosylate GRK2 in vitro and in cells, and their S-nitrosylation of GRK2 likely underlies their inhibition of ß(2)-AR desensitization. CONCLUSIONS: Compounds that induce S-nitrosylation without NO release inhibit GRK2 and attenuate ß(2)-AR desensitization. Developing water-soluble drugs that specifically induce S-nitrosylation may be a promising therapeutic strategy for heart failure.


Asunto(s)
Óxido Nítrico , Nitrosaminas/metabolismo , Nitrosaminas/farmacología , Receptores Adrenérgicos beta 2/metabolismo , Agua/fisiología , Animales , Células HEK293 , Humanos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Óxido Nítrico/metabolismo , Nitrosaminas/química , Ratas , Solubilidad/efectos de los fármacos , Agua/química
9.
Genes Cells ; 18(12): 1095-106, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24134321

RESUMEN

Hyperactivation of Gq signaling causes cardiac hypertrophy, and ß-adrenergic receptor-mediated Gs signaling is attenuated in hypertrophic cardiomyocytes. Here, we found the increase in a global ubiquitination in hypertrophic mouse heart. The activation of Gq signaling resulted in the ubiquitination of Gαs in neonatal rat cardiomyocytes, reduced Gαs expression, and suppressed cAMP response to ß-adrenergic receptor stimulation. Ectopic expression of Gαq induced a similar suppression, which is due to the degradation of Gαs by a ubiquitin-proteasome pathway. Co-expression of Ric-8B, a positive regulator of Gαs, effectively canceled the Gαq-induced ubiquitination of Gαs and recovered the cAMP accumulation. In vitro, Gαq competes for the binding of Gαs to Ric-8B. These data show a new role of Ric-8B in the crosstalk of two distinct G protein signaling pathways, which are possibly involved in a part of mechanisms of chronic heart failure.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Miocitos Cardíacos/metabolismo , Ubiquitinación , Animales , Cardiomegalia/metabolismo , Células Cultivadas , AMP Cíclico/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Células 3T3 NIH , Ratas , Ratas Wistar , Receptores Adrenérgicos alfa 1/metabolismo , Receptores Adrenérgicos beta/metabolismo , Transducción de Señal
10.
Nature ; 453(7192): 241-5, 2008 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-18385674

RESUMEN

Efficient phagocytosis of apoptotic cells is crucial for tissue homeostasis and the immune response. Rab5 is known as a key regulator of the early endocytic pathway and we have recently shown that Rab5 is also implicated in apoptotic cell engulfment; however, the precise spatio-temporal dynamics of Rab5 activity remain unknown. Here, using a newly developed fluorescence resonance energy transfer biosensor, we describe a change in Rab5 activity during the engulfment of apoptotic thymocytes. Rab5 activity on phagosome membranes began to increase on disassembly of the actin coat encapsulating phagosomes. Rab5 activation was either continuous or repetitive for up to 10 min, but it ended before the collapse of engulfed apoptotic cells. Expression of a dominant-negative mutant of Rab5 delayed this collapse of apoptotic thymocytes, showing a role for Rab5 in phagosome maturation. Disruption of microtubules with nocodazole inhibited Rab5 activation on the phagosome membrane without perturbing the engulfment of apoptotic cells. Furthermore, we found that Gapex-5 is the guanine nucleotide exchange factor essential for Rab5 activation during the engulfment of apoptotic cells. Gapex-5 was bound to a microtubule-tip-associating protein, EB1, whose depletion inhibited Rab5 activation during phagocytosis. We therefore propose a mechanistic model in which the recruitment of Gapex-5 to phagosomes through the microtubule network induces the transient Rab5 activation.


Asunto(s)
Fagosomas/metabolismo , Proteínas de Unión al GTP rab5/metabolismo , Actinas/metabolismo , Animales , Apoptosis , Células Cultivadas , Transferencia Resonante de Energía de Fluorescencia , Genes Dominantes , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/efectos de los fármacos , Nocodazol/farmacología , Fagocitosis/efectos de los fármacos , Fagosomas/efectos de los fármacos , Células 3T3 Swiss , Timo/citología , Timo/efectos de los fármacos , Timo/metabolismo , Proteínas de Unión al GTP rab5/genética
11.
Proc Natl Acad Sci U S A ; 108(16): 6662-7, 2011 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-21464294

RESUMEN

Cross-talk between G protein-coupled receptor (GPCR) signaling pathways serves to fine tune cellular responsiveness by neurohumoral factors. Accumulating evidence has implicated nitric oxide (NO)-based signaling downstream of GPCRs, but the molecular details are unknown. Here, we show that adenosine triphosphate (ATP) decreases angiotensin type 1 receptor (AT(1)R) density through NO-mediated S-nitrosylation of nuclear factor κB (NF-κB) in rat cardiac fibroblasts. Stimulation of purinergic P2Y(2) receptor by ATP increased expression of inducible NO synthase (iNOS) through activation of nuclear factor of activated T cells, NFATc1 and NFATc3. The ATP-induced iNOS interacted with p65 subunit of NF-κB in the cytosol through flavin-binding domain, which was indispensable for the locally generated NO-mediated S-nitrosylation of p65 at Cys38. ß-Arrestins anchored the formation of p65/IκBα/ß-arrestins/iNOS quaternary complex. The S-nitrosylated p65 resulted in decreases in NF-κB transcriptional activity and AT(1)R density. In pressure-overloaded mouse hearts, ATP released from cardiomyocytes led to decrease in AT(1)R density through iNOS-mediated S-nitrosylation of p65. These results show a unique regulatory mechanism of heterologous regulation of GPCRs in which cysteine modification of transcriptional factor rather than protein phosphorylation plays essential roles.


Asunto(s)
Regulación hacia Abajo , Miocardio/metabolismo , Óxido Nítrico/metabolismo , Receptor de Angiotensina Tipo 1/biosíntesis , Receptores Purinérgicos P2Y2/metabolismo , Factor de Transcripción ReIA/metabolismo , Adenosina Trifosfato/farmacología , Animales , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/genética , Células HEK293 , Humanos , Masculino , Ratones , Ratones Noqueados , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo , Óxido Nítrico/genética , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Fosforilación/efectos de los fármacos , Fosforilación/genética , Ratas , Receptor de Angiotensina Tipo 1/genética , Receptores Purinérgicos P2Y2/genética , Factor de Transcripción ReIA/genética
12.
J Biol Chem ; 287(42): 35669-35677, 2012 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-22888001

RESUMEN

G-protein coupled receptors (GPCRs) have long been known as receptors that activate G protein-dependent cellular signaling pathways. In addition to the G protein-dependent pathways, recent reports have revealed that several ligands called "biased ligands" elicit G protein-independent and ß-arrestin-dependent signaling through GPCRs (biased agonism). Several ß-blockers are known as biased ligands. All ß-blockers inhibit the binding of agonists to the ß-adrenergic receptors. In addition to ß-blocking action, some ß-blockers are reported to induce cellular responses through G protein-independent and ß-arrestin-dependent signaling pathways. However, the physiological significance induced by the ß-arrestin-dependent pathway remains much to be clarified in vivo. Here, we demonstrate that metoprolol, a ß(1)-adrenergic receptor-selective blocker, could induce cardiac fibrosis through a G protein-independent and ß-arrestin2-dependent pathway. Metoprolol, a ß-blocker, increased the expression of fibrotic genes responsible for cardiac fibrosis in cardiomyocytes. Furthermore, metoprolol induced the interaction between ß(1)-adrenergic receptor and ß-arrestin2, but not ß-arrestin1. The interaction between ß(1)-adrenergic receptor and ß-arrestin2 by metoprolol was impaired in the G protein-coupled receptor kinase 5 (GRK5)-knockdown cells. Metoprolol-induced cardiac fibrosis led to cardiac dysfunction. However, the metoprolol-induced fibrosis and cardiac dysfunction were not evoked in ß-arrestin2- or GRK5-knock-out mice. Thus, metoprolol is a biased ligand that selectively activates a G protein-independent and GRK5/ß-arrestin2-dependent pathway, and induces cardiac fibrosis. This study demonstrates the physiological importance of biased agonism, and suggests that G protein-independent and ß-arrestin-dependent signaling is a reason for the diversity of the effectiveness of ß-blockers.


Asunto(s)
Antagonistas de Receptores Adrenérgicos beta 1/efectos adversos , Arrestinas/metabolismo , Quinasa 5 del Receptor Acoplado a Proteína-G/metabolismo , Cardiopatías/inducido químicamente , Cardiopatías/metabolismo , Metoprolol/efectos adversos , Proteínas Musculares/metabolismo , Transducción de Señal/efectos de los fármacos , Antagonistas de Receptores Adrenérgicos beta 1/farmacología , Animales , Arrestinas/genética , Fibrosis , Quinasa 5 del Receptor Acoplado a Proteína-G/genética , Células HEK293 , Cardiopatías/genética , Cardiopatías/patología , Humanos , Metoprolol/farmacología , Ratones , Ratones Noqueados , Proteínas Musculares/genética , Ratas , Ratas Sprague-Dawley , Transducción de Señal/genética , beta-Arrestinas
13.
J Pharmacol Sci ; 122(1): 1-9, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23575451

RESUMEN

ß-Arrestin-biased agonists are a new class of drugs with promising therapeutic effects. The molecular mechanisms of ß-arrestin-biased agonists are still not completely identified. Here, we investigated the effect of angiotensin II (AngII) and [Sar1,Ile4,Ile8] AngII (SII), a ß-arrestin-biased agonist, on ezrin-radixin-moesin (ERM) phosphorylation in NIH3T3 cells (a fibroblast cell line) stably expressing AngII type 1A receptor. ERM proteins are cross-linkers between the plasma membrane and the actin cytoskeleton and control a number of signaling pathways. We also investigated the role of Gαq protein and ß-arrestins in mediating ERM phosphorylation. We found that AngII stimulates ERM phosphorylation by acting as a ß-arrestin-biased agonist and AngII-stimulated ERM phosphorylation is mediated by ß-arrestin2 not ß-arrestin1. We also found that SII inhibits ERM phosphorylation by acting as a Gαq protein-biased agonist. We concluded that ERM phosphorylation is a unique ß-arrestin-biased agonism signal. Both AngII and SII can activate either Gαq protein or ß-arrestin-mediated signaling as functional biased agonists according to the type of the cell on which they act.


Asunto(s)
Angiotensina II/farmacología , Proteínas del Citoesqueleto/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Microfilamentos/metabolismo , Receptor de Angiotensina Tipo 1/metabolismo , Animales , Arrestinas/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Ratones , Células 3T3 NIH , Fosforilación , Receptor de Angiotensina Tipo 1/agonistas , Transducción de Señal , beta-Arrestinas
14.
FEBS Open Bio ; 13(2): 380-391, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36633120

RESUMEN

During myocardial infarction (MI), cardiac cells at the infarcted area undergo cell death. In response, cardiac myofibroblasts, which are mainly differentiated from resident fibroblasts upon inflammation, produce extracellular matrix proteins such as collagen to fill the damaged areas of the heart to prevent cardiac rupture. In this study, we identified a cardioprotective role of G-protein-coupled receptor kinase 5 (GRK5) in MI. GRK5 expression was found to increase in the mouse heart after MI and was highly expressed in cardiac fibroblasts/myofibroblasts. In fibroblasts/myofibroblasts, GRK5 promoted the expression of inflammation-related genes through nuclear factor-κB activation, leading to an increase in the expression levels of fibrosis-related genes. Bone marrow transfer experiments confirmed that GRK5 in fibroblasts/myofibroblasts, but not in infiltrated macrophages in the infarcted area, is mainly responsible for GRK5-mediated inflammation in infarcted hearts. In addition, inflammation and fibrosis at the infarcted area were significantly suppressed in GRK5 knockout mice, resulting in increased mortality compared with that in wild-type mice. These data indicate that GRK5 in cardiac fibroblasts/myofibroblasts promotes inflammation and fibrosis to ameliorate the damage after MI.


Asunto(s)
Infarto del Miocardio , Miocardio , Animales , Ratones , Colágeno/metabolismo , Fibrosis , Inflamación/metabolismo , Ratones Noqueados , Infarto del Miocardio/genética , Miocardio/metabolismo
15.
Nat Commun ; 14(1): 550, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36754961

RESUMEN

Myofibroblasts cause tissue fibrosis by producing extracellular matrix proteins, such as collagens. Humoral factors like TGF-ß, and matrix stiffness are important for collagen production by myofibroblasts. However, the molecular mechanisms regulating their ability to produce collagen remain poorly characterised. Here, we show that vestigial-like family member 3 (VGLL3) is specifically expressed in myofibroblasts from mouse and human fibrotic hearts and promotes collagen production. Further, substrate stiffness triggers VGLL3 translocation into the nucleus through the integrin ß1-Rho-actin pathway. In the nucleus, VGLL3 undergoes liquid-liquid phase separation via its low-complexity domain and is incorporated into non-paraspeckle NONO condensates containing EWS RNA-binding protein 1 (EWSR1). VGLL3 binds EWSR1 and suppresses miR-29b, which targets collagen mRNA. Consistently, cardiac fibrosis after myocardial infarction is significantly attenuated in Vgll3-deficient mice, with increased miR-29b expression. Overall, our results reveal an unrecognised VGLL3-mediated pathway that controls myofibroblasts' collagen production, representing a novel therapeutic target for tissue fibrosis.


Asunto(s)
MicroARNs , Miocardio , Humanos , Ratones , Animales , Miocardio/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Fibrosis , Colágeno/metabolismo , Miofibroblastos/metabolismo , Factores de Transcripción/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Fibroblastos/metabolismo , Células Cultivadas
16.
EMBO J ; 27(23): 3104-15, 2008 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-19008857

RESUMEN

Cardiac fibrosis, characterized by excessive deposition of extracellular matrix proteins, is one of the causes of heart failure, and it contributes to the impairment of cardiac function. Fibrosis of various tissues, including the heart, is believed to be regulated by the signalling pathway of angiotensin II (Ang II) and transforming growth factor (TGF)-beta. Transgenic expression of inhibitory polypeptides of the heterotrimeric G12 family G protein (Galpha(12/13)) in cardiomyocytes suppressed pressure overload-induced fibrosis without affecting hypertrophy. The expression of fibrogenic genes (TGF-beta, connective tissue growth factor, and periostin) and Ang-converting enzyme (ACE) was suppressed by the functional inhibition of Galpha(12/13). The expression of these fibrogenic genes through Galpha(12/13) by mechanical stretch was initiated by ATP and UDP released from cardiac myocytes through pannexin hemichannels. Inhibition of G-protein-coupled P2Y6 receptors suppressed the expression of ACE, fibrogenic genes, and cardiac fibrosis. These results indicate that activation of Galpha(12/13) in cardiomyocytes by the extracellular nucleotides-stimulated P2Y(6) receptor triggers fibrosis in pressure overload-induced cardiac fibrosis, which works as an upstream mediator of the signalling pathway between Ang II and TGF-beta.


Asunto(s)
Presión Sanguínea , Fibrosis , Subunidades alfa de la Proteína de Unión al GTP G12-G13/metabolismo , Miocardio/patología , Miocitos Cardíacos/fisiología , Receptores Purinérgicos P2/fisiología , Transducción de Señal , Adenosina Trifosfato/metabolismo , Animales , Moléculas de Adhesión Celular/biosíntesis , Factor de Crecimiento del Tejido Conjuntivo/biosíntesis , Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Peptidil-Dipeptidasa A/biosíntesis , Antagonistas del Receptor Purinérgico P2 , Ratas , Factor de Crecimiento Transformador beta/biosíntesis , Uridina Difosfato/metabolismo
17.
Arterioscler Thromb Vasc Biol ; 31(10): 2278-86, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21799177

RESUMEN

OBJECTIVE: The goal of this study was to determine whether inhibition of transient receptor potential canonical (TRPC) channels underlies attenuation of angiotensin II (Ang II)-induced vasoconstriction by phosphodiesterase (PDE) 3 inhibition. METHODS AND RESULTS: Pretreatment of rat thoracic aorta with cilostazol, a selective PDE3 inhibitor, suppressed vasoconstriction induced by Ang II but not that induced by KCl. The Ang II-induced contraction was largely dependent on Ca(2+) influx via receptor-operated cation channels. Cilostazol specifically suppressed diacylglycerol-activated TRPC channels (TRPC3/TRPC6/TRPC7) through protein kinase A (PKA)-dependent phosphorylation of TRPC channels in HEK293 cells. In contrast, we found that phosphorylation of TRPC6 at Thr69 was essential for the suppression of Ang II-induced Ca(2+) influx by PDE3 inhibition in rat aortic smooth muscle cells (RAoSMCs). Cilostazol specifically induced phosphorylation of endogenous TRPC6 at Thr69. The endogenous TRPC6, but not TRPC3, formed a ternary complex with PDE3 and PKA in RAoSMCs, suggesting the specificity of TRPC6 phosphorylation by PDE3 inhibition. Furthermore, inhibition of PDE3 suppressed the Ang II-induced contraction of reconstituted ring with RAoSMCs, which were abolished by the expression of a phosphorylation-deficient mutant of TRPC6. CONCLUSIONS: PKA-mediated phosphorylation of TRPC6 at Thr69 is essential for the vasorelaxant effects of PDE3 inhibition against the vasoconstrictive actions of Ang II.


Asunto(s)
Angiotensina II/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Inhibidores de Fosfodiesterasa 3/farmacología , Canales Catiónicos TRPC/efectos de los fármacos , Tetrazoles/farmacología , Vasoconstricción/efectos de los fármacos , Vasodilatadores/farmacología , Animales , Aorta Torácica/efectos de los fármacos , Aorta Torácica/enzimología , Señalización del Calcio/efectos de los fármacos , Cilostazol , Diglicéridos/metabolismo , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Masculino , Ratones , Músculo Liso Vascular/enzimología , Mutación , Miocitos del Músculo Liso/enzimología , Fosforilación , Procesamiento Proteico-Postraduccional , Ratas , Ratas Sprague-Dawley , Canales Catiónicos TRPC/genética , Canales Catiónicos TRPC/metabolismo , Canal Catiónico TRPC6 , Transfección , Vasoconstrictores/farmacología , Proteínas de Unión al GTP rho/metabolismo
18.
J Biol Chem ; 285(17): 13244-53, 2010 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-20177073

RESUMEN

Activation of Ca(2+) signaling induced by receptor stimulation and mechanical stress plays a critical role in the development of cardiac hypertrophy. A canonical transient receptor potential protein subfamily member, TRPC6, which is activated by diacylglycerol and mechanical stretch, works as an upstream regulator of the Ca(2+) signaling pathway. Although activation of protein kinase G (PKG) inhibits TRPC6 channel activity and cardiac hypertrophy, respectively, it is unclear whether PKG suppresses cardiac hypertrophy through inhibition of TRPC6. Here, we show that inhibition of cGMP-selective PDE5 (phosphodiesterase 5) suppresses endothelin-1-, diacylglycerol analog-, and mechanical stretch-induced hypertrophy through inhibition of Ca(2+) influx in rat neonatal cardiomyocytes. Inhibition of PDE5 suppressed the increase in frequency of Ca(2+) spikes induced by agonists or mechanical stretch. However, PDE5 inhibition did not suppress the hypertrophic responses induced by high KCl or the activation of protein kinase C, suggesting that PDE5 inhibition suppresses Ca(2+) influx itself or molecule(s) upstream of Ca(2+) influx. PKG activated by PDE5 inhibition phosphorylated TRPC6 proteins at Thr(69) and prevented TRPC6-mediated Ca(2+) influx. Substitution of Ala for Thr(69) in TRPC6 abolished the anti-hypertrophic effects of PDE5 inhibition. In addition, chronic PDE5 inhibition by oral sildenafil treatment actually induced TRPC6 phosphorylation in mouse hearts. Knockdown of RGS2 (regulator of G protein signaling 2) and RGS4, both of which are activated by PKG to reduce G alpha(q)-mediated signaling, did not affect the suppression of receptor-activated Ca(2+) influx by PDE5 inhibition. These results suggest that phosphorylation and functional suppression of TRPC6 underlie prevention of pathological hypertrophy by PDE5 inhibition.


Asunto(s)
Señalización del Calcio , Cardiomegalia/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5/metabolismo , Miocitos Cardíacos/metabolismo , Canales Catiónicos TRPC/metabolismo , Sustitución de Aminoácidos , Animales , Calcio/metabolismo , Cardiomegalia/inducido químicamente , Cardiomegalia/genética , Cardiomegalia/prevención & control , Línea Celular , Proteínas Quinasas Dependientes de GMP Cíclico/genética , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5/genética , Diglicéridos/genética , Diglicéridos/metabolismo , Activación Enzimática/efectos de los fármacos , Activación Enzimática/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Ratones , Mutación Missense , Inhibidores de Fosfodiesterasa 5 , Inhibidores de Fosfodiesterasa/efectos adversos , Inhibidores de Fosfodiesterasa/farmacología , Piperazinas/efectos adversos , Piperazinas/farmacología , Cloruro de Potasio/farmacología , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Purinas/efectos adversos , Purinas/farmacología , Ratas , Citrato de Sildenafil , Sulfonas/efectos adversos , Sulfonas/farmacología , Canales Catiónicos TRPC/genética , Canal Catiónico TRPC6
19.
J Biol Chem ; 285(20): 15268-15277, 2010 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-20231290

RESUMEN

Pertussis toxin (PTX) is recognized as a specific tool that uncouples receptors from G(i) and G(o) through ADP-ribosylation. During the study analyzing the effects of PTX on Ang II type 1 receptor (AT1R) function in cardiac fibroblasts, we found that PTX increases the number of AT1Rs and enhances AT1R-mediated response. Microarray analysis revealed that PTX increases the induction of interleukin (IL)-1beta among cytokines. Inhibition of IL-1beta suppressed the enhancement of AT1R-mediated response by PTX. PTX increased the expression of IL-1beta and AT1R through NF-kappaB, and a small GTP-binding protein, Rac, mediated PTX-induced NF-kappaB activation through NADPH oxidase-dependent production of reactive oxygen species. PTX induced biphasic increases in Rac activity, and the Rac activation in a late but not an early phase was suppressed by IL-1beta siRNA, suggesting that IL-1beta-induced Rac activation contributes to the amplification of Rac-dependent signaling induced by PTX. Furthermore, inhibition of TLR4 (Toll-like receptor 4) abolished PTX-induced Rac activation and enhancement of AT1R function. However, ADP-ribosylation of G(i)/G(o) by PTX was not affected by inhibition of TLR4. Thus, PTX binds to two receptors; one is TLR4, which activates Rac, and another is the binding site that is required for ADP-ribosylation of G(i)/G(o).


Asunto(s)
Angiotensina I/metabolismo , Toxina del Pertussis/farmacología , Receptores de Angiotensina/efectos de los fármacos , Receptores Toll-Like/fisiología , Regulación hacia Arriba/efectos de los fármacos , Proteínas de Unión al GTP rac/metabolismo , Animales , Células Cultivadas , Interleucina-1/biosíntesis , Miocardio/citología , Miocardio/metabolismo , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Receptores de Angiotensina/metabolismo
20.
Biochem Biophys Res Commun ; 409(1): 108-13, 2011 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-21565173

RESUMEN

Dilated cardiomyopathy (DCM) is a myocardial disorder that is characterized by dilation and dysfunction of the left ventricle (LV). Accumulating evidence has implicated aberrant Ca(2+) signaling and oxidative stress in the progression of DCM, but the molecular details are unknown. In the present study, we report that inhibition of the transient receptor potential canonical 3 (TRPC3) channels partially prevents LV dilation and dysfunction in muscle LIM protein-deficient (MLP (-/-)) mice, a murine model of DCM. The expression level of TRPC3 and the activity of Ca(2+)/calmodulin-dependent kinase II (CaMKII) were increased in MLP (-/-) mouse hearts. Acitivity of Rac1, a small GTP-binding protein that participates in NADPH oxidase (Nox) activation, and the production of reactive oxygen species (ROS) were also increased in MLP (-/-) mouse hearts. Treatment with pyrazole-3, a TRPC3 selective inhibitor, strongly suppressed the increased activities of CaMKII and Rac1, as well as ROS production. In contrast, activation of TRPC3 by 1-oleoyl-2-acetyl-sn-glycerol (OAG), or by mechanical stretch, induced ROS production in rat neonatal cardiomyocytes. These results suggest that up-regulation of TRPC3 is responsible for the increase in CaMKII activity and the Nox-mediated ROS production in MLP (-/-) mouse cardiomyocytes, and that inhibition of TRPC3 is an effective therapeutic strategy to prevent the progression of DCM.


Asunto(s)
Calcio/metabolismo , Cardiomiopatía Dilatada/metabolismo , Miocardio/metabolismo , Neuropéptidos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Canales Catiónicos TRPC/metabolismo , Disfunción Ventricular Izquierda/metabolismo , Proteínas de Unión al GTP rac/metabolismo , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Cardiomiopatía Dilatada/genética , Proteínas con Dominio LIM , Ratones , Ratones Mutantes , Proteínas Musculares/genética , Pirazoles/farmacología , Ratas , Canales Catiónicos TRPC/antagonistas & inhibidores , Disfunción Ventricular Izquierda/genética , Proteína de Unión al GTP rac1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA