Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 307, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38644483

RESUMEN

BACKGROUND: Luffa (Luffa spp.) is an economically important crop of the Cucurbitaceae family, commonly known as sponge gourd or vegetable gourd. It is an annual cross-pollinated crop primarily found in the subtropical and tropical regions of Asia, Australia, Africa, and the Americas. Luffa serves not only as a vegetable but also exhibits medicinal properties, including anti-inflammatory, antidiabetic, and anticancer effects. Moreover, the fiber derived from luffa finds extensive applications in various fields such as biotechnology and construction. However, luffa Fusarium wilt poses a severe threat to its production, and existing control methods have proven ineffective in terms of cost-effectiveness and environmental considerations. Therefore, there is an urgent need to develop luffa varieties resistant to Fusarium wilt. Single-plant GWAS (sp-GWAS) has been demonstrated as a promising tool for the rapid and efficient identification of quantitative trait loci (QTLs) associated with target traits, as well as closely linked molecular markers. RESULTS: In this study, a collection of 97 individuals from 73 luffa accessions including two major luffa species underwent single-plant GWAS to investigate luffa Fusarium wilt resistance. Utilizing the double digest restriction site associated DNA (ddRAD) method, a total of 8,919 high-quality single nucleotide polymorphisms (SNPs) were identified. The analysis revealed the potential for Fusarium wilt resistance in accessions from both luffa species. There are 6 QTLs identified from 3 traits, including the area under the disease progress curve (AUDPC), a putative disease-resistant QTL, was identified on the second chromosome of luffa. Within the region of linkage disequilibrium, a candidate gene homologous to LOC111009722, which encodes peroxidase 40 and is associated with disease resistance in Cucumis melo, was identified. Furthermore, to validate the applicability of the marker associated with resistance from sp-GWAS, an additional set of 21 individual luffa plants were tested, exhibiting 93.75% accuracy in detecting susceptible of luffa species L. aegyptiaca Mill. CONCLUSION: In summary, these findings give a hint of genome position that may contribute to luffa wild resistance to Fusarium and can be utilized in the future luffa wilt resistant breeding programs aimed at developing wilt-resistant varieties by using the susceptible-linked SNP marker.


Asunto(s)
Resistencia a la Enfermedad , Fusarium , Estudio de Asociación del Genoma Completo , Luffa , Enfermedades de las Plantas , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Fusarium/fisiología , Polimorfismo de Nucleótido Simple/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética , Luffa/genética , Luffa/microbiología , Genoma de Planta , Marcadores Genéticos , Variación Genética
2.
Plant Dis ; 107(7): 1993-2001, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36475742

RESUMEN

Fusarium wilt of Luffa, caused by Fusarium oxysporum f. sp. luffae, causes great losses in Luffa plants worldwide. In this study, 45 accessions of Luffa germplasm were used to determine their resistance to F. oxysporum f. sp. luffae isolates (FOLUST, FOLUSC, Fomh16, and Fol114) in two independent trials. In the first trial, only FOLUST was used to preliminarily identify resistant accessions. Nine accessions of Luffa acutangula and five of L. aegyptiaca were resistant to the FOLUST isolate. In the second trial, the other three isolates were then used to reevaluate the 14 resistant accessions. The results indicated that the 14 accessions were resistant to FOLUSC but exhibited variable resistance to the Fomh16 and Fol114 isolates. Eight accessions of L. acutangula and one accession of L. aegyptiaca were resistant to Fol114. Seven accessions of L. acutangula and one accession of L. aegyptiaca were resistant to Fomh16. Despite the lack of any symptoms, the F. oxysporum f. sp. luffae isolates were recovered from the hypocotyls of all resistant accessions at 28 days postinoculation, except for isolates FOLUSC and FOLUST on one accession (LA140). A high percentage (87.5%) of accessions collected from Bangladesh were identified as resistant, highlighting the effect of local adaptation on resistance. These results provide potentially valuable genetic resources for breeding programs to develop new varieties or rootstocks that could be beneficial for controlling soilborne diseases in different cucurbit crops and further investigating the mechanisms of resistance to F. oxysporum f. sp. luffae in Luffa plants.


Asunto(s)
Fusarium , Luffa , Fusarium/genética , Hipocótilo/genética , Enfermedades de las Plantas/genética , Fitomejoramiento , Productos Agrícolas
3.
Plant Dis ; 2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35467940

RESUMEN

Muskmelon (Cucumis melo L.) is an economically important fruit crop in Taiwan. In March 2020, the symptoms of fruit rot were observed in approximately 10% of mature muskmelon fruits in a field located in Wuri (24.043585, 120.657588), Taichung City, Taiwan. Symptoms including water-soaked lesions were initially observed on the lwer side of fruit, extending with time to cover most of the fruit area, and internal dissolution with white to brown mycelia on the surface was also observed. Ten rotted fruits were disinfested with 70% ethanol for 1 min followed by 1% NaOCl for 5 min, then rinsed three times with sterile distilled water (SDW). Fifteen sterilized symptomatic fruit fragments were cut into 1-cm3 pieces, placed on potato dextrose agar (PDA) amended with 35 mg/liter of streptomycin sulfate and incubated at 28°C in the dark for 1 week. Ten isolates with similar morphology were obtained and the representative isolate FOS-1 was characterized further. Single-spore isolates were used for morphological and molecular analyses. Isolates grown on PDA had dense, cottony white aerial mycelium, changed to light brown, and with the time yellowish-brown pigmentation appeared. Microconidia were ovoid, fusiform, or slightly curved, 0 to1 septate, and ranged between 7.9 to 16.5 × 2.8 to 3.5 µm. Macroconidia were 3 to 5 septate, with a slightly curved and tapering apical cell, and ranged between 18.7 to 35.1 × 3.3 to 4.1 µm. Spherical chlamydospores with thick walls were abundant and single, being produced in terminal or intercalary position. Based on morphological characteristics, the fungus was identified as Fusarium sp. (Leslie and Summerell 2006). PCR amplification and DNA sequencing were performed using primers ITS1/ITS4 (White et al. 1990) and EF1-728F/EF1-986R (Carbone and Kohn 1999) to amplify the complete internal transcribed spacer (ITS) region and the partial translation elongation factor 1-alpha (TEF1-α) gene, respectively. The ITS and TEF1-α gene sequences of Isolate FOS-1 were deposited in GenBank database with acc. nos. MZ749694.1 and MZ782277.1, respectively. BLAST analysis showed 99.64% and 100% sequence identity with F. incanatum-equiseti species complex (FIESC) with MT563419.1 for ITS and MW034437.1 for EF-1α, respectively. BLAST analysis of TEF1-α gene sequence in FUSARIUM-ID database (Geiser et al. 2004), showed 99.31% sequence identity with FIESC (NRRL34070). Pathogenicity was confirmed by fulfilling Koch's postulates. Three healthy muskmelon fruit were disinfested using 70% ethanol for 30 s and 1% NaOCl for 5 min, and followed by three rinses with SDW. Then, the fruit were wounded using a sterile needle and inoculated with an 8 mm-mycelium agar plug. Three sites per fruit were inoculated, and three other fruits treated with mycelium-free PDA plugs served as the controls. The inoculated and control fruit were placed in a plastic box and incubated at 25°C under a 12 h photoperiod for 1 week. All inoculated fruit showed symptoms similar to those observed in the field, whereas no symptoms occurred on the controls. The fungus was re-isolated from the infected fruit, and identified as FIESC by the morphological and molecular methods described above. This pathogen could cause great losses in muskmelon. Members of the FIESC have been reported to cause leaf spot and fruit rot in muskmelon (Cao et al. 2019; Ismail et al. 2021). To our knowledge, this is the first report of the FIESC causing fruit rot of muskmelon in Taiwan. References: Cao, P., et al. 2019. Plant Dis.103:1768. Carbone, I., and Kohn, L. M. 1999. Mycologia. 91:553. Geiser, D.M., et al. 2004. Eur. J. Plant Pathol. 110:473. Ismail, S. I., et al. 2021. Plant Dis. 105:1197. Leslie, J. F., and Summerell, B. A. 2006. The Fusarium Laboratory Manual. Blackwell Publishing, Oxford, U.K. White, T. J., et al. 1990. PCR Protocols: A Guide to Methods and Applications Academic Press, San Diego, CA. 315.

4.
Microbiol Spectr ; 12(2): e0312723, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38174927

RESUMEN

Fusarium oxysporum f. sp. luffae (Folu) is a severe plant pathogen that causes vascular wilt and root rot in Luffa plants worldwide. A green fluorescent protein (GFP)-tagged isolate of Folu (Fomh16-GFP) was utilized to investigate the infection progress and colonization of Fomh16-GFP in resistant (LA140) and susceptible (LA100) Luffa genotypes. Seven days post-inoculation (dpi), it was observed that Fomh16-GFP had successfully invaded and colonized the vascular bundle of all LA100 parts, including the roots, hypocotyl, and stem. Pathogen colonization continued to increase over time, leading to the complete wilting of plants by 14-17 dpi. In LA140, the Fomh16-GFP isolate colonized the roots and hypocotyl vascular system at 7 dpi. Nevertheless, this colonization was restricted in the hypocotyl and decreased significantly, and no fungal growth was detected in the vascular system at 21 dpi. Thus, the resistant genotype might trigger a robust defense mechanism. In addition, while the pathogen was present in LA140, the inoculated plants did not exhibit any symptoms until 28 dpi. Quantitative PCR was utilized to measure the Fomh16-GFP biomass in various parts of LA100 and LA140 at different time points. The findings indicated a positive correlation between the quantity of Fomh16-GFP DNA and disease development in LA100. Alternatively, a high amount of Fomh16-GFP DNA was identified in the roots of LA140. Nonetheless, no significant correlations were found between DNA amount and disease progression in LA140. Aqueous extracts from LA140 significantly reduced Fomh16-GFP spore germination, while no significant reduction was detected using LA100 extracts.IMPORTANCEFusarium wilt of Luffa, caused by Fusarium oxysporum f. sp. luffae (Folu), causes great losses in Luffa plants worldwide. This study used a green fluorescent protein (GFP)-tagged isolate of Folu (Fomh16-GFP) to investigate the infection progress and colonization dynamics of Fomh16-GFP in the resistant and susceptible Luffa genotypes, which could be important in understanding the resistance mechanism of Folu in Luffa plants. In addition, our work highlights the correlations between DNA amount and disease progression in resistant plants using real-time PCR. We observed a positive correlation between the quantity of Fomh16-GFP DNA and disease progression in LA100, while no significant correlation was found in LA140. These results could be valuable to further investigate the resistance mechanism of Luffa genotypes against Folu. Gaining a better understanding of the interaction between Folu and Luffa plants is crucial for effectively managing Fusarium wilt and enhancing resistance in Luffa rootstock and its varieties.


Asunto(s)
Fusarium , Luffa , Proteínas Fluorescentes Verdes , Susceptibilidad a Enfermedades , ADN , Progresión de la Enfermedad
5.
Plants (Basel) ; 9(10)2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-33096943

RESUMEN

Bacterial wilt caused by Ralstonia solanacerum is one of the most economically and destructive eggplant diseases in many tropical and subtropical areas of the world. The objectives of this study were to develop interspecific hybrids, as potential rootstocks, between the eggplant (Solanum melongena) bacterial wilt resistant line EG203 and four wild accessions (S. incanum UPV1, S. insanum UPV2, S.anguivi UPV3, and S. sisymbriifolium UPV4), and to evaluate interspecific hybrids along with parents for resistance to bacterial wilt strains Pss97 and Pss2016. EG203 was crossed successfully with wild accessions UPV2 and UPV3 and produced viable seeds that germinated when wild accessions were used as a maternal parent in the crosses. In addition, viable interspecific hybrids between EG203 and UPV1 were obtained in both directions of the hybridization, although embryo rescue had to be used. Hybridity was confirmed in the four developed interspecific hybrid combinations with three SSR markers. EG203 was resistant to both strains Pss97 and Pss2016, while UPV1 and UPV3 were, respectively, resistant and moderately resistant to Pss2016. The four interspecific hybrids with UPV2, UPV3, and UPV1 were susceptible to both bacterial wilt strains, indicating that the resistance of EG203, UPV1, and UPV3 behaves as recessive in interspecific crosses. However, given the vigor of interspecific hybrids between eggplant and the three cultivated wild species, these hybrids may be of interest as rootstocks. However, the development of interspecific hybrid rootstocks resistant to bacterial wilt will probably require the identification of new sources of dominant resistance to this pathogen in the eggplant wild relatives.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA