Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochim Biophys Acta Gen Subj ; 1862(3): 485-494, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29107813

RESUMEN

We report, based on biophysical studies and molecular mechanical calculations that curcumin binds DNA hairpin in the minor groove adjacent to the loop region forming a stable complex. UV-Vis and fluorescence spectroscopy indicated interaction of curcumin with DNA hairpin. In this novel binding motif, two É£ H of curcumin heptadiene chain are closely positioned to the A16-H8 and A17-H8, while G12-H8 is located in the close proximity of curcumin α H. Molecular dynamics (MD) simulations suggest, the complex is stabilized by noncovalent forces including; π-π stacking, H-bonding and hydrophobic interactions. Nuclear magnetic resonance (NMR) spectroscopy in combination with molecular dynamics simulations indicated curcumin is bound in the minor groove, while circular dichroism (CD) spectra suggested minute enhancement in base stacking and a little change in DNA helicity, without significant conformational change of DNA hairpin structure. The DNA:curcumin complex formed with FdU nucleotides rather than Thymidine, demonstrated enhanced cytotoxicity towards oral cancer cells relative to the only FdU substituted hairpin. Fluorescence co-localization demonstrated stability of the complex in biologically relevant conditions, including its cellular uptake. Acridine orange/EtBr staining further confirmed the enhanced cytotoxic effects of the complex, suggesting apoptosis as mode of cell death. Thus, curcumin can be noncovalently complexed to small DNA hairpin for cellular delivery and the complex showed increased cytotoxicity in combination with FdU nucleotides, demonstrating its potential for advanced cancer therapy.


Asunto(s)
Anticarcinógenos/farmacología , Antineoplásicos Fitogénicos/farmacología , Curcumina/farmacología , ADN/efectos de los fármacos , Floxuridina/farmacología , Anticarcinógenos/química , Antineoplásicos Fitogénicos/química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Dicroismo Circular , Curcumina/química , Sinergismo Farmacológico , Floxuridina/metabolismo , Humanos , Modelos Moleculares , Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , Conformación de Ácido Nucleico/efectos de los fármacos , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta
2.
Mol Cancer ; 13: 57, 2014 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-24625085

RESUMEN

BACKGROUND: Cancer treatment using gold (I) complexes is becoming popular. In this study, a gold (I) N-heterocyclic complex designated as complex 3 was synthesized, its cytotoxicity was examined, and its anti-melanoma activity was evaluated in vitro and in vivo. METHODS: Viability of cancer cells was determined by MTT assay upon treatment with various concentrations of a gold (I) N-heterocyclic carbene complex (complex 3) in a dose and time dependent manner. Mouse melanoma cells B16F10 were selected for further apoptotic studies, including flowcytometric analysis of annexin binding, cell cycle arrest, intracellular ROS generation and loss in the mitochondrial membrane potential. ELISA based assays were done for caspase activities and western blots for determining the expression of various survival and apoptotic proteins. Immunocytology was performed to visualize the translocation of p53 to the nucleus. B16F10 cells were inoculated into mice and post tumor formation, complex 3 was administered. Immunohistology was performed to determine the expressions of p53, p21, NF-κB (p65 and p50), MMP-9 and VEGF. Student's t test was used for determining statistical significance. The survival rate data were analyzed by Kaplan-Meier plots. RESULTS: Complex 3 markedly inhibited the growth of HCT 116, HepG2, and A549, and induced apoptosis in B16F10 cells with nuclear condensation, DNA fragmentation, externalization of phosphatidylserine, activation of caspase 3 and caspase 9, PARP cleavage, downregulation of Bcl-2, upregulation of Bax, cytosolic cytochrome c elevation, ROS generation, and mitochondrial membrane potential loss indicating the involvement of an intrinsic mitochondrial death pathway. Further, upregulation of p53, p-p53 (ser 15) and p21 indicated the role of p53 in complex 3 mediated apoptosis. The complex reduced tumor size, and caused upregulation of p53 and p21 along with downregulation of NF-κB (p65 and p50), VEGF and MMP-9. These results suggest that it induced anti-melanoma effect in vitro and in vivo by modulating p53 and other apoptotic factors. CONCLUSIONS: The gold (I) N-heterocyclic carbene complex (C22H26N6AuO2PF6) designated as complex 3 induced ROS and p53 dependent apoptosis in B16F10 cells involving the mitochondrial death pathway along with suppression of melanoma tumor growth by regulating the levels of pro and anti apoptotic factors (p53, p21, NF-κB, VEGF and MMP-9).


Asunto(s)
Antineoplásicos/farmacología , Compuestos de Oro/farmacología , Melanoma/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Antineoplásicos/síntesis química , Apoptosis/efectos de los fármacos , Western Blotting , Línea Celular Tumoral , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Compuestos de Oro/síntesis química , Células HCT116 , Células Hep G2 , Compuestos Heterocíclicos/síntesis química , Compuestos Heterocíclicos/farmacología , Humanos , Inmunohistoquímica , Metano/análogos & derivados , Metano/síntesis química , Metano/farmacología , Ratones , Proteína p53 Supresora de Tumor/efectos de los fármacos , Regulación hacia Arriba
3.
Front Microbiol ; 15: 1396116, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39040911

RESUMEN

Veterinary medications are constantly being used for the diagnosis, treatment, and prevention of diseases in livestock. However, untreated veterinary drug active compounds are interminably discharged into numerous water bodies and terrestrial ecosystems, during production procedures, improper disposal of empty containers, unused medication or animal feed, and treatment procedures. This exhaustive review describes the different pathways through which veterinary medications enter the environment, discussing the role of agricultural practices and improper disposal methods. The detrimental effects of veterinary drug compounds on aquatic and terrestrial ecosystems are elaborated with examples of specific veterinary drugs and their known impacts. This review also aims to detail the mechanisms by which microbes degrade veterinary drug compounds as well as highlighting successful case studies and recent advancements in microbe-based bioremediation. It also elaborates on microbial electrochemical technologies as an eco-friendly solution for removing pharmaceutical pollutants from wastewater. Lastly, we have summarized potential innovations and challenges in implementing bioremediation on a large scale under the section prospects and advancements in this field.

4.
Cell Physiol Biochem ; 29(1-2): 251-60, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22415094

RESUMEN

Different quinazoline derivatives have showed wide spectrum of pharmacological activities. Some 3-(arylideneamino)-phenylquinazoline-4(3H)-ones have been reported to possess antimicrobial activity. The present study has been undertaken to evaluate the anticancer effect of these quinazolinone derivatives. The quinazolinone derivatives were synthesized as reported earlier. Compounds containing NO(2), OH, OCH(3), or OH and OCH(3) as substituent(s) on the arylideneamino group were named as P(3a), P(3b), P(3c), and P(3d) respectively. Out of these, P(3a) and P(3d) showed better cytotoxic activity than P(3b) and P(3c) on a panel of six cancer cell lines of different origin, namely, B16F10, MiaPaCa-2, HCT116, HeLa, MCF7, and HepG2, though the effect was higher in B16F10, HCT116, and MCF7 cells. P(3a) and P(3d) induced death of B16F10 and HCT116 cells was associated with characteristic apoptotic changes like cell shrinkage, nuclear condensation, DNA fragmentation, and annexin V binding. Also, cell cycle arrest at G1 phase, alteration of caspase-3, caspase-9, Bcl-2 and PARP levels, loss of mitochondrial membrane potential, and enhanced level of cytosolic cytochrome c were observed in treated B16F10 cells. Treatment with multiple doses of P(3a) significantly increased the survival rate of B16F10 tumor bearing BALB/c mice by suppressing the volume of tumor while decreasing microvascular density and mitotic index of the tumor cells.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Quinazolinas/farmacología , Animales , Anexina A5/metabolismo , Antineoplásicos/síntesis química , Antineoplásicos/uso terapéutico , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Línea Celular Tumoral , Forma de la Célula/efectos de los fármacos , Citocromos c/metabolismo , Fragmentación del ADN/efectos de los fármacos , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Células HCT116 , Células HeLa , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Neoplasias/tratamiento farmacológico , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Quinazolinas/química , Quinazolinas/uso terapéutico , Trasplante Heterólogo
5.
PLoS One ; 8(3): e58055, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23472133

RESUMEN

Anticancer role of andrographolide is well documented. To find novel potent derivatives with improved cytotoxicity than andrographolide on cancer cells, two series of di-spiropyrrolidino- and di-spiropyrrolizidino oxindole andrographolide derivatives prepared by cyclo-addition of azomethine ylide along with sarcosine or proline (viz. sarcosine and proline series respectively) and substitution of different functional groups (-CH3, -OCH3 and halogens) were examined for their cytotoxic effect on a panel of six human cancer cell lines (colorectal carcinoma HCT116 cells, pancreatic carcinoma MiaPaCa-2 cells, hepatocarcinoma HepG2 cells, cervical carcinoma HeLa cells, lung carcinoma A549 and melanoma A375 cells). Except halogen substituted derivatives of proline series (viz. CY2, CY14 and CY15 for Br, Cl and I substitution respectively), none of the other derivatives showed improved cytotoxicity than andrographolide in the cancer cell lines examined. Order of cytotoxicity of the potent compounds is CY2>CY14>CY15>andrographolide. Higher toxicity was observed in HCT116, MiaPaCa-2 and HepG2 cells. CY2, induced death of HCT116 (GI50 10.5), MiaPaCa-2 (GI50 11.2) and HepG2 (GI50 16.6) cells were associated with cell rounding, nuclear fragmentation and increased percentage of apoptotic cells, cell cycle arrest at G1 phase, ROS generation, and involvement of mitochondrial pathway. Upregulation of Bax, Bad, p53, caspases-3,-9 and cleaved PARP; downregulation of Bcl-2, cytosolic NF-κB p65, PI3K and p-Akt; translocation of P53/P21, NF-κB p65 were seen in CY2 treated HCT116 cells. Thus, three halogenated di-spiropyrrolizidino oxindole derivatives of andrographolide are found to be more cytotoxic than andrographolide in some cancer cells. The most potent derivative, CY2 induced death of the cancer cells involves ROS dependent mitochondrial pathway like andrographolide.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis , Diterpenos/farmacología , Indoles/farmacología , Antineoplásicos/química , Ciclo Celular , Línea Celular Tumoral , Supervivencia Celular , Daño del ADN , Diterpenos/química , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Fase G1 , Humanos , Indoles/química , Espectrometría de Masas , Potencial de la Membrana Mitocondrial , Modelos Químicos , Oxindoles , Especies Reactivas de Oxígeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA