Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Biol ; 20(9): e3001599, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36170207

RESUMEN

Cell division, wherein 1 cell divides into 2 daughter cells, is fundamental to all living organisms. Cytokinesis, the final step in cell division, begins with the formation of an actomyosin contractile ring, positioned midway between the segregated chromosomes. Constriction of the ring with concomitant membrane deposition in a specified spatiotemporal manner generates a cleavage furrow that physically separates the cytoplasm. Unique lipids with specific biophysical properties have been shown to localize to intercellular bridges (also called midbody) connecting the 2 dividing cells; however, their biological roles and delivery mechanisms remain largely unknown. In this study, we show that ceramide phosphoethanolamine (CPE), the structural analog of sphingomyelin, has unique acyl chain anchors in Drosophila spermatocytes and is essential for meiotic cytokinesis. The head group of CPE is also important for spermatogenesis. We find that aberrant central spindle and contractile ring behavior but not mislocalization of phosphatidylinositol phosphates (PIPs) at the plasma membrane is responsible for the male meiotic cytokinesis defect in CPE-deficient animals. Further, we demonstrate the enrichment of CPE in multivesicular bodies marked by Rab7, which in turn localize to cleavage furrow. Volume electron microscopy analysis using correlative light and focused ion beam scanning electron microscopy shows that CPE-enriched Rab7 positive endosomes are juxtaposed on contractile ring material. Correlative light and transmission electron microscopy reveal Rab7 positive endosomes as a multivesicular body-like organelle that releases its intraluminal vesicles in the vicinity of ingressing furrows. Genetic ablation of Rab7 or Rab35 or expression of dominant negative Rab11 results in significant meiotic cytokinesis defects. Further, we show that Rab11 function is required for localization of CPE positive endosomes to the cleavage furrow. Our results imply that endosomal delivery of CPE to ingressing membranes is crucial for meiotic cytokinesis.


Asunto(s)
Citocinesis , Esfingomielinas , Actomiosina/metabolismo , Animales , Citocinesis/genética , Drosophila/genética , Endosomas/metabolismo , Masculino , Meiosis , Fosfatos de Fosfatidilinositol/metabolismo
2.
Mol Microbiol ; 119(4): 439-455, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36708073

RESUMEN

The histone-like protein HU plays a diverse role in bacterial physiology from the maintenance of chromosome structure to the regulation of gene transcription. HU binds DNA in a sequence-non-specific manner via two distinct binding modes: (i) random binding to any DNA through ionic bonds between surface-exposed lysine residues (K3, K18, and K83) and phosphate backbone (non-specific); (ii) preferential binding to contorted DNA of given structures containing a pair of kinks (structure-specific) through conserved proline residues (P63) that induce and/or stabilize the kinks. First, we show here that the P63-mediated structure-specific binding also requires the three lysine residues, which are needed for a non-specific binding. Second, we demonstrate that substituting P63 to alanine in HU had no impact on non-specific binding but caused differential transcription of diverse genes previously shown to be regulated by HU, such as those associated with the organonitrogen compound biosynthetic process, galactose metabolism, ribosome biogenesis, and cell adhesion. The structure-specific binding also helps create DNA supercoiling, which, in turn, may influence directly or indirectly the transcription of other genes. Our previous and current studies show that non-specific and structure-specific HU binding appear to have separate functions- nucleoid architecture and transcription regulation- which may be true in other DNA-binding proteins.


Asunto(s)
Proteínas Bacterianas , Histonas , Histonas/metabolismo , Proteínas Bacterianas/metabolismo , Lisina , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , ADN Bacteriano/metabolismo
5.
Nat Methods ; 12(11): 1021-31, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26513553

RESUMEN

A quiet revolution is under way in technologies used for nanoscale cellular imaging. Focused ion beams, previously restricted to the materials sciences and semiconductor fields, are rapidly becoming powerful tools for ultrastructural imaging of biological samples. Cell and tissue architecture, as preserved in plastic-embedded resin or in plunge-frozen form, can be investigated in three dimensions by scanning electron microscopy imaging of freshly created surfaces that result from the progressive removal of material using a focused ion beam. The focused ion beam can also be used as a sculpting tool to create specific specimen shapes such as lamellae or needles that can be analyzed further by transmission electron microscopy or by methods that probe chemical composition. Here we provide an in-depth primer to the application of focused ion beams in biology, including a guide to the practical aspects of using the technology, as well as selected examples of its contribution to the generation of new insights into subcellular architecture and mechanisms underlying host-pathogen interactions.


Asunto(s)
Biología/tendencias , Iones , Animales , Criopreservación , Drosophila melanogaster , Interacciones Huésped-Patógeno , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional , Intestinos/patología , Ratones , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Nanotecnología/métodos , Semiconductores , Propiedades de Superficie
6.
8.
J Struct Biol ; 185(3): 278-84, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24300554

RESUMEN

Efficient correlative imaging of small targets within large fields is a central problem in cell biology. Here, we demonstrate a series of technical advances in focused ion beam scanning electron microscopy (FIB-SEM) to address this issue. We report increases in the speed, robustness and automation of the process, and achieve consistent z slice thickness of ∼3 nm. We introduce "keyframe imaging" as a new approach to simultaneously image large fields of view and obtain high-resolution 3D images of targeted sub-volumes. We demonstrate application of these advances to image post-fusion cytoplasmic intermediates of the HIV core. Using fluorescently labeled cell membranes, proteins and HIV cores, we first produce a "target map" of an HIV infected cell by fluorescence microscopy. We then generate a correlated 3D EM volume of the entire cell as well as high-resolution 3D images of individual HIV cores, achieving correlative imaging across a volume scale of 10(9) in a single automated experimental run.


Asunto(s)
Microscopía Electrónica de Rastreo/métodos , Biología Celular , Línea Celular , Humanos , Microscopía Fluorescente
9.
Methods Mol Biol ; 2725: 131-146, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37856022

RESUMEN

Volume electron microscopy (vEM) is a high-resolution imaging technique capable of revealing the 3D structure of cells, tissues, and model organisms. This imaging modality is gaining prominence due to its ability to provide a comprehensive view of cells at the nanometer scale. The visualization and quantitative analysis of individual subcellular structures however requires segmentation of each 2D electron micrograph slice of the 3D vEM dataset; this process is extremely laborious de facto limiting its applications and throughput. To address these limitations, deep learning approaches have been recently developed including Empanada-Napari plugin, an open-source tool for automated segmentation based on a Panoptic-DeepLab (PDL) architecture. In this chapter, we provide a step-by-step protocol describing the process of manual segmentation using 3dMOD within the IMOD package and the process of automated segmentation using Empanada-Napari plugins for the 3D reconstruction of airway cellular structures.


Asunto(s)
Imagenología Tridimensional , Microscopía Electrónica de Volumen , Imagenología Tridimensional/métodos , Aprendizaje Automático , Tórax , Procesamiento de Imagen Asistido por Computador/métodos
10.
Nat Commun ; 15(1): 1799, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38418824

RESUMEN

In the liver, mitochondria are exposed to different concentrations of nutrients due to their spatial positioning across the periportal and pericentral axis. How the mitochondria sense and integrate these signals to respond and maintain homeostasis is not known. Here, we combine intravital microscopy, spatial proteomics, and functional assessment to investigate mitochondrial heterogeneity in the context of liver zonation. We find that periportal and pericentral mitochondria are morphologically and functionally distinct; beta-oxidation is elevated in periportal regions, while lipid synthesis is predominant in the pericentral mitochondria. In addition, comparative phosphoproteomics reveals spatially distinct patterns of mitochondrial composition and potential regulation via phosphorylation. Acute pharmacological modulation of nutrient sensing through AMPK and mTOR shifts mitochondrial phenotypes in the periportal and pericentral regions, linking nutrient gradients across the lobule and mitochondrial heterogeneity. This study highlights the role of protein phosphorylation in mitochondrial structure, function, and overall homeostasis in hepatic metabolic zonation. These findings have important implications for liver physiology and disease.


Asunto(s)
Hígado , Mitocondrias , Hígado/metabolismo , Oxidación-Reducción , Mitocondrias/metabolismo
11.
J Cell Biol ; 223(11)2024 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-39172125

RESUMEN

Membrane remodeling drives a broad spectrum of cellular functions, and it is regulated through mechanical forces exerted on the membrane by cytoplasmic complexes. Here, we investigate how actin filaments dynamically tune their structure to control the active transfer of membranes between cellular compartments with distinct compositions and biophysical properties. Using intravital subcellular microscopy in live rodents we show that a lattice composed of linear filaments stabilizes the granule membrane after fusion with the plasma membrane and a network of branched filaments linked to the membranes by Ezrin, a regulator of membrane tension, initiates and drives to completion the integration step. Our results highlight how the actin cytoskeleton tunes its structure to adapt to dynamic changes in the biophysical properties of membranes.


Asunto(s)
Citoesqueleto de Actina , Actinas , Membrana Celular , Animales , Citoesqueleto de Actina/metabolismo , Membrana Celular/metabolismo , Actinas/metabolismo , Proteínas del Citoesqueleto/metabolismo , Proteínas del Citoesqueleto/genética , Ratas , Ratones , Fusión de Membrana
12.
Nat Commun ; 15(1): 2017, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443376

RESUMEN

HIV-1 infection elevates the risk of developing various cancers, including T-cell lymphoma. Whether HIV-1-encoded proteins directly contribute to oncogenesis remains unknown. We observe that approximately 1-5% of CD4+ T cells from the blood of people living with HIV-1 exhibit over-duplicated centrioles, suggesting that centrosome amplification underlies the development of HIV-1-associated cancers by driving aneuploidy. Through affinity purification, biochemical, and cellular analyses, we discover that Vpr, an accessory protein of HIV-1, hijacks the centriole duplication machinery and induces centrosome amplification and aneuploidy. Mechanistically, Vpr forms a cooperative ternary complex with an E3 ligase subunit, VprBP, and polo-like kinase 4 (Plk4). Unexpectedly, however, the complex enhances Plk4's functionality by promoting its relocalization to the procentriole assembly and induces centrosome amplification. Loss of either Vpr's C-terminal 17 residues or VprBP acidic region, the two elements required for binding to Plk4 cryptic polo-box, abrogates Vpr's capacity to induce these events. Furthermore, HIV-1 WT, but not its Vpr mutant, induces multiple centrosomes and aneuploidy in human primary CD4+ T cells. We propose that the Vpr•VprBP•Plk4 complex serves as a molecular link that connects HIV-1 infection to oncogenesis and that inhibiting the Vpr C-terminal motif may reduce the occurrence of HIV-1-associated cancers.


Asunto(s)
VIH-1 , Linfocitos T , Humanos , Centrosoma , Carcinogénesis , Transformación Celular Neoplásica , Aneuploidia , Linfocitos T CD4-Positivos
13.
bioRxiv ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39091802

RESUMEN

Lymph nodes and other secondary lymphoid organs play critical roles in immune surveillance and immune activation in mammals, but the deep internal locations of these organs make it challenging to image and study them in living animals. Here, we describe a previously uncharacterized external immune organ in the zebrafish ideally suited for studying immune cell dynamics in vivo, the axillary lymphoid organ (ALO). This small, translucent organ has an outer cortex teeming with immune cells, an inner medulla with a mesh-like network of fibroblastic reticular cells along which immune cells migrate, and a network of lymphatic vessels draining to a large adjacent lymph sac. Noninvasive high-resolution imaging of transgenically marked immune cells can be carried out in the lobes of living animals, and the ALO is readily accessible to external treatment. This newly discovered tissue provides a superb model for dynamic live imaging of immune cells and their interaction with pathogens and surrounding tissues, including blood and lymphatic vessels.

14.
Proc Natl Acad Sci U S A ; 107(30): 13336-41, 2010 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-20624966

RESUMEN

The efficiency of HIV infection is greatly enhanced when the virus is delivered at conjugates between CD4+ T cells and virus-bearing antigen-presenting cells such as macrophages or dendritic cells via specialized structures known as virological synapses. Using ion abrasion SEM, electron tomography, and superresolution light microscopy, we have analyzed the spatial architecture of cell-cell contacts and distribution of HIV virions at virological synapses formed between mature dendritic cells and T cells. We demonstrate the striking envelopment of T cells by sheet-like membrane extensions derived from mature dendritic cells, resulting in a shielded region for formation of virological synapses. Within the synapse, filopodial extensions emanating from CD4+ T cells make contact with HIV virions sequestered deep within a 3D network of surface-accessible compartments in the dendritic cell. Viruses are detected at the membrane surfaces of both dendritic cells and T cells, but virions are not released passively at the synapse; instead, virus transfer requires the engagement of T-cell CD4 receptors. The relative seclusion of T cells from the extracellular milieu, the burial of the site of HIV transfer, and the receptor-dependent initiation of virion transfer by T cells highlight unique aspects of cell-cell HIV transmission.


Asunto(s)
Células Dendríticas/virología , VIH/fisiología , Linfocitos T/virología , Virión/fisiología , Células Presentadoras de Antígenos/metabolismo , Células Presentadoras de Antígenos/ultraestructura , Células Presentadoras de Antígenos/virología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/ultraestructura , Linfocitos T CD4-Positivos/virología , Comunicación Celular , Células Dendríticas/metabolismo , Células Dendríticas/ultraestructura , Interacciones Huésped-Patógeno , Humanos , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Linfocitos T/metabolismo , Linfocitos T/ultraestructura
15.
Cell Syst ; 14(1): 58-71.e5, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36657391

RESUMEN

Mitochondria are extremely pleomorphic organelles. Automatically annotating each one accurately and precisely in any 2D or volume electron microscopy (EM) image is an unsolved computational challenge. Current deep learning-based approaches train models on images that provide limited cellular contexts, precluding generality. To address this, we amassed a highly heterogeneous ∼1.5 × 106 image 2D unlabeled cellular EM dataset and segmented ∼135,000 mitochondrial instances therein. MitoNet, a model trained on these resources, performs well on challenging benchmarks and on previously unseen volume EM datasets containing tens of thousands of mitochondria. We release a Python package and napari plugin, empanada, to rapidly run inference, visualize, and proofread instance segmentations. A record of this paper's transparent peer review process is included in the supplemental information.


Asunto(s)
Aprendizaje Profundo , Microscopía Electrónica , Mitocondrias , Microscopía Electrónica de Volumen
16.
Cancer Biol Ther ; 24(1): 2279241, 2023 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-38031910

RESUMEN

Cyclin-dependent Kinase 2 (CDK2) inhibition prevents supernumerary centrosome clustering. This causes multipolarity, anaphase catastrophe and apoptotic death of aneuploid cancers. This study elucidated how CDK2 antagonism affected centrosome stoichiometry. Focused ion beam scanning electron microscopy (FIB-SEM) and immunofluorescent imaging were used. Studies interrogated multipolar mitosis after pharmacologic or genetic repression of CDK2. CDK2/9 antagonism with CYC065 (Fadraciclib)-treatment disordered centrosome stoichiometry in aneuploid cancer cells, preventing centrosome clustering. This caused ring-like chromosomes or multipolar cancer cells to form before onset of cell death. Intriguingly, CDK2 inhibition caused a statistically significant increase in single centrioles rather than intact centrosomes with two centrioles in cancer cells having chromosome rings or multipolarity. Statistically significant alterations in centrosome stoichiometry were undetected in other mitotic cancer cells. To confirm this pharmacodynamic effect, CDK2 but not CDK9 siRNA-mediated knockdown augmented cancer cells with chromosome ring or multipolarity formation. Notably, engineered gain of CDK2, but not CDK9 expression, reversed emergence of cancer cells with chromosome rings or multipolarity, despite CYC065-treatment. In marked contrast, CDK2 inhibition of primary human alveolar epithelial cells did not confer statistically significant increases of cells with ring-like chromosomes or multipolarity. Hence, CDK2 antagonism caused differential effects in malignant versus normal alveolar epithelial cells. Translational relevance was confirmed by CYC065-treatment of syngeneic lung cancers in mice. Mitotic figures in tumors exhibited chromosome rings or multipolarity. Thus, CDK2 inhibition preferentially disorders centrosome stoichiometry in cancer cells. Engaging this disruption is a strategy to explore against aneuploid cancers in future clinical trials.


Asunto(s)
Centrosoma , Neoplasias , Humanos , Animales , Ratones , Quinasa 2 Dependiente de la Ciclina/genética , Quinasa 2 Dependiente de la Ciclina/metabolismo , Centrosoma/metabolismo , Anafase , Mitosis/genética , Aneuploidia , Neoplasias/genética , Neoplasias/metabolismo
17.
Res Sq ; 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37645926

RESUMEN

HIV-1 infection elevates the risk of developing various cancers, including T-cell lymphoma. Whether HIV-1-encoded proteins directly contribute to oncogenesis remains unknown. We observed that approximately 1-5% of CD4+ T cells from the blood of people living with HIV-1 exhibit over-duplicated centrioles, suggesting that centrosome amplification underlies the development of HIV-1-associated cancers by driving aneuploidy. Through affinity purification, biochemical, and cell biology analyses, we discovered that Vpr, an accessory protein of HIV-1, hijacks the centriole duplication machinery and induces centrosome amplification and aneuploidy. Mechanistically, Vpr formed a cooperative ternary complex with an E3 ligase subunit, VprBP, and polo-like kinase 4 (Plk4). Unexpectedly, however, the complex enhanced Plk4's functionality by promoting its relocalization to the procentriole assembly and induced centrosome amplification. Loss of either Vpr's C-terminal 17 residues or VprBP acidic region, the two elements required for binding to Plk4 cryptic polo-box, abrogated Vpr's capacity to induce all these events. Furthermore, HIV-1 WT, but not its Vpr mutant, induced multiple centrosomes and aneuploidy in primary CD4+ T cells. We propose that the Vpr•VprBP•Plk4 complex serves as a molecular link that connects HIV-1 infection to oncogenesis and that inhibiting the Vpr C-terminal motif may reduce the occurrence of HIV-1-associated cancers.

18.
bioRxiv ; 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37333328

RESUMEN

In the liver, mitochondria are exposed to different concentrations of nutrients due to their spatial positioning across the periportal (PP) and pericentral (PC) axis. How these mitochondria sense and integrate these signals to respond and maintain homeostasis is not known. Here, we combined intravital microscopy, spatial proteomics, and functional assessment to investigate mitochondrial heterogeneity in the context of liver zonation. We found that PP and PC mitochondria are morphologically and functionally distinct; beta-oxidation was elevated in PP regions, while lipid synthesis was predominant in the PC mitochondria. In addition, comparative phosphoproteomics revealed spatially distinct patterns of mitochondrial composition and potential regulation via phosphorylation. Acute pharmacological modulation of nutrient sensing through AMPK and mTOR shifted mitochondrial phenotypes in the PP and PC regions, linking nutrient gradients across the lobule and mitochondrial heterogeneity. This study highlights the role of protein phosphorylation in mitochondrial structure, function, and overall homeostasis in hepatic metabolic zonation. These findings have important implications for liver physiology and disease.

19.
bioRxiv ; 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38168275

RESUMEN

Membrane remodeling drives a broad spectrum of cellular functions, and it is regulated through mechanical forces exerted on the membrane by cytoplasmic complexes. Here, we investigate how actin filaments dynamically tune their structure to control the active transfer of membranes between cellular compartments with distinct compositions and biophysical properties. Using intravital subcellular microscopy in live rodents we show that: a lattice composed of linear filaments stabilizes the granule membrane after fusion with the plasma membrane; and a network of branched filaments linked to the membranes by Ezrin, a regulator of membrane tension, initiates and drives to completion the integration step. Our results highlight how the actin cytoskeleton tunes its structure to adapt to dynamic changes in the biophysical properties of membranes.

20.
J Struct Biol ; 178(2): 98-107, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22245777

RESUMEN

In atom probe tomography (APT), a technique that has been used to determine 3D maps of ion compositions of metals and semiconductors at sub-nanometer resolutions, controlled emissions of ions can be induced from needle-shaped specimens in the vicinity of a strong electric field. Detection of these ions in the plane of a position sensitive detector provides two-dimensional compositional information while the sequence of ion arrival at the detector provides information in the third dimension. Here we explore the use of APT technology for imaging biological specimens. We demonstrate that it is possible to obtain 3D spatial distributions of cellular ions and metabolites from unstained, freeze-dried mammalian cells. Multiple peaks were reliably obtained in the mass spectrum from tips with diameters of ~50 nm and heights of ~200 nm, with mass-to-charge ratios (m/z) ranging from 1 to 80. Peaks at m/z 12, 23, 28 and 39, corresponding to carbon, sodium, carbonyl and potassium ions respectively, showed distinct patterns of spatial distribution within the cell. Our studies establish that APT could become a powerful tool for mapping the sub-cellular distribution of atomic species, such as labeled metabolites, at 3D spatial resolutions as high as ~1 nm.


Asunto(s)
Tomografía con Microscopio Electrónico/métodos , Células HeLa , Humanos , Espectrometría de Masas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA