Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Pak J Med Sci ; 40(4): 782-784, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38545008

RESUMEN

We identified the PACS2 gene responsible for the multifunctional sorting protein that play a role in nuclear gene expression as well as pathway traffic regulation. Diseases associated with PACS2 include early infantile epileptic encephalopathy (EIEE66), alacrima, achalasia, and mental retardation syndrome. Whole exome sequencing (WES) technique was used for the identification of variants that may lead to the disease. We identified a consanguineous Saudi family segregating developmental delay, mental retardation and epilepsy. Our results showed a heterozygous missense variant PACS2 gene leading to intellectual disability, epilepsy and cause epileptic encephalopathies (EIEE66) disorder. WES data was analyzed and identified variants were further confirmed by Sanger sequencing validation technique. We identified a heterozygous missense c.625G>A p.Glu209Lys in exon-6 of PACS2. The detected heterozygous mutation in the exon-6 region of PACS2 gene change the protein features and may cause disease. Further, explain the possibility that PACS2 gene play important role to cause intellectual disability, epilepsy and epileptic encephalopathies in this Saudi family.

2.
J Gene Med ; 25(10): e3522, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37119015

RESUMEN

BACKGROUND: Autosomal recessive cutis laxa type 2A (ARCL2A; OMIM: 219200) is characterized by neurovegetative, developmental and progeroid elastic skin anomalies. It is caused by biallelic variation in ATPase, H+ transporting V0 subunit A2 (ATP6V0A2; OMIM: 611716) located on chromosome 12q24.31. Autosomal recessive cutis laxa type 3A (ARCL3A; OMIM: 219150) is another subclinical type characterized by short stature, ophthalmological abnormalities and a progeria-like appearance. The ARCL3A is caused by loss of function alterations in the aldehyde dehydrogenase 18 family member A1 (ALDH18A1; OMIM: 138250) gene located at chromosome 10q24.1. METHODS: Whole-exome sequencing (WES), and Sanger sequencing were performed for molecular diagnosis. 3D protein modeling was performed to investigate the deleterious effect of the variant on protein structure. RESULTS: In this study, clinical and molecular diagnosis were performed for two families, ED-01 and DWF-41, which displayed hallmark features of ARCL2A and ARCL3A, respectively. Three affected individuals in the ED-01 family (IV-4, IV-5 and V-3) displayed sagging loose skin, down-slanting palpebral fissures, excessive wrinkles on the abdomen, hands and feet, and prominent veins on the trunk. Meanwhile the affected individuals in the DWF-41 family (V-2 and V-3) had progeroid skin, short stature, dysmorphology, low muscle tone, epilepsy, lordosis, scoliosis, delayed puberty and internal genitalia. WES in the index patient (ED-01: IV-4) identified a novel homozygous deletion (NM_012463.3: c.1977_1980del; p.[Val660LeufsTer23]) in exon 16 of the ATP6V0A2 while in DWF-41 a novel homozygous missense variant (NM_001323413.1:c.1867G>A; p.[Asp623Asn]) in exon 15 of the ALDH18A1 was identified. Sanger validation in all available family members confirmed the autosomal recessive modes of inheritances in each family. Three dimensional in-silico protein modeling suggested deleterious impact of the identified variants. Furthermore, these variants were assigned class 1 or "pathogenic" as per guidelines of American College of Medical Genetics 2015. Screening of ethnically matched healthy controls (n = 200 chromosomes), excluded the presence of these variations in general population. CONCLUSIONS: To the best of our knowledge, this is the first report of ATP6V0A2 and ALDH18A1 variations in the Pakhtun ethnicity of Pakistani population. The study confirms that WES can be used as a first-line diagnostic test in patients with cutis laxa, and provides basis for population screening and premarital testing to reduce the diseases burden in future generations.


Asunto(s)
Cutis Laxo , Humanos , Cutis Laxo/genética , Cutis Laxo/diagnóstico , Homocigoto , Pakistán , Mutación , Eliminación de Secuencia , ATPasas de Translocación de Protón/genética
3.
Pak J Med Sci ; 39(5): 1337-1344, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37680843

RESUMEN

Objective: Genetic polymorphisms in genes involved in growth process and Vitamin-D metabolism form a significant etiology behind growth hormone deficiency and short stature. The aim of this study was to explore for known and unknown genes and variants related to growth hormone and short stature in a family based study using whole exome sequencing (WES). Method: This family-based study included a family with members diagnosed with growth hormone deficiency, short stature and Vitamin-D deficiency (four boys affected and four boys non-affected). The participants were recruited from King Abdulaziz University Hospital (Jeddah, Saudi Arabia) and referred to King Fahad Centre for Medical Research (Jeddah, Saudi Arabia from April 2022 to June 2022. The consanguineous parents and one of the affected boys (aged 16 years old) underwent WES. Results: Several variants in RNPC3, ACAN, GC, VDR and LRP2 were identified in index cases but not in controls. Novel frameshift and splice region variants in RNPC3 (c.358dupA, p.Arg120fs) were detected. Other missense variants were also observed including variants in ACAN (c.2591C>T, c.2789G>T, c.2815T>A, c.4207A>G, c.4523A>C and c.7119C>G), GC (rs4588 and rs7041) and LRP2 (rs2075252 and rs1991517). A start loss variant in VDR (rs2228570) with high impact was also observed. Conclusions: Our findings suggest a potential association of these variants with growth hormone deficiency and short stature. In this study, novel pathogenic variants in RNPC3 were revealed as well as other variants in ACAN and in genes related to Vitamin-D metabolism (GC, VDR and LRP2) that some or all might be associated with growth hormone deficiency. Further large-scale studies are required to address the association of these variants with growth hormone deficiency and its subsequent short stature.

4.
Pak J Med Sci ; 39(4): 988-993, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37492288

RESUMEN

Background & Objectives: Accurate identification of molecular and toxicological functions of potential drug candidates is crucial for drug discovery and development. This may aid in the evaluation of the risks of genotoxicity and carcinogenesis. In addition, in silico characterization of existing and new drugs might offer clues for future investigations and aid in the development of anticancer treatments. Using next-generation knowledge discovery (NGKD) methodology, we endeavored to establish a risk assessment of anticancer drugs for their molecular mechanism(s) and genotoxicity. Methods: This study was performed at the Faculty of Applied Medical Sciences, King Abdulaziz University (KAU), Jeddah, Saudi Arabia, in November 2022. Using innovative in silico model systems, we assessed the molecular mechanism of action and toxicity of around 20 distinct substances such as Deguelin, Etoposide, Camptothecin, Cytarabine (Ara-C), Cisplatin, Hydroxyurea, Trichostain A, Antimycin, Colchicine, 2-deoxyglucose, Tunicamycin, Thapsigargin, Vinblastin, Docetaxel, Oxaliplatin, Methotrexate, 5-flurouracil, Bleomycin, Taxol (Paclitaxel), and Apicidin. Using the Ingenuity Pathway Analysis (IPA) knowledge base, the number of targets for each compound was determined in silico. Subsequently, they were examined using Fisher's exact test and Benjamini Hochberg Multiple Testing Correction (P<0.05) and submitted to core analysis with IPA to decode the biological and toxicological activities differently controlled by these drugs. In addition, a multiple comparison module in IPA was used to compare the core analyses of each molecule. In addition, we obtained the top 100 protein targets of Etoposide, Camptothecin, and Ara-C using SwissTargetPrediction, as well as the key pathways and gene ontologies affected by these drugs and disease associations using the WebGestalt tool. Results: We identified distinct toxicological signatures and canonical signaling pathways in tumor cell lines regulated by these 20 anticancer drugs. These signaling pathways included cell death and apoptosis in addition to molecular processes, p53 signaling, and aryl hydrocarbon receptor signaling. The TP53 signaling pathway is utilized by these agents to effectively trigger cell death and apoptosis, and p53 functions as a master regulator in a variety of cellular stress responses, including genotoxic stress. Conclusion: Our research has laid the groundwork for the discovery of additional biomarkers that assess both the safety and effectiveness of treatment. Our mechanism based "NGKD" tools have more relevance for the identification of safer therapies and has the potential to lead to the rational screening of drug candidates targeting specific molecular networks and canonical pathways implicated in cancer and genotoxicity. In addition, the combination of protein, microRNA and metabolome profiles may be essential for the development of translatable biomarkers for the safety and efficacy of pharmacotherapeutic agents.Our research has laid the groundwork for the discovery of additional biomarkers that assess both the safety and the effectiveness of a treatment.

5.
Pak J Med Sci ; 39(2): 423-429, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36950431

RESUMEN

Objectives: Accurately identifying the cellular, biomolecular, and toxicological functions of anticancer drugs help to decipher the potential risk of genotoxicity and other side effects. Here, we examined bleomycin for cellular, molecular and toxicological mechanisms using next-generation knowledge discovery (NGKD) tools. Methods: This study was conducted at the Faculty of Applied Medical Sciences, King Abdulaziz University (KAU), Jeddah, Saudi Arabia in October 2022. We first analyzed the raw Toxicogenomic and DNA damage-inducing (TGx-DDI) gene expression data from Gene Expression Omnibus (GEO) (GSE196373) of TK6 cells treated with 10 µM bleomycin and TK6 cells treated with DMSO for four hours using the GEO2R tool based on the Linear Models for Microarray Analysis (limma) R packages to derive the differentially expressed genes (DEGs). Then, iPathwayGuide was used to determine differentially regulated signaling pathways, biological processes, cellular, molecular functions and upstream regulators (genes and miRNAs). Results: Bleomycin differently regulates the p53 pathway, transcriptional dysregulation in cancer, FOXO pathway, viral carcinogenesis, and cancer pathways. The biological processes such as p53 class mediator signaling, intrinsic apoptotic signaling, DNA damage response, and DNA damage-induced intrinsic apoptotic signaling and molecular functions like ubiquitin protein transferase and p53 binding were differentially regulated by bleomycin. iPathwayGuide analysis showed that the p53 and its regulatory gene and microRNA networks induced by bleomycin. Conclusion: Analysis of TGx-DDI data of bleomycin using NGKD tools provided information about toxicogenomics and other mechanisms. Integration of all "omics" based approaches is crucial for the development of translatable biomarkers for evaluating anticancer drugs for safety and efficacy.

6.
Am J Med Genet A ; 188(9): 2693-2700, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35703069

RESUMEN

Mitochondrial protein synthesis requires three elongation factors including EF-Tu (TUFM; OMIM 602389), EF-Ts (TSFM; OMIM 604723), and EF-G1 (GFM1; OMIM 606639). Pathogenic variants in any of these three members result in defective mitochondrial translation which can impart an oxidative phosphorylation (OXPHOS) deficiency. In this study, we investigated a consanguineous Pakhtun Pakistani family. There were four affected siblings at the time of this study and one affected girl had died in infancy. The index patient had severe intellectual disability, global developmental delay, dystonia, no speech development, feeding difficulties, and nystagmus. MRI brain presented thinning of corpus callosum and polymicrogyria. Whole exome sequencing revealed a novel compound heterozygous variant in GFM1 located on chromosome 3q25.32. Sanger sequencing confirmed recessive segregation of the maternal (NM_001308164.1:c.409G > A; p.Val137Met) and paternal (NM_001308164.1:c.1880G > A; p.Arg627Gln) variants in all the four affected siblings. These variants are classified as "likely-pathogenic" according to the recommendation of ACMG/AMP guideline. GFM1 alterations mostly lead to severe phenotypes and the patients may die in early neonatal life; however, four of the affected siblings had survived till the ages of 10-17 years, without developing any life-threatening conditions. Mostly, in cousin marriages, the pathogenic variants are identical-by-descent, and affected siblings born to such parents are homozygous. Three homozygous variants were shortlisted in the analysis of the WES data, but Sanger sequencing did not confirm their segregation with the disease phenotype. This is the first report from Pakistan expanding pathogenicity of GFM1 gene.


Asunto(s)
Distonía , Trastornos Distónicos , Discapacidad Intelectual , Polimicrogiria , Distonía/genética , Exoma/genética , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Proteínas Mitocondriales/genética , Mutación , Linaje , Factor G de Elongación Peptídica/genética , Factores de Elongación de Péptidos/genética , Polimicrogiria/genética , Secuenciación del Exoma
7.
J Gene Med ; 23(1): e3279, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32989887

RESUMEN

BACKGROUND: Joubert syndrome (JBTS) is a heterogenous disorder characterized by intellectual disability, developmental delays, molar tooth sign in brain imaging, hypotonia, ocular motor apraxia and overlapping features of ciliopathies. There are 36 clinical subtypes of JBTS, with an equal number of genes known so far for this phenotype. METHODS: Whole exome sequencing (WES) and Sanger sequencing were performed for the molecular diagnosis of a Pakhtun family affected with Joubert syndrome type 9 (JBTS9). RESULTS: A novel homozygous missense variant (c.4417C>G; Pro1473Ala) in exon 34 was identified in coiled-coil and C2 domains-containing the protein 2A (CC2D2A; NM_001080522) gene. The variant co-segregated in autosomal recessive fashion within the family and was not found in 200 ethnically matched unaffected individuals. In silico analyses supported the pathogenic effect of the altered CC2D2A protein. CONCLUSIONS: To the best of our knowledge, this is the first report of CC2D2A alteration co-segragating with a JBTS9 phenotype in a Pakhtun family from Pakistan. Our findings broaden the pathogenic spectrum of JBTS9, adding a novel variant to CC2D2A variation pool. WES analysis is a successful molecular diagnostic tool for rare genetic disorders, especially in those populations where the marriage of cousins is more frequent. Efficient and accurate genetic testing and counselling of the affected families are helpful for patient management and for reducing the disease burden in future generations.


Asunto(s)
Enfermedades Cerebelosas/diagnóstico , Enfermedades Cerebelosas/genética , Proteínas del Citoesqueleto/genética , Secuenciación del Exoma , Anomalías del Ojo/diagnóstico , Anomalías del Ojo/genética , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Enfermedades Renales/diagnóstico , Enfermedades Renales/genética , Mutación Missense , Adulto , Alelos , Biología Computacional/métodos , Consanguinidad , Proteínas del Citoesqueleto/química , Análisis Mutacional de ADN , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Masculino , Linaje , Fenotipo
8.
BMC Endocr Disord ; 21(1): 162, 2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34380489

RESUMEN

BACKGROUND: The relationship between vitamin D (VitD) and insulin sensitivity and secretion in type 2 diabetes mellitus (T2D) has been shown to be different amongst different ethnic populations. In Saudi Arabia, where both T2D and VitD deficiency are highly prevalent health concerns, little is known about the relationship between VitD, insulin sensitivity, resistance and the relative importance of ethnicity. Our primary aim in this study was to investigate influence of ethnicity on VitD association with glycaemic profile and to measures of obesity as a secondary outcome, among multiethnic postmenopausal women with T2D in Saudi Arabia. METHODS: A cross-sectional study was conducted at King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia. Postmenopausal females (n = 173, age ≥ 50 years) with T2D were randomly selected in this study. Anthropometric measures and fasting blood samples were obtained for all study participants. Several biochemical parameters were measured including 25-hydroxyvitamin D (25(OH)D), glycosylated hemoglobin (HbA1c), insulin, glucose and c-peptide. Surrogate markers for insulin resistance were calculated using Homeostasis Model Assessment 2 for insulin resistance and beta cell activity (HOMA2-IR, HOMA2-ß). RESULTS: Overall, 25(OH)D was inversely associated with fasting glucose (r=-0.165, P = 0.037), insulin (r=-0.184, P = 0.02), C-peptide (r=-0.19, P = 0.015) and HOMA2- IR C-peptide (r=-0.23, P = 0.004). Additionally, serum 25 (OH)D showed a negative correlation with body weight (r=-0.173 P = 0.028), waist and hip circumferences (r=-0.167, P = 0.033; r=-0.22, P = 0.004 respectively) but not with body mass index (BMI) or waist hip ratio (WHR). In the white ethnic group but not in black or Asian population groups, 25(OH)D level was also associated with only serum fasting C-peptide and HOMA2-IR C-peptide and BMI (P < 0.05). CONCLUSIONS: Insulin resistance and obesity were associated with VitD status in T2D in this cohort. Our findings also suggest that these VitD associations in women from white ethnic background are different than in those from black/Asian ethnic backgrounds. Whether VitD supplements are able to improve either obesity and/or insulin sensitivity should be further investigated in different ethnic population groups.


Asunto(s)
Biomarcadores/sangre , Glucemia/análisis , Diabetes Mellitus Tipo 2/epidemiología , Resistencia a la Insulina , Posmenopausia , Vitamina D/sangre , Vitaminas/sangre , Anciano , Estudios Transversales , Diabetes Mellitus Tipo 2/sangre , Femenino , Estudios de Seguimiento , Hemoglobina Glucada/análisis , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Estudios Prospectivos
9.
Int J Neurosci ; 131(2): 206-211, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32172615

RESUMEN

Ataxia telangiectasia is a hereditary multisystem disorder with a wide range of symptoms and signs. It is inherited in an autosomal recessive manner due to a mutation in the ataxia telangiectasia mutated (ATM) gene, which encodes a protein kinase with a domain related to a phosphatidylinositol 3-kinase (PI-3 kinase) proteins that respond to DNA damage by phosphorylating key substrates involved in DNA repair and/or cell cycle control. The characteristics of the disease include progressive cerebellar ataxia beginning between ages one and four years, oculomotor apraxia, choreoathetosis, telangiectasias of the conjunctiva, immunodeficiency with frequent infections, and an increased risk for malignancy. In this article, we report a novel homozygous missense variant c.1516G > T, p.(Gly506Cys) in the ATM gene causing ataxia telangiectasia in a Saudi female. This variant led to the development of a later onset disease (at the age of 14 years) and the classical neurodegenerative process both clinically and on imaging. However, no immune system dysfunction or endocrine abnormalities were present. This is the second novel mutation in this gene so far reported from Saudi Arabia. The novel mutation described in the present study widened the genetic spectrum of ATM-associated diseases, which will benefit studies addressing this disease in the future.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/genética , Ataxia Telangiectasia/genética , Adulto , Femenino , Humanos , Mutación Missense , Linaje , Arabia Saudita
10.
J Stroke Cerebrovasc Dis ; 29(7): 104832, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32414585

RESUMEN

Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL; OMIM #125310) is the most common cause of monogenic familial cerebral small vessel disease. It typically manifests at middle adulthood with highly variable clinical features including migraine with aura, recurrent transient ischemic attacks or ischemic strokes, mood disorders, and progressive cognitive decline. It is caused by mutations in the NOTCH3 gene, which maps to the short arm of chromosome 19 and encode for epidermal growth factor-like repeats. In this article, we report a 40-year-old male patient who presented with a two-year history of progressive cognitive decline including impaired attention, memory, executive functions, and processing speed whose family history was strongly positive for young-onset ischemic stroke and memory impairment. His father, uncle, and grandfather died due to ischemic strokes and cognitive impairment (similar condition). A whole exome sequencing to the patient (proband II-1) revealed a novel heterozygous missense variant c.3009G>T, p.(Trp1003Cys) (chr19;15291625; hg19) in exon 19 of the NOTCH3 gene. Sanger sequencing was used to confirm the variant in other family members. This variant has not been described in the literature so far. The novel mutation described in the present study widened the genetic spectrum of NOTCH3-associated diseases, which will benefit studies addressing this disease in the future. CADASIL remains a disabling disorder leading to medical retirement in our patient due to late clinical presentation, lack of family history taking prior to joining the military, and lack of curative therapy. Further research for therapeutic options is needed including stem cell therapy .


Asunto(s)
CADASIL/genética , Mutación Missense , Receptor Notch3/genética , Adulto , CADASIL/diagnóstico por imagen , CADASIL/fisiopatología , CADASIL/terapia , Análisis Mutacional de ADN , Exones , Predisposición Genética a la Enfermedad , Herencia , Heterocigoto , Humanos , Imagen por Resonancia Magnética , Masculino , Linaje , Fenotipo , Arabia Saudita , Secuenciación del Exoma
11.
Pak J Med Sci ; 36(6): 1425-1428, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32968423

RESUMEN

OBJECTIVE: To study the causative variants in affected member of a Saudi family with Tay-Sachs disorder. This disorder includes paralysis, decreasing in attentiveness, seizures, blindness, motor deterioration progresses rapidly leading to a completely unresponsive state and a cherry-red spot visible on the eye. METHODS: Whole exome sequencing (WES) and Sanger sequencing was performed to study the variant leading to the disease. RESULTS: WES data analysis and Sanger sequencing validation, identifies a homozygous nonsense mutation c.1177C>T, p.Arg393Ter as a result in protein change. This mutation was also studied in 100 unrelated healthy controls. CONCLUSIONS: We detected homozygous mutation in HEXA gene that may lead to cause Tay-Sachs disorder. Moreover, explain the possibility that HEXA gene may play important role for multiple aspects of normal human neurodevelopment.

13.
Neurol Sci ; 40(2): 299-303, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30392057

RESUMEN

Progressive encephalopathy, edema, hypsarrhythmia, and optic atrophy (PEHO) syndrome is an unusual Mendelian phenotype of unidentified origin that causes profound intellectual disability, optic nerve/cerebellar atrophy, epileptic seizures, developmental progress, pedal edema, and early death. Uncharacteristic affected individuals are often classified as having PEHO-like syndrome, although they may be misdiagnosed as having epileptic encephalopathy, a potential result of early birth. In this study, we report a consanguineous Saudi family with a novel homozygous nonsense mutation of the CCDC88A gene causing PEHO-like syndrome. The children were suffering from developmental delay, epilepsy, mental disability, optic nerve/cerebellar atrophy, and pedal edema. Whole exome sequencing was conducted for the members of the family who have the disorder to study the novel mutation. Whole exome sequencing data analysis, confirmed by subsequent Sanger sequencing validation, identified a novel homozygous nonsense mutation c. 1292G > A, which was caused by p.Trp431* stop gain. This mutation was ruled out in 100 unrelated healthy controls. The nonsense homozygous mutation detected in this study has not yet been reported as pathogenic in the literature or various databases. In conclusion, a complete loss of protein function due to premature stop gain was caused by a mutation in exon 12 of CCDC88A. This loss may lead to PEHO phenotype. CCDC88A gene may therefore play an important and critical role for multiple aspects of normal human neurodevelopment.


Asunto(s)
Edema Encefálico/genética , Codón sin Sentido , Predisposición Genética a la Enfermedad , Proteínas de Microfilamentos/genética , Enfermedades Neurodegenerativas/genética , Atrofia Óptica/genética , Espasmos Infantiles/genética , Proteínas de Transporte Vesicular/genética , Preescolar , Consanguinidad , Familia , Femenino , Humanos , Lactante , Masculino , Arabia Saudita
14.
Int J Mol Sci ; 20(5)2019 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-30862043

RESUMEN

Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder characterized by progressive memory dysfunction and a decline in cognition. One of the biggest challenges to study the pathological process at a molecular level is that there is no simple, cost-effective, and comprehensive gene-expression analysis tool. The present study provides the most detailed (Reverse transcription polymerase chain reaction) RT-PCR-based gene-expression assay, encompassing important genes, based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) disease pathway. This study analyzed age-dependent disease progression by focusing on pathological events such as the processing of the amyloid precursor protein, tau pathology, mitochondrial dysfunction, endoplasmic reticulum stress, disrupted calcium signaling, inflammation, and apoptosis. Messenger RNA was extracted from the cortex and hippocampal region of APP/PS1 transgenic mice. Samples were divided into three age groups, six-, nine-, and 12-month-old transgenic mice, and they were compared with normal C57BL/6J mice of respective age groups. Findings of this study provide the opportunity to design a simple, effective, and accurate clinical analysis tool that can not only provide deeper insight into the disease, but also act as a clinical diagnostic tool for its better diagnosis.


Asunto(s)
Envejecimiento/genética , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/patología , Perfilación de la Expresión Génica , Transcriptoma , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Apoptosis/genética , Señalización del Calcio , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Estrés del Retículo Endoplásmico , Redes Reguladoras de Genes , Ratones , Ratones Transgénicos , Mitocondrias/metabolismo , Agregado de Proteínas , Agregación Patológica de Proteínas/metabolismo , Transducción de Señal , Proteínas tau/metabolismo
15.
Pak J Med Sci ; 35(3): 764-770, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31258591

RESUMEN

OBJECTIVE: Primary microcephaly (MCPH) is a rare autosomal recessive disorder characterized by impaired congenital reduction of brain size along with head circumference and intellectual disability. MCPH is a heterogeneous disorder and more than twenty four genes associated with this disease have been identified so far. The objective of this study was to find out the novel genes or mutations leading to the genetic defect in a Saudi family with primary microcephaly. METHODS: Whole exome sequencing was carried out to find the novel mutation and the results was further validated using Sanger sequencing analysis. This study was done in the Center of excellence in Genomic Medicine and Research, King Abdulaziz University under KACST project during 2017 and 2018. RESULTS: We report a novel compound heterozygous mutations c.797C>T in exon 7 and c.1102G>A in exon 9 of the WD repeat domain 62 (WDR62) (OMIM 604317) gene in two affected siblings in Saudi family with intellectual disability, speech impediments walking difficulty along with primary microcephaly. Two rare, missense variants were detected in heterozygous state in the WDR62 gene in these two affected individuals from the heterozygous parents. CONCLUSIONS: A compound heterozygous mutations c.797C>T in exon 7 and c.1102G> A in exon 9 of the WDR62 gene was identified. WDR62 gene is very important gene and mutation can lead to neuro developmental defects, brain malformations, reduced brain and head size. These results should be taken into consideration during prognostic discussions and mutation spectrum with affected patients and their families in the Saudi population.

16.
Pak J Pharm Sci ; 32(2): 521-528, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31081761

RESUMEN

The purpose of the current study was to examine immobilization stress-induced antioxidant defense changes and estimation of the antioxidant potential of pre and post stress treatment of aqueous garlic extract in rat's liver. For this purpose, male Albino Wistar rats were treated with aqueous garlic extract both pre and after 6 h of immobilization stress. Pro-oxidant status of rat liver was evaluated by determining the levels of reduced glutathione (GSH), thiobarbituric acid reactive substances (TBARS), aspartate aminotransferase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), glucose, uric acid and the activities of super oxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST). In response to 6 h of immobilization stress a significant rise in the level of above mentioned liver enzymes were recorded. However, SOD, CAT and GST enzymatic activities showed a sharp decline. The extract treatment before and after stress, almost reverted the activities of studied biochemical parameters towards their control values. Current study highlighted the antioxidant potential of garlic extracts. Based on our study, we recommend the use of garlic extract as nutritional supplement for combating oxidative stress induced damage.


Asunto(s)
Ajo/química , Hígado/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Sustancias Protectoras/farmacología , Animales , Antioxidantes/metabolismo , Enzimas/farmacología , Glucosa/metabolismo , Glutatión/metabolismo , Hígado/metabolismo , Masculino , Estrés Oxidativo/fisiología , Ratas Wistar , Restricción Física
17.
Pak J Med Sci ; 33(3): 581-585, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28811775

RESUMEN

OBJECTIVE: Seizures are one of the neurodegenerative disorders of human being. Metformin has antioxidant properties and commonly used as an oral antidiabetic drug. The current study was aimed to observe the neuroprotective effect of metformin against PTZ-induced apoptotic neurodegeneration in human cortical neuronal cell culture. METHODS: To observe that exposure of pentylenetetrazol (PTZ) at the dose of (30mM) for 30 minutes induced neuronal cell death by activation of caspase-3 in human cortical neuronal 2 (HCN-2) cell line. While the metformin at the dose of (20mM) along with PTZ for 30 minutes showed neuroprotection against PTZ-induced neuronal cell loss by MTT assay and Western blot analysis. RESULTS: The results of this study showed that PTZ-induced neuronal cell death by activation of pro apoptotic proteins caspase-3 and 9 whereas the exposure of metformin showed its protective effect against neuronal loss in HCN-2 cell line. Finally, our results showed that exposure of metformin can prevent the harmful effect induced by PTZ in neuronal cells cultures. CONCLUSIONS: Our finding suggest that metformin exposure attenuates PTZ-induced neuronal cell death may act as a safe therapeutics and neuroprotective agent for the treatment of neuronal loss as result of seizure.

18.
Am J Med Genet A ; 170(11): 3018-3022, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27531570

RESUMEN

We describe two brothers from a consanguineous family of Egyptian ancestry, presenting with microcephaly, apparent global developmental delay, seizures, spasticity, congenital blindness, and multiple cutaneous capillary malformations. Through exome sequencing, we uncovered a homozygous missense variant in STAMBP (p.K303R) in the two siblings, inherited from heterozygous carrier parents. Mutations in STAMBP are known to cause microcephaly-capillary malformation syndrome (MIC-CAP) and the phenotype in this family is consistent with this diagnosis. We compared the findings in the present brothers with those of earlier reported patients. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Capilares/anomalías , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Homocigoto , Microcefalia/diagnóstico , Microcefalia/genética , Ubiquitina Tiolesterasa/genética , Malformaciones Vasculares/diagnóstico , Malformaciones Vasculares/genética , Encéfalo/patología , Consanguinidad , Variaciones en el Número de Copia de ADN , Análisis Mutacional de ADN , Exoma , Facies , Estudios de Asociación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Imagen por Resonancia Magnética , Masculino , Mutación , Linaje , Fenotipo , Hermanos , Síndrome
20.
BMC Genomics ; 16 Suppl 1: S10, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25923336

RESUMEN

BACKGROUND: Epilepsy is genetically complex neurological disorder affecting millions of people of different age groups varying in its type and severity. Copy number variants (CNVs) are key players in the genetic etiology of numerous neurodevelopmental disorders and prior findings also revealed that chromosomal aberrations are more susceptible against the pathogenesis of epilepsy. Novel technologies, such as array comparative genomic hybridization (array-CGH), may help to uncover the pathogenic CNVs in patients with epilepsy. RESULTS: This study was carried out by high density whole genome array-CGH analysis with blood DNA samples from a cohort of 22 epilepsy patients to search for CNVs associated with epilepsy. Pathogenic rearrangements which include 6p12.1 microduplications in 5 patients covering a total region of 99.9kb and 7q32.3 microdeletions in 3 patients covering a total region of 63.9kb were detected. Two genes BMP5 and PODXL were located in the predicted duplicated and deleted regions respectively. Furthermore, these CNV findings were confirmed by qPCR. CONCLUSION: We have described, for the first time, several novel CNVs/genes implicated in epilepsy in the Saudi population. These findings enable us to better describe the genetic variations in epilepsy, and could provide a foundation for understanding the critical regions of the genome which might be involved in the development of epilepsy.


Asunto(s)
Deleción Cromosómica , Duplicación Cromosómica , Variaciones en el Número de Copia de ADN/genética , Epilepsia/genética , Estudio de Asociación del Genoma Completo , Adolescente , Adulto , Niño , Preescolar , Hibridación Genómica Comparativa , Femenino , Humanos , Masculino , Linaje , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados , Arabia Saudita
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA