Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 25(16): 11522-11529, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37039328

RESUMEN

Self-assembly of modified amino acids facilitate the formation of various structures that have unique properties and therefore serve as excellent bio-organic scaffolds for diverse applications. Self-assembly of Fmoc protected single amino acids has attracted great interest owing to their ease of synthesis and applications as functional materials. Smaller assembly units enable synthetic convenience and potentially broader adoption. Herein, we demonstrate the ability to control the morphologies resulting from self-assembly of Fmoc modified aliphatic single amino acids (Fmoc-SAAs) namely, Alanine, Valine, Leucine, Isoleucine, and Proline. Controlled morphological transitions were observed through solvent variation and the mechanism that allows this control was investigated using coarse-grained molecular dynamics simulations. These show that FmocA can form well defined crystalline structures through uniform parallel Fmoc stacking and the optimization of ion concentrations, which is not observed for the other Fmoc-SAAs. We demonstrate that Fmoc protected aliphatic single amino acids are novel scaffolds for the design of distinct micro/nanostructures through a bottom-up approach that can be tuned by control of the environmental parameters.


Asunto(s)
Aminoácidos , Nanoestructuras , Solventes , Aminoácidos/química , Nanoestructuras/química , Leucina , Simulación de Dinámica Molecular , Fluorenos/química
2.
Life (Basel) ; 13(7)2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37511898

RESUMEN

Amyloids were conventionally referred to as extracellular and intracellular accumulation of Aß42 peptide, which causes the formation of plaques and neurofibrillary tangles inside the brain leading to the pathogenesis in Alzheimer's disease. Subsequently, amyloid-like deposition was found in the etiology of prion diseases, Parkinson's disease, type II diabetes, and cancer, which was attributed to the aggregation of prion protein, α-Synuclein, islet amyloid polypeptide protein, and p53 protein, respectively. Hence, traditionally amyloids were considered aggregates formed exclusively by proteins or peptides. However, since the last decade, it has been discovered that other metabolites, like single amino acids, nucleobases, lipids, glucose derivatives, etc., have a propensity to form amyloid-like toxic assemblies. Several studies suggest direct implications of these metabolite assemblies in the patho-physiology of various inborn errors of metabolisms like phenylketonuria, tyrosinemia, cystinuria, and Gaucher's disease, to name a few. In this review, we present a comprehensive literature overview that suggests amyloid-like structure formation as a common phenomenon for disease progression and pathogenesis in multiple syndromes. The review is devoted to providing readers with a broad knowledge of the structure, mode of formation, propagation, and transmission of different extracellular amyloids and their implications in the pathogenesis of diseases. We strongly believe a review on this topic is urgently required to create awareness about the understanding of the fundamental molecular mechanism behind the origin of diseases from an amyloid perspective and possibly look for a common therapeutic strategy for the treatment of these maladies by designing generic amyloid inhibitors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA